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Preface

The classical way of presentation of the DSP theory is not very
well suitable for the purposes of virtual analog filter design.
The linearity and time-invariance of structures are not assumed
merely to simplify certain analysis and design aspects, but are
handled more or less as an “ultimate truth”. The connection
to the continuous-time (analog) world is lost most of the time.
The key focus points, particularly the discussed filter types, are
of little interest to a digital music instrument developer. This
makes it difficult to apply the obtained knowledge in the music
DSP context, especially in the virtual analog filter design.

This book attempts to amend this deficiency. The concepts
are introduced with the musical VA filter design in mind. The
depth of theoretical explanation is restricted to an intuitive and
practically applicable amount. The focus of the book is the de-
sign of digital models of classical musical analog filter structures
using the topology-preserving transform approach, which can be
considered as a generalization of bilinear transform, zero-delay
feedback and trapezoidal integration methods. This results in

ix
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digital filters having nice amplitude and phase responses, nice
time-varying behavior and plenty of options for nonlinearities.
In a way, this book can be seen as a detailed explanation of the
materials provided in the author’s article “Preserving the LTI
system topology in s- to z-plane transforms.”

The prerequisites for the reader include familiarity with the
basic DSP concepts, complex algebra and the basic ideas of
mathematical analysis. Some basic knowledge of electronics may
be helpful at one or two places, but is not critical for the under-
standing of the presented materials.

The author would like to apologize for possible mistakes and
messy explanations. This book has been written in a large haste,
just in a few days and didn’t go through any serious proofreading
yet.



xi

Acknowledgements

The author would like to express his gratitude to a number of
people who work (or worked at a certain time) at NI and helped
him with the matters related to the creation of this book in one
or another way: Daniel Haver, Mate Galic, Tom Kurth, Nicolas
Gross, Maike Weber, Martijn Zwartjes, and Mike Daliot. Spe-
cial thanks to Stephan Schmitt, Egbert Jürgens and Maximilian
Zagler.

The author is also grateful to a number of people on the
KVR Audio DSP forum and the music DSP mailing list for pro-
ductive discussions regarding the matters discussed in the book.
Particulary to Martin Eisenberg for the detailed and extensive
discussion of the delayless feedback, to Dominique Wurtz for
the idea of the full equivalence of different BLT integrators and
to Teemu Voipio for the introduction of the transposed direct
form II BLT integrator in the TPT context. Thanks to Robin
Schmidt and Richard Hoffmann for reporting a number of mis-
takes in the book text.

One shouldn’t underestimate the small but invaluable con-
tribution by Helene Kolpakova, whose questions and interest in
the VA filter design matters have triggered the idea to quickly
write this book.

Last, but most importantly, big thanks to Bob Moog for
inventing the voltage-controlled transistor ladder filter.



xii PREFACE



Chapter 1

Fourier theory

When we are talking about filters we say that filters modify the
frequency content of the signal. E.g. a lowpass filter lets the low
frequencies through, while suppressing the high frequencies, a
highpass filter does vice versa etc. In this chapter we are going
to develop a formal definition1 of the concept of frequencies
“contained” in a signal. We will later use this concept to analyse
the behavior of the filters.

1More precisely we will develop a number of definitions.

1



2 CHAPTER 1. FOURIER THEORY

1.1 Complex sinusoids

In order to talk about the filter theory we need to introduce
complex sinusoidal signals. Consider the complex identity:

ejt = cos t+ j sin t (t ∈ R)

(notice that, if t is the time, then the point ejt is simply moving
along a unit circle in the complex plane). Then

cos t =
ejt + e−jt

2
and

sin t =
ejt − e−jt

2j
Then a real sinusoidal signal a cos(ωt + ϕ) where a is the real
amplitude and ϕ is the initial phase can be represented as a sum
of two complex conjugate sinusoidal signals:

a cos(ωt+ ϕ) =
a

2

(
ej(ωt+ϕ) + e−j(ωt+ϕ)

)
=

=
(a

2
ejϕ
)
ejωt +

(a
2
e−jϕ

)
e−jωt

Notice that we have a sum of two complex conjugate sinusoids
e±jωt with respective complex conjugate amplitudes (a/2)e±jϕ.
So, the complex amplitude simultaneously encodes both the am-
plitude information (in its absolute magnitude) and the phase
information (in its argument). For the positive-frequency com-
ponent (a/2)ejϕ · ejωt, the complex “amplitude” a/2 is a half of
the real amplitude and the complex “phase” ϕ is equal to the
real phase.
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1.2 Fourier series

Let x(t) be a real periodic signal of a period T:

x(t) = x(t+ T )

Let ω = 2π/T be the fundamental frequency of that signal.
Then x(t) can be represented2 as a sum of a finite or infinite
number of sinusoidal signals of harmonically related frequencies
jnω plus the DC offset term3 a0/2:

x(t) =
a0

2
+
∞∑
n=1

an cos(jnωt+ ϕn) (1.1)

The representation (1.1) is referred to as real-form Fourier se-
ries. The respective sinusoidal terms are referred to as the har-
monics or the harmonic partials of the signal.

Using the complex sinusoid notation the same can be rewrit-
ten as

x(t) =
∞∑

n=−∞
Xne

jnωt (1.2)

where each harmonic term an cos(jnωt+ϕn) will be represented
by a sum of Xne

jnωt and X−ne
−jnωt, where Xn and X−n are

mutually conjugate: Xn = X∗−n. The representation (1.2) is

2Formally speaking, there are some restrictions on x(t). It would be
sufficient to require that x(t) is bounded and continuous, except for a finite
number of discontinuous jumps per period.

3The reason the DC offset term is notated as a0/2 and not as a0 has to
do with simplifying the math notation in other related formulas.
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referred to as complex-form Fourier series. Note that we don’t
have an explicit DC offset partial in this case, it is implicitly
contained in the series as the term for n = 0.

It can be easily shown that the real- and complex-form co-
efficients are related as

Xn =
an
2
ejϕn (n > 0)

X0 =
a0

2

This means that intuitively we can use the absolute magnitude
and the argument of Xn (for positive-frequency terms) as the
amplitudes and phases of the real Fourier series partials.

Complex-form Fourier series can also be used to represent
complex (rather than real) periodic signals in exactly the same
way, except that the equality Xn = X∗−n doesn’t hold anymore.

Thus, any real periodic signal can be represented as a sum of
harmonically related real sinusoidal partials plus the DC offset.
Alternatively, any periodic signal can be represented as a sum
of harmonically related complex sinusoidal partials.

1.3 Fourier integral

While periodic signals are representable as a sum of a countable
number of sinusoidal partials, a nonperiodic real signal can be
represented4 as a sum of an uncountable number of sinusoidal

4As with Fourier series, there are some restrictions on x(t). It is suffi-
cient to require x(t) to be absolutely integrable, bounded and continuous
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partials:

x(t) =
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π

(1.3)

The representation (1.3) is referred to as Fourier integral.5 The
DC offset term doesn’t explicitly appear in this case.

The complex-form version of Fourier integral6 is

x(t) =
∫ ∞
−∞

X(ω)ejωt
dω
2π

(1.4)

For real x(t) we have a Hermitian X(ω): X(ω) = X∗(−ω), for
complex x(t) there is no such restriction. The function X(ω) is
referred to as Fourier transform of x(t).7

(except for a finite number of discontinuous jumps per any finite range
of the argument value). The most critical requirement here is probably
the absolute integrability, which is particularly fulfilled for the timelimited
signals.

5The 1/2π factor is typically used to simplify the notation in the the-
oretical analysis involving the computation. Intuitively, the integration is
done with respect to the ordinary, rather than circular frequency:

x(t) =

∫ ∞
0

a(t) cos
(
2πft+ ϕ(f)

)
df

Some texts do not use the 1/2π factor in this position, in which case it
appears in other places instead.

6A more common term for (1.4) is inverse Fourier transform. However
the term inverse Fourier transform stresses the fact that x(t) is obtained
by computing the inverse of some transform, whereas in this book we are
more interested in the fact that x(t) is representable as a combination of
sinusoidal signals. The term Fourier integral better reflects this aspect. It
also suggests a similarity to the Fourier series representation.

7The notation X(ω) for Fourier transform shouldn’t be confused with
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It can be easily shown that the relationship between the
parameters of the real and complex forms of Fourier transform
is

X(ω) =
a(ω)

2
ejϕ(ω) (ω > 0)

This means that intuitively we can use the absolute magnitude
and the argument of X(ω) (for positive frequencies) as the am-
plitudes and phases of the real Fourier integral partials.

Thus, any timelimited signal can be represented as a sum of
an uncountable number of sinusoidal partials of infinitely small
amplitudes.

1.4 Dirac delta function

The Dirac delta function δ(t) is intuitively defined as a very high
and a very short symmetric impulse with a unit area (Fig. 1.1):

δ(t) =

{
+∞ if t = 0
0 if t 6= 0

δ(−t) = δ(t)∫ ∞
−∞

δ(t) dt = 1

the notation X(s) for Laplace transform. Typically one can be told from
the other by the semantics and the notation of the argument. Fourier
transform has a real argument, most commonly denoted as ω. Laplace
transform has a complex argument, most commonly denoted as s.
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t

δ(t)

+∞

0

Figure 1.1: Dirac delta function.

Since the impulse is infinitely narrow and since it has a unit
area, ∫ ∞

−∞
f(τ)δ(τ) dτ = f(0) ∀f

from where it follows that a convolution of any function f(t)
with δ(t) doesn’t change f(t):

(f ∗ δ)(t) =
∫ ∞
−∞

f(τ)δ(t− τ) dτ = f(t)

Dirac delta can be used to represent Fourier series by a
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Fourier integral. If we let

X(ω) =
∞∑

n=−∞
2πδ(ω − nωf )Xn

then
∞∑

n=−∞
Xne

jnωf t =
∫ ∞
−∞

X(ω)ejωt
dω
2π

From now on, we’ll not separately mention Fourier series, as-
suming that Fourier integral can represent any necessary signal.

Thus, most signals can be represented as a sum of (a possibly
infinite number of) sinusoidal partials.

1.5 Laplace transform

Let s = jω. Then, a complex-form Fourier integral can be
rewritten as

x(t) =
∫ +j∞

−j∞
X(s)est

ds
2πj

where the integration is done in the complex plane along the
straight line from −j∞ to +j∞ (apparently X(s) is a different
function than X(ω)8). For timelimited signals the function X(s)

8As already mentioned, the notation X(ω) for Fourier transform
shouldn’t be confused with the notation X(s) for Laplace transform. Typ-
ically one can be told from the other by the semantics and the notation
of the argument. Fourier transform has a real argument, most commonly
denoted as ω. Laplace transform has a complex argument, most commonly
denoted as s.
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can be defined on the entire complex plane in such a way that
the integration can be done along any line which is parallel to
the imaginary axis:

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

(σ ∈ R) (1.5)

In many other cases such X(s) can be defined within some strip
σ1 < Re s < σ2. Such function X(s) is referred to as bilateral
Laplace transform of x(t), whereas the representation (1.5) can
be referred to as Laplace integral.910

Notice that the complex exponential est is representable as

est = eRe s·teIm s·t

Considering eRe s·t as the amplitude of the complex sinusoid
eIm s·t we notice that est is:

- an exponentially decaying complex sinusoid if Re s < 0,

- an exponentially growing complex sinusoid if Re s > 0,

- a complex sinusoid of constant amplitude if Re s = 0.
9A more common term for (1.5) is inverse Laplace transform. However

the term inverse Laplace transform stresses the fact that x(t) is obtained
by computing the inverse of some transform, whereas is this book we are
more interested in the fact that x(t) is representable as a combination of
exponential signals. The term Laplace integral better reflects this aspect.

10The representation of periodic signals by Laplace integral (using Dirac
delta function) is problematic for σ 6= 0. Nevertheless, we can represent
them by a Laplace integral if we restrict σ to σ = 0 (that is Re s = 0 for
X(s)).
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Thus, most signals can be represented as a sum of (a possibly
infinite number of) complex exponential partials, where the am-
plitude growth or decay speed of these partials can be relatively
arbitrarily chosen.

SUMMARY

The most important conclusion of this chapter is: any signal
occurring in practice can be represented as a sum of sinusoidal
(real or complex) components. The frequencies of these sinu-
soids can be referred to as the “frequencies contained in the sig-
nal”. For complex representation, the real amplitude and phase
information is encoded in the absolute magnitude and the argu-
ment of the complex amplitudes of the positive-frequency par-
tials (where the absolute magnitude of the complex amplitude
is a half of the real amplitude).

It is also possible to use complex exponentials instead of
sinusoids.



Chapter 2

Analog 1-pole filters

In this chapter we are going to introduce the basic analog RC-
filter and use it as an example to develop the key concepts of
the analog filter analysis.

2.1 RC filter

Consider the circuit in Fig. 2.1, where the voltage x(t) is the
input signal and the capacitor voltage y(t) is the output signal.
This circuit represents the simplest 1-pole lowpass filter, which
we are now going to analyse.

Writing the equations for that circuit we have:

x = UR + UC

11
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� R
�
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ÿ
�
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� C
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�
þ

����� �ò
y(t)
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����� �ð

x(t)

Figure 2.1: A simple RC lowpass filter.

y = UC

UR = RI

I = q̇C

qC = CUC

where UR is the resistor voltage, UC is the capacitor voltage, I
is the current through the circuit and qC is the capacitor charge.
Reducing the number of variables, we can simplify the equation
system to:

x = RCẏ + y

or
ẏ =

1
RC

(x− y)

or, integrating with respect to time:

y = y(t0) +
∫ t

t0

1
RC

(
x(τ)− y(τ)

)
dτ
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where t0 is the initial time moment. Introducing the notation
ωc = 1/RC we have

y = y(t0) +
∫ t

t0

ωc
(
x(τ)− y(τ)

)
dτ (2.1)

We will reintroduce ωc later as the cutoff of the filter.
Notice that we didn’t factor 1/RC (or ωc) out of the integral

for the case when the value of R is varying with time. The
varying R corresponds to the varying cutoff of the filter, and
this situation is highly typical in the music DSP context.1

2.2 Block diagrams

The integral equation (2.1) can be expressed in the block dia-
gram form (Fig. 2.2).

+ '!&"%#$//
MMMqqq
//

∫
// •//

−
OO //x(t) y(t)

ωc

Figure 2.2: A 1-pole RC lowpass filter in the block
diagram form.

1We didn’t assume the varying C because then our simplification of the
equation system doesn’t hold anymore, since q̇C 6= CU̇C in this case.
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The meaning of the elements of the diagram should be in-
tuitively clear. The gain element (represented by a triangle)
multiplies the input signal by ωc. Notice the inverting input
of the summator, denoted by “−”. The integrator simply inte-
grates the input signal:

output(t) = output(t0) +
∫ t

t0

input(τ) dτ

The representation of the system by the integral (rather than
differential) equation and the respective usage of the integra-
tor element in the block diagram has an important intuitive
meaning. Intuitively, the capacitor integrates the current flow-
ing through it, accumulating it as its own charge:

qC(t) = qC(t0) +
∫ t

t0

I(τ) dτ

or, equivalently

UC(t) = UC(t0) +
1
C

∫ t

t0

I(τ) dτ

One can observe from Fig. 2.2 that the output signal is al-
ways trying to “reach” the input signal. Indeed, the difference
x − y is always “directed” from y to x. Since ωc > 0, the inte-
grator will respectively increase or decrease its output value in
the respective direction. This corresponds to the fact that the
capacitor voltage in Fig. 2.1 is always trying to reach the input
voltage. Thus, the circuit works as a kind of smoother of the
input signal.
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2.3 Transfer function

Consider the integrator: ∫
// //x(t) y(t)

Suppose x(t) = est (where s = jω or, possibly, another complex
value). Then

y(t) = y(t0) +
∫ t

t0

esτ dτ = y(t0) +
1
s
esτ
∣∣∣t
τ=t0

=

=
1
s
est +

(
y(t0)− 1

s
est0

)
Thus, a complex sinusoid (or exponential) est sent through an
integrator comes out as the same signal est just with a different
amplitude 1/s plus some DC term y(t0) − est0/s. Similarly,
a signal X(s)est (where X(s) is the complex amplitude of the
signal) comes out as (X(s)/s)est plus some DC term. That
is, if we forget about the extra DC term, the integrator simply
multiplies the amplitudes of complex exponential signals est by
1/s.

Now, the good news is: for our purposes of filter analysis
we can simply forget about the extra DC term. The reason for
this is the following. Suppose the initial time moment t0 was
quite long ago (t0 � 0). Suppose further that the integrator
is contained in a stable filter (we will discuss the filter stability
later, for now we’ll simply mention that we’re mostly interested
in the stable filters for the purposes of the current discussion).
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It can be shown that in this case the effect of the extra DC term
on the output signal is negligible. Since the initial state y(t0)
is incorporated into the same DC term, it also means that the
effect of the initial state is negligible!2

Thus, we simply write (for an integrator):∫
esτ dτ =

1
s
est

This means that est is an eigenfunction of the integrator with
the respective eigenvalue 1/s.

Since the integrator is linear,3 not only are we able to factor
X(s) out of the integration:∫

X(s)esτ dτ = X(s)
∫
esτ dτ =

1
s
X(s)est

but we can also apply the integration independently to all Fourier
(or Laplace) partials of an arbitrary signal x(t):∫ (∫ σ+j∞

σ−j∞
X(s)esτ

ds
2πj

)
dτ =

2In practice, typically, a zero initial state is assumed. Then, particularly,
in the case of absence of the input signal, the output signal of the filter is
zero from the very beginning (rather than for t� t0).

3The linearity here is understood in the sense of the operator linearity.
An operator Ĥ is linear, if

Ĥ (λ1f1(t) + λ2f2(t)) = λ1Ĥf1(t) + λ2Ĥf2(t)
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=
∫ σ+j∞

σ−j∞

(∫
X(s)esτ dτ

)
ds
2πj

=

=
∫ σ+j∞

σ−j∞

X(s)
s

esτ
ds
2πj

That is, the integrator changes the complex amplitude of each
partial by a 1/s factor.

Consider again the structure in Fig. 2.2. Assuming the input
signal x(t) has the form est we can replace the integrator by a
gain element with a 1/s factor. We symbolically reflect this
by replacing the integrator symbol in the diagram with the 1/s
fraction (Fig. 2.3).4

+ '!&"%#$//
MMMqqq
// 1

s
// •//

−
OO //x(t) y(t)

ωc

Figure 2.3: A 1-pole RC lowpass filter in the block
diagram form with a 1/s notation for the integra-
tor.

4Often in such cases the input and output signal notation for the block
diagram is replaced with X(s) and Y (s). Such diagram then “works” in
terms of Laplace transform, the input of the diagram is the Laplace trans-
form X(s) of the input signal x(t), the output is respectively the Laplace
transform Y (s) of the output signal y(t). The integrators can then be seen
as s-dependent gain elements, where the gain coefficient is 1/s.
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So, suppose x(t) = X(s)est and suppose we know y(t). Then
the input signal for the integrator is ωc(x − y). We now will
further take for granted the knowledge that y(t) will be the same
signal est with some different complex amplitude Y (s), that is
y(t) = Y (s)est (notably, this holds only if ωc is constant, that
is, if the system is time-invariant !!!)5 Then the input signal of
the integrator is ωc(X(s) − Y (s))est and the integrator simply
multiplies its amplitude by 1/s. Thus the output signal of the
integrator is ωc(x − y)/s. But, on the other hand y(t) is the
output signal of the integrator, thus

y(t) = ωc
x(t)− y(t)

s

or

Y (s)est = ωc
X(s)− Y (s)

s
est

or

Y (s) = ωc
X(s)− Y (s)

s

from where
sY (s) = ωcX(s)− ωcY (s)

and
Y (s) =

ωc
s+ ωc

X(s)

Thus, the circuit in Fig. 2.3 (or in Fig. 2.2) simply scales the
amplitude of the input sinusoidal (or exponential) signal X(s)est

by the ωc/(s+ ωc) factor.
5In other words, we take for granted the fact that est is an eigenfunction

of the entire circuit.
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Let’s introduce the notation

H(s) =
ωc

s+ ωc
(2.2)

Then
Y (s) = H(s)X(s)

H(s) is referred to as the transfer function of the structure in
Fig. 2.3 (or Fig. 2.2). Notice that H(s) is a complex function of
a complex argument.

For an arbitrary input signal x(t) we can use the Laplace
transform representation

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

From the linearity6 of the circuit in Fig. 2.3, it follows that the
result of the application of the circuit to a linear combination
of some signals is equal to the linear combination of the results
of the application of the circuit to the individual signals. That
is, for each input signal of the form X(s)est we obtain the out-
put signal H(s)X(s)est. Then for an input signal which is an
integral sum of X(s)est, we obtain the output signal which is
an integral sum of H(s)X(s)est. That is

y(t) =
∫ σ+j∞

σ−j∞
H(s)X(s)est

ds
2πj

6Here we again understand the linearity in the operator sense:

Ĥ (λ1f1(t) + λ2f2(t)) = λ1Ĥf1(t) + λ2Ĥf2(t)

The operator here corresponds to the circuit in question: y(t) = Ĥx(t)
where x(t) and y(t) are the input and output signals of the circuit.
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So, the circuit in Fig. 2.3 independently modifies the complex
amplitudes of the sinusoidal (or exponential) partials est by the
H(s) factor!

Notably, the transfer function can be introduced for any
system which is linear and time-invariant. For the systems,
whose block diagrams consist of integrators, summators and
fixed gains, the transfer function is always a non-strictly proper7

rational function of s. Particularly, this holds for the electronic
circuits, where the differential elements are capacitors and in-
ductors, since these types of elements logically perform inte-
gration (capacitors integrate the current to obtain the voltage,
while inductors integrate the voltage to obtain the current).

It is important to realize that in the derivation of the trans-
fer function concept we used the linearity and time-invariance
(the absence of parameter modulation) of the structure. If these
properties do not hold, the transfer function can’t be introduced!
This means that all transfer function-based analysis holds only in
the case of fixed parameter values. In practice, if the parameters
are not changing too quickly, one can assume that they are ap-
proximately constant during certain time range. That is we can
“approximately” apply the transfer function concept (and the
discussed later derived concepts, such as amplitude and phase
responses, poles and zeros, stability criterion etc.) if the modu-
lation of the parameter values is “not too fast”.

7A rational function is nonstrictly proper, if the order of its numerator
doesn’t exceed the order of its denominator.
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2.4 Complex impedances

Actually, we could have obtained the transfer function of the
circuit in Fig. 2.1 using the concept of complex impedances.

Consider the capacitor equation:

I = CU̇

If

I(t) = I(s)est

U(t) = U(s)est

(where I(t) and I(s) are obviously two different functions, the
same for U(t) and U(s)), then

U̇ = sU(s)est = sU(t)

and thus

I(t) = I(s)est = CU̇ = CsU(s)est = sCU(t)

that is
I = sCU

or
U =

1
sC

I

Now the latter equation looks almost like Ohm’s law for a re-
sistor: U = RI. The complex value 1/sC is called the complex
impedance of the capacitor. The same equation can be written
in the Laplace transform form: U(s) = (1/sC)I(s).
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For an inductor we have U = Lİ and respectively, for I(t) =
I(s)est and U(t) = U(s)est we obtain U(t) = sLI(t) or U(s) =
sLI(s). Thus, the complex impedance of the inductor is sL.

Using the complex impedances as if they were resistances
(which we can do, assuming the input signal has the formX(s)est),
we simply write the voltage division formula for the circuit in
in Fig. 2.1:

y(t) =
UC

UR + UC
x(t)

or, cancelling the common current factor I(t) from the numer-
ator and the denominator, we obtain the impedances instead of
voltages:

y(t) =
1/sC

R+ 1/sC
x(t)

from where

H(s) =
y(t)
x(t)

=
1/sC

R+ 1/sC
=

1
1 + sRC

=
1/RC

s+ 1/RC
=

ωc
s+ ωc

which coincides with (2.2).

2.5 Amplitude and phase responses

Consider again the structure in Fig. 2.3. Let x(t) be a real signal
and let

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj
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be its Laplace integral representation. Let y(t) be the output
signal (which is obviously also real) and let

y(t) =
∫ σ+j∞

σ−j∞
Y (s)est

ds
2πj

be its Laplace integral representation. As we have shown, Y (s) =
H(s)X(s) where H(s) is the transfer function of the circuit.

The respective Fourier integral representation of x(t) is ap-
parently

x(t) =
∫ +∞

−∞
X(jω)ejωt

dω
2π

where X(jω) is the Laplace transform X(s) evaluated at s = jω.
The real Fourier integral representation is then obtained as

ax(ω) = 2 · |X(jω)|
ϕx(ω) = argX(jω)
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For y(t) we respectively have89

ay(ω) = 2 · |Y (jω)| = 2 · |H(jω)X(jω)| = |H(jω)| · ax(ω)
ϕy(ω) = arg Y (jω) = arg (H(jω)X(jω)) = ϕx(ω) + argH(jω)

(ω ≥ 0)

Thus, the amplitudes of the real sinusoidal partials are magnified
by the |H(jω)| factor and their phases are shifted by argH(jω)
(ω ≥ 0). The function |H(jω)| is referred to as the amplitude
response of the circuit and the function argH(jω) is referred
to as the phase response of the circuit. Note that both the
amplitude and the phase response are real functions of a real
argument ω.

The complex-valued function H(jω) of the real argument ω
is referred to as the frequency response of the circuit. Simply
put, the frequency response is equal to the transfer function
evaluated on the imaginary axis.

Since the transfer function concept works only in the linear
time-invariant case, so do the concepts of the amplitude, phase
and frequency responses!

8This relationship holds only if H(jω) is Hermitian: H(jω) = H∗(−jω).
If it weren’t the case, the Hermitian property wouldn’t hold for Y (jω) and
y(t) couldn’t have been a real signal (for a real input x(t)). Fortunately,
for real systems H(jω) is always Hermitian. Particularly, rational transfer
functions H(s) with real coefficients obviously result in Hermitian H(jω).

9Formally, ω = 0 requires special treatment in case of a Dirac delta
component at ω = 0 (arising particularly if the Fourier series is represented
by a Fourier integral and there is a nonzero DC offset). Nevertheless, the
resulting relationship between ay(0) and ax(0) is exactly the same as for
ω > 0, that is ay(0) = H(0)ax(0). A more complicated but same argument
holds for the phase.
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2.6 Lowpass filtering

Consider again the transfer function of the structure in Fig. 2.2:

H(s) =
ωc

s+ ωc

The respective amplitude response is

|H(jω)| =
∣∣∣∣ ωc
ωc + jω

∣∣∣∣
Apparently at ω = 0 we have H(0) = 1. On the other hand, as
ω grows, the magnitude of the denominator grows as well and
the function decays to zero: H(+j∞) = 0. This suggests the
lowpass filtering behavior of the circuit: it lets the partials with
frequencies ω � ωc through and stops the partials with frequen-
cies ω � ωc. The circuit is therefore referred to as a lowpass
filter, while the value ωc is defined as the cutoff frequency of
the circuit.

It is convenient to plot the amplitude response of the filter
in a fully logarithmic scale. The amplitude gain will then be
plotted in decibels, while the frequency axis will have a uniform
spacing of octaves. For H(s) = ωc/(s + ωc) the plot looks like
the one in Fig. 2.4.

Notice that the plot falls off in an almost straight line as
ω → ∞. Apparently, at ω � ωc and respectively |s| � ωc we
have H(s) ≈ ωc/s and |H(s)| ≈ ωc/ω. This is a hyperbola in
the linear scale and a straight line in a fully logarithmic scale.
If ω doubles (corresponding to a step up by one octave), the
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Figure 2.4: Amplitude response of a 1-pole lowpass
filter.

amplitude gain is approximately halved (that is, drops by ap-
proximately 6 decibel). We say that this lowpass filter has a
rolloff of 6dB/oct.

Another property of this filter is that the amplitude drop at
the cutoff is −3dB. Indeed

|H(jωc)| =
∣∣∣∣ ωc
ωc + jωc

∣∣∣∣ =
∣∣∣∣ 1
1 + j

∣∣∣∣ =
1√
2
≈ −3dB

2.7 Cutoff parametrization

Suppose ωc = 1. Then the lowpass transfer function (2.2) turns
into

H(s) =
1

s+ 1
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Now perform the substitution s← s/ωc. We obtain

H(s) =
1

s/ωc + 1
=

ωc
s+ ωc

which is again our familiar transfer function of the lowpass filter.
Consider the amplitude response graph of 1/(s + 1) in a

logarithmic scale. The substitution s← s/ωc simply shifts this
graph to the left or to the right (depending on whether ωc < 1
or ωc > 1) without changing its shape. Thus, the variation of
the cutoff parameter doesn’t change the shape of the amplitude
response graph (Fig. 2.5), or of the phase response graph, for
that matter (Fig. 2.6).

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 2.5: 1-pole lowpass filter’s amplitude re-
sponse shift by a cutoff change.

The substitution s← s/ωc is a generic way to handle cutoff
parametrization for analog filters, because it doesn’t change the
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ω
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Figure 2.6: 1-pole lowpass filter’s phase response
shift by a cutoff change.

response shapes. This has a nice counterpart on the block dia-
gram level. For all types of filters we simply visually combine
an ωc gain and an integrator into a single block:10

MMMqqq
//

∫
// //

ωc

→
ωc
s

// //

10Notice that including the cutoff gain into the integrator makes the
integrator block invariant to the choice of the time units:

y(t) = y(t0) +

∫ t

t0

ωcx(τ) dτ

because the product ωc dτ is invariant to the choice of the time units. This
will become important once we start building discrete-time models of filters,
where we would often assume unit sampling period.
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Apparently, the reason for the ωc/s notation is that this is the
transfer function of the serial connection of an ωc gain and an
integrator. Alternatively, we simply assume that the cutoff gain
is contained inside the integrator:

MMMqqq
//

∫
// //

ωc

→
∫

// //

The internal representation of such integrator block is of course
still a cutoff gain followed by an integrator. Whether the gain
should precede the integrator or follow it may depend on the
details of the analog prototype circuit. In the absence of the
analog prototype it’s better to put the integrator after the cutoff
gain, because then the integrator will smooth the jumps and
further artifacts arising out of the cutoff modulation.

With the cutoff gain implied inside the integrator block, the
structure from Fig. 2.2 is further simplified to the one in Fig. 2.7:

+ '!&"%#$//
∫

// •//
−

OO //x(t) y(t)

Figure 2.7: A 1-pole RC lowpass filter with an im-
plied cutoff.

As a further shortcut arising out of the just discussed facts,
it is common to assume ωc = 1 during the filter analysis. Par-
ticularly, the transfer function of a 1-pole lowpass filter is often
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written as
H(s) =

1
s+ 1

It is assumed that the reader will perform the s← s/ωc substi-
tution as necessary.

2.8 Highpass filter

If instead of the capacitor voltage in Fig. 2.1 we pick up the re-
sistor voltage as the output signal, we obtain the block diagram
representation as in Fig. 2.8.

+ '!&"%#$// •//
∫

//
−

OO

//

x(t)

y(t)

Figure 2.8: A 1-pole highpass filter.

Obtaining the transfer function of this filter we get

H(s) =
s

s+ ωc

(or s/(s + 1) in the unit cutoff form). It’s easy to see that
H(0) = 0 and H(+j∞) = 1, whereas the biggest change in the
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amplitude response occurs again around ω = ωc. Thus, we have
a highpass filter here. The amplitude response of this filter is
shown in Fig. 2.9 (in the logarithmic scale).

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 2.9: Amplitude response of a 1-pole high-
pass filter.

It’s not difficult to observe and not difficult to show that this
response is a mirrored version of the one in Fig. 2.4.11 Particu-
larly, at ω � ωc we have H(s) ≈ s/ωc, so when the frequency is
halved (dropped by an octave), the amplitude gain is approxi-
mately halved as well (drops by approximately 6dB). Again, we

11In the unit cutoff notation, it’s easy to notice that the highpass transfer
function s

1+s
can be obtained from the lowpass transfer function 1

1+s
by the

substitution s← 1/s. This substitution is referred to as LP to HP (lowpass
to highpass) substitution. For Hermitian transfer functions (corresponding
to real systems), the LP to HP substitution simply mirrors the amplitude
response in the logarithmic frequency scale.
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have a 6dB/oct rolloff.

2.9 Poles, zeros and stability

Consider the lowpass transfer function:

H(s) =
ωc

s+ ωc

Apparently, this function has a pole in the complex plane at
s = −ωc. Similarly, the highpass transfer function

H(s) =
s

s+ ωc

also has a pole at s = −ωc, but it also has a zero at s = 0.
Recall that the transfer functions of linear time-invariant dif-

ferential systems are nonstrictly proper rational functions of s.
Thus they always have poles and often have zeros, the numbers
of poles and zeros matching the orders of the numerator and
the denominator respectively. The poles and zeros of transfer
function (especially the poles) play an important role in the fil-
ter analysis. For simplicity they are referred to as the poles and
zeros of the filters.

The transfer functions of real linear time-invariant differen-
tial systems have real coefficients in the numerator and denomi-
nator polynomials. Apparently, this doesn’t prevent them from
having complex poles and zeros, however, being roots of real
polynomials, those must come in complex conjugate pairs. E.g.
a transfer function with a 3rd order denominator can have either
three real poles, or one real and two complex conjugate poles.
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The lowpass and highpass filters discussed so far, each have
one pole. For that reason they are referred to as 1-pole filters.
Actually, the number of poles is always equal to the order of
the filter or (which is the same) to the number of integrators in
the filter.12 Therefore it is common, instead of e.g. a “4th-order
filter” to say a “4-pole filter”.

The most important property of the poles is that a filter13 is
stable if and only if all its poles are located in the left complex
semiplane (that is to the left of the imaginary axis). For our
lowpass and highpass filters this is apparently true, as long as
ωc > 0.14 If ωc < 0, the pole is moved to the right semiplane, the
filter becomes unstable and will “explode”. Also the definition
of the frequency response doesn’t make much sense in this case.
If we put a sinusoidal signal through a stable filter we will (as
we have shown) obtain an amplitude-modified and phase-shifted
sinusoidal signal of the same frequency.15 If we put a sinusiodal

12In certain singular cases, depending on the particular definition details,
these numbers might be not equal to each other.

13More precisely a linear time-invariant system, which particularly im-
plies fixed parameters. This remark is actually unnecessary, since, as we
mentioned, the transfer function (and respectively the poles) are defined
only for the linear time-invariant case.

14Notably, the same condition ensures the stability of the 1-pole RC low-
pass and highpass filters in the time-varying case, which can be directly seen
from the fact that the lowpass filter’s output never exceeds the maximum
level of its input.

15Strictly speaking, this will happen only after the filter has stabilized
itself “to the new signal”. This takes a certain amount of time. The
closer the poles are to the imaginary axis (from the left), the larger is this
stabilization time. The characteristic time value of the stabilization has the
order of magnitude of −1/max {Re pn}, where pn are the poles. Actually
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signal through an unstable filter, the filter simply “explodes”
(its output grows infinitely), thus it makes no sense to talk of
amplitude and phase responses.

It is also possible to obtain an intuitive understanding of
the effect of the pole position on the filter stability. Consider a
transfer function of the form

H(s) =
F (s)

N∏
n=1

(s− pn)

where F (s) is the numerator of the transfer function and pn are
the poles. Suppose all poles are initially in the left complex
semiplane and now one of the poles (let’s say p1) starts moving
towards the imaginary axis. As the pole gets closer to the axis,
the amplitude response at ω = Im p1 grows. When p1 gets
onto the axis, the amplitude response at ω = Im p1 is infinitely
large (since jω = p1, we have H(jω) = H(p1) = ∞). This
corresponds to the filter getting unstable.1617

The poles and zeros also define the rolloff speed of the am-
plitude response. Let Np be the number of poles and Nz be the

the effects of the transition (occurring at the moment of the appearance of
the sinusoidal signal) decay exponentially as etmax{Re pn}.

16The reason, why the stable area is the left (and not the right) complex
semiplane, falls outside the scope of this book.

17The discussed 1-pole lowpass filter is actually still kind of stable at
ω = 0 (corresponding to the pole at s = 0. In fact, it has a constant output
level (its state is not changing) in this case. However, strictly speaking,
this case is not really stable, since all signals in a truely stable filter must
decay to zero in the absence of the input signal.
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number of zeros. Since the transfer function must be nonstrictly
proper, Np ≥ Nz. It’s not difficult to see that the amplitude re-
sponse rolloff at ω → +∞ is 6(Np − Nz)dB/oct. Respectively,
the rolloff at ω → 0 is 6Nz0dB/oct, where Nz0 is the number of
zeros at s = 0 (provided there are no poles at s = 0). Consider-
ing that 0 ≤ Nz0 ≤ Nz ≤ Np, the rolloff speed at ω → +∞ or at
ω → 0 can’t exceed 6NpdB/oct. Also, if all zeros of a filter are
at s = 0 (that is Nz0 = Nz) then the sum of the rolloff speeds
at ω → 0 and ω → +∞ is exactly 6NpdB/oct.

2.10 Multimode filter

Actually, we can pick up the lowpass and highpass signals simul-
taneously from the same structure (Fig. 2.10). This is referred
to as a multimode filter.

+ '!&"%#$// •//
∫

// •//
−

OO

//

//x(t) yLP(t)

yHP(t)

Figure 2.10: A 1-pole multimode filter.

It’s easy to observe that yLP(t) + yHP(t) = x(t), that is the
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input signal is split by the filter into the lowpass and highpass
components. In the transfer function form this corresponds to

HLP(s) +HHP(s) =
ωc

s+ ωc
+

s

s+ ωc
= 1

The multimode filter can be used to implement a 1st-order
differential filter for practically any given transfer function, by
simply mixing its outputs. Indeed, let

H(s) =
b1s+ b0
a1s+ a0

(a1 6= 0, a0 6= 0)

(the case a1 = 0 turns the transfer function into an improper
rational function, while a0 = 0 is not defining a stable filter).
Dividing the numerator and the denominator by a1 we obtain

H(s) =
(b1/a1)s+ (b0/a1)

s+ a0/a1
=
(
b1
a1

)
s

s+ ωc
+
(
b0
a0

)
ωc

s+ ωc
=

=
(
b1
a1

)
HHP(s) +

(
b0
a0

)
HLP(s) (where ωc = a0/a1)

Thus we simply need to set the filter’s cutoff to a0/a1 and take
the sum

y =
(
b1
a1

)
yHP(t) +

(
b0
a0

)
yLP(t)

as the output signal.
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2.11 Shelving filters

By adding/subtracting the lowpass-filtered signal to/from the
unmodified input signal one can build a low-shelving filter:

y(t) = x(t) +K · yLP(t)

The transfer function of the low-shelving filter is respectively:

H(s) = 1 +K
1

s+ 1

The amplitude response is plotted Fig. 2.11. Typically K ≥ −1.
At K = 0 the signal is unchanged. At K = −1 the filter turns
into a highpass.

The high-shelving filter is built in a similar way:

y(t) = x(t) +K · yHP(t)

and
H(s) = 1 +K

s

s+ 1

The amplitude response is plotted Fig. 2.12.
There are a couple of nontrivial moments here, though. The

first one has to do with the fact that the amplitude boost or
drop for the “shelf” is more convenient to be specified in deci-
bels. Which requires translation of the level change specified in
decibels into the K factor. It’s not difficult to realize that

dB = 20 log10(K + 1)
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Figure 2.11: Amplitude response of a 1-pole low-
shelving filter (for various K).

Indeed, e.g. for the low-shelving filter at ω = 0 (that is s = 0)
we have18

H(0) = 1 +K

We also obtain H(+j∞) = 1 +K for the high-shelving filter.
A further nontrivial moment is that the definition of the

cutoff at ω = 1 for such filters is not really convenient. In-
deed, looking at the amplitude response graphs in Fig. 2.11 and
Fig. 2.12 we would rather wish to have the cutoff point posi-
tioned exactly at the middle of the respective slopes. Let’s find

18H(0) = 1 +K is not a fully trivial result here. We have it only because
the lowpass filter doesn’t change the signal’s phase at ω = 0. If instead it
had e.g. inverted the phase, then we would have obtained 1−K here.
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Figure 2.12: Amplitude response of a 1-pole high-
shelving filter (for various K).

where the middle is. E.g. for the lowpass (and remembering
that both scales of the graph are logarithmic) we first find the
mid-height, which is the geometric average of the shelf’s gain
and the unit gain:

√
1 +K. Then we need to find ω at which

the amplitude response is
√

1 +K:∣∣∣∣1 +K
1

jω + 1

∣∣∣∣2 =
∣∣∣∣jω + 1 +K

jω + 1

∣∣∣∣2 =
(1 +K)2 + ω2

1 + ω2
= 1 +K

from where

1 + 2K +K2 + ω2 = 1 +K + ω2 +Kω2
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and
K +K2 = Kω2

from where
ω =
√

1 +K

This is the “intuitive” cutoff position for the low-shelving filter
built from a unit-cutoff lowpass filter. Respectively, given the
“intuitive” cutoff position of the low-shelving filter, we need
to divide it by

√
1 +K to obtain the cutoff of the underlying

lowpass filter.
Similarly, for the highpass:∣∣∣∣1 +K

jω

jω + 1

∣∣∣∣2 =
∣∣∣∣1 + jω(K + 1)

jω + 1

∣∣∣∣2 =
1 + (1 +K)2ω2

1 + ω2
= 1+K

from where

1 + ω2(1 + 2K +K2) = 1 +K + ω2 +Kω2

and
ω2(K +K2) = K

from where
ω =

1√
1 +K

This is the “intuitive” cutoff position for the high-shelving filter
built from a unit-cutoff highpass filter. Respectively, given the
“intuitive” cutoff position of the high-shelving filter, we need to
multiply it by

√
1 +K to obtain the cutoff of the underlying

highpass filter.
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2.12 Allpass filter

By subtracting the highpass output from the lowpass output of
the multimode filter we obtain the allpass filter :

H(s) = HLP(s)−HHP(s) =
1

1 + s
− s

1 + s
=

1− s
1 + s

The amplitude response of the allpass filter is always unity:

|H(jω)| = 1 ∀ω

Indeed, the numerator 1−jω and the denominator 1+jω of the
frequency response are mutually conjugate, therefore they have
equal magnitudes.

The allpass filter is used because of its phase response (Fig. 2.13).
That is sometimes we wish to change the phases of the signal’s
partials without changing their amplitudes. The most common
VA use for the allpass filters is probably in phasers.

We could also subtract the lowpass from the highpass:

H(s) =
s

s+ 1
− 1
s+ 1

=
s− 1
1 + s

Apparently the result differs from the previous one only by the
inverted phase.

In regards to the unit amplitude response of the 1-pole all-
pass filter, we could have simply noticed that the zero and the
pole of the filter are mutually symmetric relatively to the imagi-
nary axis. This is a general property of differential allpass filters:
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Figure 2.13: Phase response of a 1-pole allpass fil-
ter.

their poles and zeros always come in pairs, located symmetri-
cally relatively to the imaginary axis (since the poles of a stable
filter have to be in the left complex semiplane, the zeros will be
in the right complex semiplane). Expressing the transfer func-
tion’s numerator and denominator in the multiplicative form,
we have

|H(s)| =

∣∣∣∣∣∣∣∣∣∣

N∏
n=1

(s− zn)

N∏
n=1

(s− pn)

∣∣∣∣∣∣∣∣∣∣
=

N∏
n=1

|s− zn|

N∏
n=1

|s− pn|

where pn and zn are poles and zeros. If each pair pn and zn is
mutually symmetric relatively to the imaginary axis (pn = −z∗n),
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then the factors |jω−zn| and |jω−pn| of the amplitude response
are always equal, thus the amplitude response is always unity.

2.13 Transposed multimode filter

We could apply the transposition to the block diagram in Fig. 2.10.
The transposition process is defined as reverting the direction of
all signal flow, where forks turn into summators and vice versa
(Fig. 2.14).19 The transposition keeps the transfer function re-
lationship within each pair of an input and an output (where
the input becomes the output and vice versa). Thus in Fig. 2.14
we have a lowpass and a highpass input and a single output.

The transposed multimode filter has less practical use than
the nontransposed one in Fig. 2.10. However, one particular
usage case is feedback shaping. Imagine we are mixing an input
signal xin(t) with a feedback signal xfbk(t), and we wish to filter
each one of those by a 1-pole filter, and the cutoffs of these 1-
pole filters are identical. That is, the transfer functions of those
filters share a common denominator. Then we could use a single
transposed 1-pole multimode filter as in Fig. 2.15.

The mixing coefficients A, B, C and D will define the nu-
merators of the respective two transfer functions (in exactly the
same way as we have been mixing the outputs of a nontrans-

19The inverting input of the summator in the transposed version was
obtained from the respective inverting input of the summator in the non-
transposed version as follows. First the inverting input is replaced by an
explicit inverting gain element (gain factor −1), then the transposition is
performed, then the inverting gain is merged into the new summator.
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•oo + '!&"%#$oo
∫
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Figure 2.14: A 1-pole transponsed multimode fil-
ter.
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Figure 2.15: A transposed multimode filter
(TMMF) used for feedback signal mixing.
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posed multimode filter), whereas the denominator will be s+ωc,
where ωc is the cutoff of the transposed multimode filter.

SUMMARY

The analog 1-pole filter implementations are built around the
idea of the multimode 1-pole filter in Fig. 2.10. The transfer
functions of the lowpass and highpass 1-pole filters are

HLP(s) =
ωc

s+ ωc

and
HHP(s) =

s

s+ ωc

respectively. Other 1-pole filter types can be built by combining
the lowpass and the highpass signals.



46 CHAPTER 2. ANALOG 1-POLE FILTERS



Chapter 3

Time-discretization

Now that we have introduced the basic ideas of analog filter
analysis, we will develop an approach to convert analog filter
models to the discrete time.

3.1 Discrete-time signals

The discussion of the basic concepts of discrete-time signal rep-
resentation and processing is outside the scope of this book. We
are assuming that the reader is familiar with the basic concepts
of discrete-time signal processing, such as sampling, sampling
rate, sampling period, Nyquist frequency, analog-to-digital and
digital-to-analog signal conversion. However we are going to
make some remarks in this respect.

47
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As many other texts do, we will use the square bracket no-
tation to denote discrete-time signals and round parentheses
notation to denote continuous-time signals: e.g. x[n] and x(t).

We will often assume a unit sampling rate fs = 1 (and,
respectively, a unit sampling period T = 1), which puts the
Nyquist frequency at 1/2, or, in the circular frequency terms, at
π. Apparently, this can be achieved simply by a corresponding
choice of time units.

Theoretical DSP texts typically state that discrete-time sig-
nals have periodic frequency spectra. This might be convenient
for certain aspects of theoretical analysis such as analog-to-
digital and digital-to-analog signal conversion, but it’s highly
unintuitive otherwise. It would be more intuitive, whenever
talking of a discrete-time signal, to imagine an ideal DAC con-
nected to this signal, and think that the discrete-time signal
represents the respective continuous-time signal produced by
such DAC. Especially, since by sampling this continuous-time
signal we obtain the original discrete-time signal again. So the
DAC and ADC conversions are exact inverses of each other (in
this case). Now, the continuous-time signal produced by such
DAC doesn’t contain any partials above the Nyquist frequency.
Thus, its Fourier integral representation (assuming T = 1) is

x[n] =
∫ π

−π
X(ω)ejωn

dω
2π

and its Laplace integral representation is

x[n] =
∫ σ+jπ

σ−jπ
X(s)esn

ds
2πj
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Introducing notation z = es and noticing that

ds = d(log z) =
dz
z

we can rewrite the Laplace integral as

x[n] =
∮
X(z)zn

dz
2πjz

(where X(z) is apparently a different function than X(s)) where
the integration is done counterclockwise along a circle of radius
eσ centered at the complex plane’s origin:1

z = es = eσ+jω = eσ · ejω (−π ≤ ω ≤ π) (3.1)

We will refer the representation (3.1) as the z-integral.2 The
function X(z) is referred to as the z-transform of x[n].

In case of non-unit sampling period T 6= 1 the formulas
are the same, except that the frequency-related parameters get
multiplied by T (or divided by fs), or equivalently, the n index
gets multiplied by T in continuous-time expressions:3

x[n] =
∫ πfs

−πfs
X(ω)ejωTn

dω
2π

1As with Laplace transform, sometimes there are no restrictions on the
radius eσ of the circle, sometimes there are.

2A more common term for (3.1) is the inverse z-transform, but we will
prefer the z-integral term for the same reason as with Fourier and Laplace
integrals.

3Formally the σ parameter of the Laplace integral (and z-integral)
should have been multiplied by T as well, but it doesn’t matter, since
this parameter is chosen rather arbitrarily.
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x[n] =
∫ σ+jπfs

σ−jπfs
X(s)esTn

ds
2πj

z = esT

x[n] =
∮
X(z)zn

dz
2πjz

(z = eσ+jωT , −πfs ≤ ω ≤ πfs)

The notation zn is commonly used for discrete-time com-
plex exponential signals. A continuous-time signal x(t) = est

is written as x[n] = zn in discrete-time, where z = esT . The
Laplace-integral amplitude coefficient X(s) in X(s)est then may
be replaced by a z-integral amplitude coefficient X(z) such as
in X(z)zn.

3.2 Naive integration

The most “interesting” element of analog filter block diagrams
is obviously the integrator. The time-discretization for other
elements is trivial, so we should concentrate on building the
discrete-time models of the analog integrator.

The continuous-time integrator equation is

y(t) = y(t0) +
∫ t

t0

x(τ) dτ

In discrete time we could approximate the integration by a sum-
mation of the input samples. Assuming for simplicity T = 1,
we could have implemented a discrete-time integrator as

y[n] = y[n0 − 1] +
n∑

ν=n0

x[ν]
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We will refer to the above as the naive digital integrator.
A pseudocode routine for this integrator could simply consist

of an accumulating assignment:

// perform one sample tick of the integrator
integrator_output := integrator_output

+ integrator_input;

It takes the current state of the integrator stored in the integra-
tor output variable and adds the current sample’s value of the
integrator input on top of that.

In case of a non-unit sampling period T 6= 1 we have to
multiply the accumulated input values by T :4

// perform one sample tick of the integrator
integrator_output := integrator_output

+ integrator_input*T;

3.3 Naive lowpass filter

We could further apply this “naive” approach to construct a
discrete-time model of the lowpass filter in Fig. 2.2. We will use
the naive integrator as a basis for this model.

Let the x variable contain the current input sample of the fil-
ter. Considering that the output of the filter in Fig. 2.2 coincides
with the output of the integrator, let the y variable contain the

4Alternatively, we could, of course, scale the integrator’s output by T ,
but this is less useful in practice, because the T factor will be usually
combined with the cutoff gain factor ωc preceding the integrator.
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integrator state and simultaneously serve as the output sample.
As we begin to process the next input sample, the y variable will
contain the previous output value. At the end of the processing
of the sample (by the filter model) the y variable will contain
the new output sample. In this setup, the input value for the
integrator is apparently (x− y)ωc, thus we simply have

// perform one sample tick of the lowpass filter
y := y + (x-y)*omega_c;

(mind that ωc must have been scaled to the time units corre-
sponding to the unit sample period!)

A naive discrete-time model of the multimode filter in Fig. 2.10
could have been implemented as:

// perform one sample tick of the multimode filter
hp := x-lp;
lp := lp + hp*omega_c;

where the integrator state is stored in the lp variable.
The above naive implementations (and any other similar

naive implementations, for that matter) work reasonably well
as long as ωc � 1, that is the cutoff must be much lower than
the sampling rate. At larger ωc the behavior of the filter be-
comes rather strange, ultimately the filter gets unstable. We
will now develop some theoretical means to analyse the behav-
ior of the discrete-time filter models, figure out what are the
problems with the naive implementations, and then introduce
another discretization approach.
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3.4 Block diagrams

Let’s express the naive discrete-time integrator in the form of
a discrete-time block diagram. The discrete-time block dia-
grams are constructed from the same elements as continuous-
time block diagrams, except that instead of integrators they
have unit delays. A unit delay simply delays the signal by one
sample. That is the output of a unit delay comes “one sample
late” compared to the input. Apparently, the implementation
of a unit delay requires a variable, which will be used to store
the new incoming value and keep it there until the next sample.
Thus, a unit delay element has a state, while the other block
diagram elements are obviously stateless. This makes the unit
delays in a way similar to the integrators in the analog block
diagrams, where the integrators are the only elements with a
state.

A unit delay element in a block diagram is denoted as:

z−1// //

The reason for the notation z−1 will be explained a little bit
later. Using a unit delay, we can create a block diagram for our
naive integrator (Fig. 3.1). For an arbitrary sampling period we
obtain the structure in Fig. 3.2. For an integrator with embed-
ded cutoff gain we can combine the ωc gain element with the
T gain element (Fig. 3.3). Notice that the integrator thereby
becomes invariant to the choice of the time units, since ωcT is
invariant to this choice.
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+ '!&"%#$// •//

z−1 oo

OO //x[n] y[n]

Figure 3.1: Naive integrator for T = 1.

MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]
T

Figure 3.2: Naive integrator for arbitrary T .

MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]
ωcT

Figure 3.3: Naive integrator with embedded cutoff.
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Now let’s construct the block diagram of the naive 1-pole
lowpass filter. Recalling the implementation routine:

// perform one sample tick of the lowpass filter
y := y + (x-y)*omega_c;

we obtain the diagram in Fig. 3.4. The z−1 element in the
feedback from the filter’s output to the leftmost summator is
occurring due to the fact that we are picking up the previous
value of y in the routine when computing the difference x− y.

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO •//

z−1 oo

−
OO //

_____________

�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�

x[n] y[n]
ωcT

Figure 3.4: Naive 1-pole lowpass filter (the dashed
line denotes the integrator).

This unit delay occurring in the discrete-time feedback is a
common problem in discrete-time implementations. This prob-
lem is solvable, however it doesn’t make too much sense to solve



56 CHAPTER 3. TIME-DISCRETIZATION

it for the naive integrator-based models, as the increased com-
plexity doesn’t justify the improvement in sound. We will ad-
dress the problem of the zero-delay discrete-time feedback later,
for now we’ll concentrate on the naive model in Fig. 3.4. This
model can be simplified a bit, by combining the two z−1 ele-
ments into one (Fig. 3.5), so that the block diagram explicitly
contains a single state variable (as does its pseudocode counter-
part).

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1

•��

OO
−

OO //

___________

�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�
�
�
�
�

x[n] y[n]
ωcT

Figure 3.5: Naive 1-pole lowpass filter with just
one z−1 element (the dashed line denotes the inte-
grator).
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3.5 Transfer function

Let x[n] and y[n] be respectively the input and the output sig-
nals of a unit delay:

z−1// //x[n] y[n]

For a complex exponential input x[n] = esn = zn we obtain

y[n] = es(n−1) = esne−s = znz−1 = z−1x[n]

That is
y[n] = z−1x[n]

That is, z−1 is the transfer function of the unit delay! It is
common to express discrete-time transfer functions as functions
of z rather than functions of s. The reason is that in this case
the transfer functions are nonstrictly proper5 rational functions,
similarly to the continuous-time case, which is pretty conve-
nient. So, for a unit delay we could write H(z) = z−1.

Now we can obtain the transfer function of the naive inte-
grator in Fig. 3.1. Suppose6 x[n] = X(z)zn and y[n] = Y (z)zn,
or shortly, x = X(z)zn and y = Y (z)zn. Then the output of
the z−1 element is yz−1. The output of the summator is then
x+ yz−1, thus

y = x+ yz−1

5Under the assumption of causality, which holds if the system is built
of unit delays.

6As in continuous-time case, we take for granted the fact that complex
exponentials zn are eigenfunctions of discrete-time linear time-invariant
systems.
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from where
y(1− z−1) = x

and
H(z) =

y

x
=

1
1− z−1

This is the transfer function of the naive integrator (for T = 1).
It is relatively common to express discrete-time transfer func-

tions as rational functions of z−1 (like the one above) rather than
rational functions of z. However, for the purposes of the analy-
sis it is also often convenient to have them expressed as rational
functions of z (particularly, for finding their poles and zeros).
We can therefore multiply the numerator and the denominator
of the above H(z) by z, obtaining:

H(z) =
z

z − 1

Since z = es, the frequency response is obtained as H(ejω).
The amplitude and phase responses are

∣∣H(ejω)
∣∣ and argH(ejω)

respectively.7

For T 6= 1 we obtain

H(z) = T
z

z − 1

and, since z = esT , the frequency response is H(ejωT ).

Now let’s obtain the transfer function of the naive 1-pole
lowpass filter in Fig. 3.5, where, for the simplicity of notation,

7Another way to look at this is to notice that in order for zn to be a
complex sinusoid ejωn we need to let z = ejω .



3.6. POLES 59

we assume T = 1. Assuming complex exponentials x = X(z)zn

and y = Y (z)zn we have x and yz−1 as the inputs of the first
summator. Respectively the integrator’s input is ωc(x− yz−1).
And the integrator output is the sum of yz−1 and the integra-
tor’s input. Therefore

y = yz−1 + ωc(x− yz−1)

From where (
1− (1− ωc)z−1

)
y = ωcx

and
H(z) =

y

x
=

ωc
1− (1− ωc)z−1

=
ωcz

z − (1− ωc)

The transfer function for T 6= 1 can be obtained by simply
replacing ωc by ωcT .

The respective amplitude response is plotted in Fig. 3.6.
Comparing it to the amplitude response of the analog prototype
we can observe serious deviation closer to the Nyquist frequency.
The phase response (Fig. 3.7) has similar deviation problems.

3.6 Poles

Discrete-time block diagrams are differing from continuous-time
block diagrams only by having z−1 elements instead of integra-
tors. Recalling that the transfer function of an integrator is s−1,
we conclude that from the formal point of view the difference is
purely notational.
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ω
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Figure 3.6: Amplitude response of a naive 1-pole
lowpass filter for a number of different cutoffs.
Dashed curves represent the respective analog fil-
ter responses for the same cutoffs.

Now, the transfer functions of continuous-time block dia-
grams are nonstrictly proper rational functions of s. Respec-
tively, the transfer functions of discrete-time block diagrams are
nonstrictly proper rational functions of z.

Thus, discrete-time transfer functions will have poles and
zeros in a way similar to continuous-time transfer functions.
Similarly to continuous-time transfer functions, the poles will
define the stability of a linear time-invariant filter. Consider that
z = esT and recall the stability criterion Re s < 0 (where s = pn,
where pn are the poles). Apparently, Re s < 0 ⇐⇒ |z| < 1.
We might therefore intuitively expect the discrete-time stability
criterion to be |pn| < 1 where pn are the discrete-time poles.
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ω

argH(ejω)

π0.1π0.01π0.001π 0.02π 1 1.2

0

−π/4

−π/2

Figure 3.7: Phase response of a naive 1-pole low-
pass filter for a number of different cutoffs. Dashed
curves represent the respective analog filter re-
sponses for the same cutoffs.

This is indeed the case, a linear time-invariant difference system8

is stable if and only if all its poles are located inside the unit
circle.

3.7 Trapezoidal integration

Instead of naive integration, we could attempt using the trape-
zoidal integration method (T = 1):

8Difference systems can be defined as those, whose block diagrams con-
sist of gains, summators and unit delays. More precisely those are causal
difference systems. There are also difference systems with a lookahead into
the future, but we don’t consider them in this book.
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// perform one sample tick of the integrator
integrator_output := integrator_output +

(integrator_input +
previous_integrator_input)/2;

previous_integrator_input := integrator_input;

Notice that now we need two state variables per integrator: inte-
grator output and previous integrator input. The block diagram
of a trapezoidal integrator is shown in Fig. 3.8. We’ll refer to
this integrator as a direct form I trapezoidal integrator. The
reason for this term will be explained later.

•// + '!&"%#$//

z−1//

OO
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]

1/2

Figure 3.8: Direct form I trapezoidal integrator
(T = 1).

We could also construct a trapezoidal integrator implemen-
tation with only a single state variable. Consider the expression
for the trapezoidal integrator’s output:

y[n] = y[n0 − 1] +
n∑

ν=n0

x[ν − 1] + x[ν]
2

(3.2)
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Suppose y[n0 − 1] = 0 and x[n0 − 1]=0, corresponding to a
zero initial state (recall that both y[n0 − 1] and x[n0 − 1] are
technically stored in the z−1 elements). Then

y[n] =
n∑

ν=n0

x[ν − 1] + x[ν]
2

=
1
2

(
n∑

ν=n0

x[ν − 1] +
n∑

ν=n0

x[ν]

)
=

=
1
2

(
n∑

ν=n0+1

x[ν − 1] +
n∑

ν=n0

x[ν]

)
=

=
1
2

(
n−1∑
ν=n0

x[ν] +
n∑

ν=n0

x[ν]

)
=

=
u[n− 1] + u[n]

2

where

u[n] =
n∑

ν=n0

x[ν]

Now notice that u[n] is the output of a naive integrator, whose
input signal is x[n]. At the same time y[n] is the average of the
previous and the current output values of the naive integrator.
This can be implemented by the structure in Fig. 3.9. Similar
considerations apply for nonzero initial state. We’ll refer to the
integrator in Fig. 3.9 as a direct form II or canonical trapezoidal
integrator. The reason for this term will be explained later.
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+ '!&"%#$// •// + '!&"%#$//

z−1

��

•��

OO OO
MMMqqq
// //x[n] y[n]

1/2

Figure 3.9: Direct form II (canonical) trapezoidal
integrator (T = 1).

We can develop yet another form of the bilinear integrator
with a single state variable. Let’s rewrite (3.2) as

y[n] = y[n0 − 1] +
x[n0 − 1]

2
+

n−1∑
ν=n0

x[ν] +
x[n]

2

and let

u[n− 1] = y[n]− x[n]
2

= y[n0 − 1] +
x[n0 − 1]

2
+

n−1∑
ν=n0

x[ν]

Notice that

y[n] = u[n− 1] +
x[n]

2
(3.3)

and

u[n] = u[n− 1] + x[n] = y[n] +
x[n]

2
(3.4)
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Expressing (3.3) and (3.4) in a graphical form, we obtain the
structure in Fig. 3.10, where the output of the z−1 block corre-
sponds to u[n− 1]. We’ll refer to the integrator in Fig. 3.10 as
a transposed direct form II or transposed canonical trapezoidal
integrator. The reason for this term will be explained later.

MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

1/2

Figure 3.10: Transposed direct form II (transposed
canonical) trapezoidal integrator (T = 1).

The positioning of the 1/2 gain prior to the integrator in
Fig. 3.10 is quite convenient, because we can combine the 1/2
gain with the cutoff gain into a single gain element. In case
of an arbitrary sampling period we could also include the T
factor into the same gain element, thus obtaining the structure
in Fig. 3.11. A similar trick can be performed for the other
two integrators, if we move the 1/2 gain element to the input of
the respective integrator. Since the integrator is a linear time-
invariant system, this doesn’t affect the integrator’s behavior in
a slightest way.
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MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

ωcT/2

Figure 3.11: Transposed direct form II (transposed
canonical) trapezoidal integrator with “embedded”
cutoff gain.

Typically one would prefer the direct form II integrators to
the direct form I integrator, because the former have only one
state variable. In this book we will mostly use the transposed
direct form II integrator, because this is resulting in slightly
simpler zero-delay feedback equations and also offers a nice pos-
sibility for the internal saturation in the integrator.

The transfer functions of all three integrators are identical.
Let’s obtain e.g. the transfer function of the transposed canon-
ical integrator (in Fig. 3.10). Let u be the output signal of the
z−1 element. Assuming signals of the exponential form zn, we
have

u =
(x

2
+ y
)
z−1
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y =
x

2
+ u

from where
u = y − x

2
and

y − x

2
=
(x

2
+ y
)
z−1

or (
y − x

2

)
z =

x

2
+ y

from where
y(z − 1) =

x

2
(z + 1)

and the transfer function of the trapezoidal integrator is thus

H(z) =
y

x
=

1
2
· z + 1
z − 1

For an arbitrary T one has to multiply the result by T , to take
the respective gain element into account:

H(z) =
T

2
· z + 1
z − 1

If also the cutoff gain is included, we obtain

H(z) =
ωcT

2
· z + 1
z − 1

One can obtain the same results for the other two integrators.
What is so special about this transfer function, that makes

the trapezoidal integrator so superior to the naive one, is to be
discussed next.
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3.8 Bilinear transform

Suppose we take an arbitrary continuous-time block diagram,
like the familiar lowpass filter in Fig. 2.2 and replace all continuous-
time integrators by discrete-time trapezoidal integrators. On
the transfer function level, this will correspond to replacing all
s−1 with T

2 ·
z+1
z−1 . That is, technically we perform a subsitution

s−1 =
T

2
· z + 1
z − 1

in the transfer function expression.
It would be more convenient to write this substitution ex-

plicitly as

s =
2
T
· z − 1
z + 1

(3.5)

The substitution (3.5) is referred to as the bilinear transform,
or shortly BLT. For that reason we can also refer to trapezoidal
integrators as BLT integrators. Let’s figure out, how does the
bilinear transform affect the frequency response of the filter, that
is, what is the relationship between the original continuous-time
frequency response prior to the substitution and the resulting
discrete-time frequency response after the substitution.

Let Ha(s) be the original continuous-time transfer function.
Then the respective discrete-time transfer function is

Hd(z) = Ha

(
2
T
· z − 1
z + 1

)
(3.6)
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Respectively, the discrete-time frequency response is

Hd(ejωT ) = Ha

(
2
T
· e

jωT − 1
ejωT + 1

)
=

= Ha

(
2
T
· e

jωT/2 − e−jωT/2

ejωT/2 + e−jωT/2

)
=

= Ha

(
2
T
j tan

ωT

2

)
Notice that Ha(s) in the last expression is evaluated on the
imaginary axis!!! That is, the bilinear transform maps the imag-
inary axis in the s-plane to the unit circle in the z-plane! Now,
Ha

(
2
T j tan ωT

2

)
is the analog frequency response evaluated at

2
T tan ωT

2 . That is, the digital frequency response at ω is equal to
the analog frequency response at 2

T tan ωT
2 . This means that the

analog frequency response in the range 0 ≤ ω < +∞ is mapped
into the digital frequency range 0 ≤ ωT < π (0 ≤ ω < πfs),
that is from zero to Nyquist!9 Denoting the analog frequency as
ωa and the digital frequency as ωd we can express the argument
mapping of the frequency response function as

ωa =
2
T

tan
ωdT

2
(3.7)

or, in a more symmetrical way

ωaT

2
= tan

ωdT

2
(3.8)

9A similar mapping obviously occurs for the negative frequencies.
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Notice that for frequencies much smaller that Nyquist frequency
we have ωT � 1 and respectively ωa ≈ ωd.

This is what is so unique about the bilinear transform. It
simply warps the frequency range [0,+∞) into the zero-to-Nyquist
range, but otherwise doesn’t change the frequency response at
all! Considering in comparison a naive integrator, we would
have obtained:

s−1 =
z

z − 1

s =
z − 1
z

(3.9)

Hd(z) = Ha

(
z − 1
z

)

Hd(ejω) = Ha

(
ejω − 1
ejω

)
= Ha

(
1− e−jω

)
which means that the digital frequency response is equal to the
analog transfer function evaluated on a circle of radius 1 cen-
tered at s = 1. This hardly defines a clear relationship between
the two frequency responses.

So, by simply replacing the analog integrators with digi-
tal trapezoidal integrators, we obtain a digital filter whose fre-
quency response is essentially the same as the one of the analog
prototype, except for the frequency warping. Particularly, the
relationship between the amplitude and phase responses of the
filter is fully preserved, which is particularly highly important
if the filter is to be used as a building block in a larger filter.
Very close to perfect!
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Furthermore, the bilinear transform maps the left complex
semiplane in the s-domain into the inner region of the unit cir-
cle in the z-domain. Indeed, let’s obtain the inverse bilinear
transform formula. From (3.5) we have

(z + 1)
sT

2
= z − 1

from where

1 +
sT

2
= z

(
1− sT

2

)
and

z =
1 + sT

2

1− sT
2

(3.10)

The equation (3.10) defines the inverse bilinear transform. Now,
if Re s < 0, then, obviously∣∣∣∣1 +

sT

2

∣∣∣∣ < ∣∣∣∣1− sT

2

∣∣∣∣
and |z| < 1. Thus, the left complex semiplane in the s-plane is
mapped to the inner region of the unit circle in the z-plane. In
the same way one can show that the right complex semiplane is
mapped to the outer region of the unit circle. And the imaginary
axis is mapped to the unit circle itself. Comparing the stability
criterion of analog filters (the poles must be in the left complex
semiplane) to the one of digital filters (the poles must be inside
the unit circle), we conclude that the bilinear transform exactly
preserves the stability of the filters!
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In comparison, for a naive integrator replacement we would
have the following. Inverting the (3.9) substitution we obtain

sz = z − 1

z(1− s) = 1

and
z =

1
1− s

Assuming Re s < 0 and considering that in this case∣∣∣∣z − 1
2

∣∣∣∣ =
∣∣∣∣ 1
1− s

− 1
2

∣∣∣∣ =
∣∣∣∣1− 1

2 + s
2

1− s

∣∣∣∣ =
∣∣∣∣12 · 1 + s

1− s

∣∣∣∣ < 1
2

we conclude that the left semiplane is mapped into a circle of
radius 0.5 centered at z = 0.5. So the naive integrator overpre-
serves the stability, which is not nice, since we would rather have
digital filters behaving as closely to their analog prototypes as
possible. Considering that this comes in a package with a poor
frequency response transformation, we should rather stick with
trapezoidal integrators.

So, let’s replace e.g. the integrator in the familiar lowpass
filter structure in Fig. 2.2 with a trapezoidal integrator. Per-
forming the integrator replacement, we obtain the structure in
Fig. 3.12. We will refer to the trapezoidal integrator replacement
method as the topology-preserving transform (TPT) method.
This term will be explained and properly introduced later. For
now, before we simply attempt to implement the structure in
Fig. 3.12 in code, we should become aware of a few further is-
sues.
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Figure 3.12: 1-pole TPT lowpass filter (the dashed
line denotes the trapezoidal integrator).

3.9 Cutoff prewarping

Suppose we are using the lowpass filter structure in Fig. 3.12
and we wish to have its cutoff at ωc. If we however simply put
this ωc parameter into the respective integrator gain element
ωcT/2, our frequency response at the cutoff will be different
from the expected one. Considering the transfer function of an
analog 1-pole lowpass filter (2.2), at the cutoff we expect

H(jωc) =
ωc

ωc + jωc
=

1
1 + j
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corresponding to a −3dB drop in amplitude and a 45◦ phase
shift. However, letting ωa = ωc in (3.8) we will obtain some ωd 6=
ωc. That is the cutoff point of the analog frequency response will
be mapped to some other frequency ωd in the digital frequency
response (Fig. 3.13). This is the result of the frequency axis
warping by the bilinear transform.10

ω

|H(ejω)|, dB

π0.1π0.01π0.001π 0.02π 1 1.2

0

-6

-12

-18

Figure 3.13: Amplitude response of an unpre-
warped bilinear-transformed 1-pole lowpass filter
for a number of different cutoffs. Dashed curves
represent the respective analog filter responses for
the same cutoffs. Observe the difference between
the analog and digital responses at each cutoff.

10The response difference at the cutoff in Fig. 3.13 might seem negligible.
However it will be even higher for cutoffs closer to Nyquist. Also for filters
with strong resonance the detuning of the cutoff by frequency warping
might be way more noticeable.
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However, if we desire to have the 1/(1+j) frequency response
exactly at ωd = ωc, we can simply apply (3.7) to ωd = ωc,
thereby obtaining some ωa. This ωa should be used in the gain
element of the integrator, that is the gain should be ωaT/2 in-
stead of ωcT/2. This cutoff substitution is referred to as the
cutoff prewarping. The result of the cutoff prewarping is illus-
trated in Fig. 3.14.

ω

|H(ejω)|, dB

π0.1π0.01π0.001π 0.02π 1 1.2

0
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-12

-18

Figure 3.14: Amplitude response of an prewarped
bilinear-transformed 1-pole lowpass filter for a
number of different cutoffs. Dashed curves rep-
resent the respective analog filter responses for the
same cutoffs. Observe the identical values of the
analog and digital responses at each cutoff.

Apparently, the importance of the cutoff prewarping grows
as the cutoff values get higher. For cutoff values much lower
than the Nyquist frequency the prewarping has only a minor
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effect.
Notice that it’s possible to choose any other point for the

prewarping, not necessarily the cutoff point. That is it’s pos-
sible to make any single chosen point on the analog frequency
response to be located at the desired digital frequency. In order
to do so we first choose ωd of interest, then use (3.7) to find the
respective ωa. Now we want a particular point on the analog
frequency response to be located at ωa, which can be achieved
by a proper choice of the analog cutoff value. Now we put this
cutoff value into the integrators and that’s it!

3.10 Zero-delay feedback

There is a further problem with the trapezoidal integrator re-
placement in the TPT method. Replacing the integrators with
trapezoidal ones introduces delayless feedback loops (that is,
feedback loops not containing any delay elements) into the struc-
ture. E.g. consider the structure in Fig. 3.12. Carefully exam-
ining this structure, we find that it has a feedback loop which
doesn’t contain any unit delay elements. This loop goes from the
leftmost summator through the gain, through the upper path of
the integrator to the filter’s output and back through the large
feedback path to the leftmost summator.

Why is this delayless loop a problem? Let’s consider for
example the naive lowpass filter structure in Fig. 3.5. Suppose
we don’t have the respective program code representation and
wish to obtain it from the block diagram. We could do it in
the following way. Consider Fig. 3.15, which is the same as
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Fig. 3.5, except that it labels all signal points. At the beginning
of the computation of a new sample the signals A and B are
already known. A = x[n] is the current input sample and B
is taken from the internal state memory of the z−1 element.
Therefore we can compute C = A − B. Then we can compute
D = (ωcT )C and finally E = D + B. The value of E is then
stored into the internal memory of the z−1 element (for the next
sample computation) and is also sent to the output as the new
y[n] value. Easy, right?

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1

•��

OO
−

OO //A

B

C D E
x[n] y[n]

ωcT

Figure 3.15: Naive 1-pole lowpass filter and the
respective signal computation order.

Now the same approach doesn’t work for the structure in
Fig. 3.12. Because there is a delayless loop, we can’t find a
starting point for the computation within that loop.

The classical way of solving this problem is exactly the same
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as what we had in the naive approach: introduce a z−1 into the
delayless feedback, turning it into a feedback containing a unit
delay (Fig. 3.16). Now there are no delayless feedback paths
and we can arrange the computation order in a way similar to
Fig. 3.15. This however destroys the resulting frequency re-
sponse, because the transfer function is now different. In fact
the obtained result is not significantly better (if better at all)
than the one from the naive approach. There are some seri-
ous artifacts in the frequency response closer to the Nyquist
frequency, if the filter cutoff is sufficiently high.

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •//

+ '!&"%#$//

z−1

OO

OO

oo

•//

z−1 oo

−
OO //x[n] y[n]

ωcT/2

Figure 3.16: Digital 1-pole lowpass filter with a
trapezoidal integrator and an extra delay in the
feedback.

Therefore we shouldn’t introduce any modifications into the
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structure and solve the zero-delay feedback problem instead.
The term “zero-delay feedback” originates from the fact that
we avoid introducing a one-sample delay into the feedback (like
in Fig. 3.16) and instead keep the feedback delay equal to zero.

So, let’s solve the zero-delay feedback problem for the struc-
ture in Fig. 3.12. Notice that this structure simply consists
of a negative feedback loop around a trapezoidal integrator,
where the trapezoidal integrator structure is exactly the one
from Fig. 3.11. We will now introduce the concept of the in-
stantaneous response of this integrator structure.

So, consider the integrator structure in Fig. 3.11 and let
u[n] denote the input signal of the z−1 element, respectively its
output will be u[n−1]. Since there are no delayless loops in the
integrator, it’s not difficult to obtain the following expression
for y[n]:

y[n] =
ωcT

2
x[n] + u[n− 1] (3.11)

Notice that, at the time x[n] arrives at the integrator’s input, all
values in the right-hand side of (3.11) are known (no unknown
variables). Introducing notation

g =
ωcT

2
s[n] = u[n− 1]

we have
y[n] = gx[n] + s[n]

or, dropping the discrete time argument notation for simplicity,

y = gx+ s
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That is, at any given time moment n, the output of the integra-
tor y is a linear function of its input x, where the values of the
parameters of this linear function are known. The g parameter
doesn’t depend on the internal state of the integrator, while the
s parameter does depend on the internal state of the integra-
tor. We will refer to the linear function f(x) = gx + s as the
instantaneous response of the integrator at the respective im-
plied time moment n. The coefficient g can be referred to as the
instantaneous response gain or simply instantaneous gain. The
term s can be referred to as the instantaneous response offset
or simply instantaneous offset.

Let’s now redraw the filter structure in Fig. 3.12 as in Fig. 3.17.
We have changed the notation from x to ξ in the gx+ s expres-
sion to avoid the confusion with the input signal x[n] of the
entire filter.

+ '!&"%#$// gξ + s// •//
−

OO //x[n] y[n]

Figure 3.17: 1-pole TPT lowpass filter with the
integrator in the instantaneous response form.

Now we can easily write and solve the zero-delay feedback
equation. Indeed, suppose we already know the filter output
y[n]. Then the output signal of the feedback summator is x[n]−
y[n] and the output of the integrator is respectively g(x[n] −
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y[n]) + s. Thus

y[n] = g(x[n]− y[n]) + s

or, dropping the time argument notation for simplicity,

y = g(x− y) + s (3.12)

The equation (3.12) is the zero-delay feedback equation for the
filter in Fig. 3.17 (or, for that matter, in Fig. 3.12). Solving this
equation, we obtain

y(1 + g) = gx+ s

and respectively

y =
gx+ s

1 + g
(3.13)

Having found y (that is, having predicted the output y[n]), we
can then proceed with computing the other signals in the struc-
ture in Fig. 3.12, beginning with the output of the leftmost
summator.11

It’s worth mentioning that (3.13) can be used to obtain the
instantaneous response of the entire filter from Fig. 3.12. Indeed,
rewriting (3.13) as

y =
g

1 + g
x+

s

1 + g

11Notice that the choice of the signal point for the prediction is rather ar-
bitrary. We could have chosen any other point within the delayless feedback
loop.
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and introducing notations

G =
g

1 + g

S =
s

1 + g

we have
y = Gx+ S (3.14)

So, the instantaneous response of the entire lowpass filter in
Fig. 3.12 is again a linear function of the input. We could use the
expression (3.14) e.g. to solve the zero-delay feedback problem
for some larger feedback loop containing a 1-pole lowpass filter.

Let’s now convert the structure in Fig. 3.12 into a piece of
code. We already know y from (3.14). Let’s notice that the
output of the ωcT/2 gain is used twice in the structure. Let v
denote the output of this gain. Since g = ωcT/2, we have

v = g(x− y) = g (x−Gx− S) = g

(
x− g

1 + g
x− s

1 + g

)
=

= g

(
1

1 + g
x− s

1 + g

)
= g

x− s
1 + g

(3.15)

Recall that s is the output value of the z−1 element and let u
denote its input value. Then

y = v + s (3.16)

and
u = y + v (3.17)
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The equations (3.15), (3.16) and (3.17) can be directly expressed
in program code:

// perform one sample tick of the lowpass filter
v := (x-z1_state)*g/(1+g);
y := v + z1_state;
z1_state := y + v;

or instead expressed in a block diagram form (Fig. 3.18). No-
tice that the block diagram doesn’t contain any delayless loops
anymore.

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

•OO
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oo

−
OOx[n] y[n]

g/(1 + g)

Figure 3.18: 1-pole TPT lowpass filter with re-
solved zero-delay feedback.
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3.11 Direct forms

Consider again the equation (3.6), which describes the appli-
cation of the bilinear transform to convert an analog transfer
function to a digital one. There is a classical method of digi-
tal filter design which is based directly on this transformation,
without using any integrator replacement techniques. In the
author’s experience, for music DSP needs this method typically
has a largely inferior quality, compared to the TPT. Neverthe-
less we will describe it here for completeness and for a couple of
other reasons. Firstly, it would be nice to try to analyse and un-
derstand the reasons for the problems of this method. Secondly,
this method could be useful once in a while. Particularly, its de-
ficiencies mostly disappear in the time-invariant (unmodulated,
or sufficiently slowly modulated) case, while the implementation
sometimes could be slightly more efficient.

Having obtained a digital transfer function from (3.6), we
could observe, that, since the original analog transfer function
was a rational function of s, the resulting digital transfer func-
tion will necessarily be a rational function of z. E.g. using the
familiar 1-pole lowpass transfer function

Ha(s) =
ωc

s+ ωc

we obtain

Hd(z) = Ha

(
2
T
· z − 1
z + 1

)
=

ωc
2
T ·

z−1
z+1 + ωc

=
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=
ωcT

2 (z + 1)
(z − 1) + ωcT

2 (z + 1)
=

ωcT
2 (z + 1)(

1 + ωcT
2

)
z −

(
1− ωcT

2

)
Now, there are standard discrete-time structures allowing an
implementation of any given nonstrictly proper rational transfer
function. It is easier to use these structures, if the transfer
function is expressed as a rational function of z−1 rather than
the one of z. In our particular example, we can multiply the
numerator and the denominator by z−1, obtaining

Hd(z) =
ωcT

2 (1 + z−1)(
1 + ωcT

2

)
−
(
1− ωcT

2

)
z−1

The further requirement is to have the constant term in the
denominator equal to 1, which can be achieved by dividing ev-
erything by 1 + ωcT/2:

Hd(z) =

ωcT
2

1+ωcT
2

(1 + z−1)

1− 1−ωcT2
1+ωcT

2
z−1

(3.18)

Now suppose we have an arbitrary rational nonstrictly proper
transfer function of z, expressed via z−1 and having the constant
term in the denominator equal to 1:

H(z) =

N∑
n=0

bnz
−n

1−
N∑
n=1

anz
−n

(3.19)
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This transfer function can be implemented by the structure in
Fig. 3.19 or by the structure in Fig. 3.20. One can verify (by
computing the transfer functions of the respective structures)
that they indeed implement the transfer function (3.19). There
are also transposed versions of these structures, which the read-
ers should be able to construct on their own.
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Figure 3.19: Direct form I (DF1).

Let’s use the direct form II to implement (3.18). Apparently,
we have

N = 1

b0 = b1 =
ωcT

2

1 + ωcT
2
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Figure 3.20: Direct form II (DF2), a.k.a. canonical
form.

a1 =
1− ωcT

2

1 + ωcT
2

and the direct form implementation itself is the one in Fig. 3.21
(we have merged the b0 and b1 coefficients into a single gain
element).

In the time-invariant (unmodulated) case the performance
of the direct form filter in Fig. 3.21 should be identical to the
TPT filter in Fig. 3.12, since both implement the same bilinear-
transformed analog transfer function (2.2). When the cutoff is
modulated, however, the performance will be different.

This is very easy to understand intuitively. First, consider
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Figure 3.21: Direct form II 1-pole lowpass filter.

the two following analog structures, implementing two different
ways of combining a cutoff gain with an integrator:

MMMqqq
//

∫
// //

ωc

and
∫

//
MMMqqq
// //
ωc

Suppose the input signal is a sine and there is a sudden jump
in the cutoff parameter. In this case there will also be a sudden
jump in the input of the first integrator, however the jump will
be converted into a break by the integration. In the second
case the jump will not be converted, because it appears after
the integrator. Ignoring the problem of a DC offset possibly
introduced by such jump in the first structure (because in real
stable filters this DC offset will quickly disappear with time),
we should say that the first structure has a better modulation
performance, since the cutoff jumps do not produce so audible
clicks in the output.
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Apparently the two structures behave differently in the time-
varying case, even though both have the same transfer function
ωc/s. We say that the two structures have the same transfer
function but different topology (the latter term referring to the
components used in the block diagram and the way they are
connected to each other). As mentioned, the transfer function
is applicable only to the time-invariant case. No wonder its
possible to have structures with identical transfer functions, but
different time-varying behavior.

Now, returning to the comparison of implementations in
Fig. 3.21 and Fig. 3.12, we notice that the structure in Fig. 3.21
contains a gain element at the output, the value of this gain
being approximately proportional to the cutoff (at low cutoffs).
This will particularly produce unsmoothed jumps in the output
in response to jumps in the cutoff value. In the structure in
Fig. 3.12, on the other hand, the cutoff jumps will be smoothed
by the integrator. Thus, the difference between the two struc-
tures is similar to the just discussed effect of the cutoff gain
placement with the integrator.

We should conclude that, other things being equal, the struc-
ture in Fig. 3.21 is inferior to the one in Fig. 3.12 (or Fig. 3.18).
In this respect consider that Fig. 3.12 is trying to explicitly em-
ulate the analog integration behavior, preserving the topology of
the original analog structure, while Fig. 3.21 is concerned solely
with implementing a correct transfer function. Since Fig. 3.21
implements a classical approach to the bilinear transform appli-
cation for digital filter design (which ignores the filter topology)
we’ll refer to the trapezoidal integration replacement technique
as the topology-preserving bilinear transform (or, shortly, TP-
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BLT). Or, even shorter, we can refer to this technique as simply
the topology-preserving transform (TPT), implicitly assuming
that the bilinear transform is being used.12

In principle, sometimes there are possibilities to “manually
fix” the structures such as in Fig. 3.21. E.g. the time-varying
performance of the latter is drastically improved by moving the
b0 gain to the input. The problem however is that this kind
of fixing quickly gets more complicated (if being possible at
all) with larger filter structures. On the other hand, the TPT
method explicitly aims at emulating the time-varying behavior
of the analog prototype structure, which aspect is completely
ignored by the classical transform approach. Besides, if the
structure contains nonlinearities, preserving the topology be-
comes absolutely critical, because otherwise these nonlinearites
can not be placed in the digital model.13 Also, the direct forms
suffer from precision loss issues, the problem growing bigger with
the order of the system. For that reason in practice the direct
forms of orders higher than 2 are rarely used,14 but even 2nd-

12Apparently, naive filter design techniques also preserve the topology,
but they do a rather poor job on the transfer functions. Classical bilinear
transform approach does a good job on the transfer function, but doesn’t
preserved the topology. The topology-preserving transform achieves both
goals simultaneously.

13This is related to the fact that transfer functions can be defined only
for linear time-invariant systems. Nonlinear cases are obviously not linear,
thus some critical information can be lost, if the conversion is done solely
based on the transfer functions.

14A higher-order transfer function is typically decomposed into a product
of transfer functions of 1st- and 2nd-order rational functions (with real
coefficients!). Then it can be implemented by a serial connection of the
respective 1st- and 2nd-order direct form filters.
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order direct forms could already noticeably suffer from precision
losses.

3.12 Other replacement techniques

The trapezoidal integrator replacement technique can be seen as
a particular case of a more general set of replacement techniques.
Suppose we have two filters, whose frequency response functions
are F1(ω) and F2(ω) respectively. The filters do not need to
have the same nature, particularly one can be an analog filter
while the other can be a digital one. Suppose further, there is
a frequency axis mapping function ω′ = µ(ω) such that

F2(ω) = F1(µ(ω))

Typically µ(ω) should map the entire domain of F2(ω) onto the
entire domain of F1(ω) (however the exceptions are possible).

To make the subsequent discussion more intuitive, we will
assume that µ(ω) is monotone, although this is absolutely not
a must.15 In this case we could say that F2(ω) is obtained from
F1(ω) by a frequency axis warping. Particularly, this is exactly
what happens in the bilinear transform case (the mapping µ(ω)
is then defined by the equation (3.7)). One cool thing about

15Strictly speaking, we don’t even care whether µ(ω) is single-valued. We
could have instead required that

F2(µ2(ω)) = F1(µ1(ω))

for some µ1(ω) and µ2(ω).
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the frequency axis warping is that it preserves the relationship
between the amplitude and phase.

Suppose that we have a structure built around filters of fre-
quency response F1(ω), and the rest of the structure doesn’t
contain any memory elements (such as integrators or unit de-
lays). Then the frequency response F (ω) of this structure will
be a function of F1(ω):

F (ω) = Φ(F1(ω))

where the specifics of the function Φ(w) will be defined by the
details of the container structure. E.g. if the building-block
filters are analog integrators, then F1(ω) = 1/jω. For the filter
in Fig. 2.2 we then have

Φ(w) =
w

w + 1

Indeed, substituting F1(ω) into Φ(w) we obtain

F (ω) = Φ(F1(ω)) = Φ(1/jω) =
1/jω

1 + 1/jω
=

1
1 + jω

which is the already familiar to us frequency response of the
analog lowpass filter.

Now, we can view the trapezoidal integrator replacement as
a substitution of F2 instead of F1, where µ(ω) is obtained from
(3.7):

ωa = µ(ωd) =
2
T

tan
ωdT

2
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The frequency response of the resulting filter is obviously equal
to Φ(F2(ω)), where F2(ω) is the frequency response of the trape-
zoidal integrators (used in place of analog ones). But since
F2(ω) = F1(µ(ω)).

Φ(F2(ω)) = Φ(F1(µ(ω)))

which means that the frequency response Φ(F2(·)) of the struc-
ture with trapezoidal integrators is obtained from the frequency
response Φ(F1(·)) of the structure with analog integrators sim-
ply by warping the frequency axis. If the warping is not too
strong, the frequency responses will be very close to each other.
This is exactly what is happening in the trapezoidal integrator
replacement and generally in the bilinear transform.

Differentiator-based filters

We could have used some other two filters, with their respec-
tive frequency responses F1 and F2. E.g. we could consider
continuous-time systems built around differentiators rather than
integrators.16 The transfer function of a differentiator is ap-
parently simply H(s) = s, so we could use (3.5) to build a
discrete-time “trapezoidal differentiator”. Particularly, if we use
the direct form II approach, it could look similarly to the inte-
grator in Fig. 3.9. When embedding the cutoff control into a
differentiator (in the form of a 1/ωc gain), it’s probably bet-

16The real-world analog electronic circuits are “built around” integrators
rather than differentiators. Therefore the differentiator-based filters have
rather theoretical significance in the VA filter design.
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ter to position it after the differentiator, to avoid the unnec-
essary “de-smoothing” of the control modulation by the differ-
entiator. Replacing the analog differentiators in a structure by
such digital trapezoidal differentiators we effectively perform a
differentiator-based TPT.

E.g. if we replace the integrator in the highpass filter in
Fig. 2.8 by a differentiator, we essentially perform a 1/s ← s
substitution, thus we should have obtained a (differentiator-
based) lowpass filter. Remarkably, if we perform a differentiator-
based TPT on such filter, the obtained digital structure is fully
equivalent to the previously obtained integrator-based TPT 1-
pole lowpass filter.

Allpass substitution

One particularly interesting case occurs when F1 and F2 define
two different allpass frequency responses. That is |F1(ω)| ≡ 1
and |F2(ω)| ≡ 1. In this case the mapping µ(ω) is always possi-
ble. Especially since the allpass responses (defined by rational
transfer functions of analog and digital systems) always cover
the entire phase range from −π to π.17 In intuitive terms it
means: for a filter built of identical allpass elements, we can al-
ways replace those allpass elements with an arbitrary other type
of allpass elements (provided all other elements are memoryless,
that is there are only gains and summators). We will refer to
this process as allpass substitution. Whereas in the trapezoidal
integrator replacement we have replaced analog integrators by

17Actually, for −∞ < ω < +∞, they cover this range exactly N times,
where N is the order of the filter.
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digital trapezoidal integrators, in the allpass substitution we re-
place allpass filters of one type by allpass filters of another type.

We can even replace digital allpass filters with analog ones
and vice versa. E.g., noticing that z−1 elements are allpass
filters, we could replace them with analog allpass filters. One
particularly interesting case arises out of the inverse bilinear
transform (3.10). From (3.10) we obtain

z−1 =
1− sT

2

1 + sT
2

(3.20)

The right-hand side of (3.20) obviously defines a stable 1-pole
allpass filter, whose cutoff is 2/T . We could take a digital fil-
ter and replace all z−1 elements with an analog allpass filter
structure implementing (3.20). By doing this we would have
performed a topology-preserving inverse bilinear transform.

We could then apply the cutoff parametrization to these un-
derlying analog allpass elements:

sT

2
← s

ωc

so that we obtain

z−1 =
1− s/ωc
1 + s/ωc

The expression s/ωc can be also rewritten as sT/2α, where α is
the cutoff scaling factor:

z−1 =
1− sT/2α
1 + sT/2α

(3.21)
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Finally, we can apply the trapezoidal integrator replacement to
the cutoff-scaled analog filter, converting it back to the digital
domain. By doing so, we have applied the cutoff scaling in the
digital domain! On the transfer function level this is equivalent
to applying the bilinear transform to (3.21), resulting in

z−1 =
1− sT/2α
1 + sT/2α

←
1− z−1

α(z+1)

1 + z−1
α(z+1)

=

=
α(z + 1)− (z − 1)
α(z + 1) + (z − 1)

=
(α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

That is, we have obtained a discrete-time allpass substitution

z−1 ← (α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

which applies cutoff scaling in the digital domain.18 The allpass
filter

H(z) =
(α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

should have been obtained, as described, by the trapezoidal inte-
grator replacement in an analog implementation of (3.21), alter-
natively we could use a direct form implementation. Notice that
this filter has a pole at z = (α−1)/(α+1). Since |α−1| < |α+1|
∀α > 0, the pole is always located inside the unit circle, and the
filter is always stable.

18Differently from the analog domain, the digital cutoff scaling doesn’t
exactly shift the response along the frequency axis in a logarithmic scale,
as some frequency axis warping is involved. The resulting frequency re-
sponse change however is pretty well approximated as shiting in the lower
frequency range.
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3.13 Instantaneously unstable feedback

Writing the solution (3.13) for the zero-delay feedback equation
(3.12) we in fact have slightly jumped the gun. Why? Let’s
consider once again the structure in Fig. 3.17 and suppose g gets
negative and starts growing in magnitude further in the negative
direction.19 When g becomes equal to −1, the denominator of
(3.13) turns into zero. Something bad must be happening at
this moment.

In order to understand the meaning of this situation, let’s
consider the delayless feedback path as if it was an analog feed-
back. An analog signal value can’t change instantly. It can
change very quickly, but not instantly, it’s always a continu-
ous function of time. We could imagine there is a smoother unit
somewhere in the feedback path (Fig. 3.22). This smoother unit
has a very very fast response time. We introduce the notation
ȳ for the output of the smoother.

So, suppose we wish to compute a new output sample y[n]
for the new input sample x[n]. At the time x[n] “arrives” at
the filter’s input, the smoother still holds the old output value
y[n − 1]. Let’s freeze the discrete time at this point (which
formally means we simply are not going to update the internal
state of the z−1 element). At the same time we will let the
continuous time t run, formally starting at t = 0 at the discrete
time moment n.

19Of course, such lowpass filter formally has a negative cutoff value. It is
also unstable. However unstable circuits are very important as the linear
basis for the analysis and implementation of e.g. nonlinear self-oscillating
filters. Therefore we wish to be able to handle unstable circuits as well.
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+ '!&"%#$// gξ + s// •//

σ̂ oo

−
OO //x[n] y[n]

ȳ

Figure 3.22: Digital 1-pole lowpass filter with
a trapezoidal integrator in the instantaneous re-
sponse form and a smoother unit σ̂ in the delayless
feedback path.

In this time-frozen setup we can choose arbitrary units for
the continuous time t. The smoother equation can be written
as

sgn ˙̄y(t) = sgn
(
y(t)− ȳ(t)

)
That is, we don’t specify the details of the smoothing behavior,
however the smoother output always changes in the direction
from ȳ towards y at some (not necessarily constant) speed.20

Particularly, we can simply define a constant speed smoother:

˙̄y = sgn(y − ȳ)

or we could use a 1-pole lowpass filter as a smoother:

˙̄y = y − ȳ
20We also assume that the smoothing speed is sufficiently large to ensure

that the smoothing process will converge at all cases where it potentially
can converge (this statement should become clearer as we discuss more
details).
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The initial value of the smoother is apparently ȳ(0) = y[n− 1].
Now consider that

sgn ˙̄y(t) = sgn
(
y(t)− ȳ(t)

)
= sgn

(
g(x[n]− ȳ(t)) + s− ȳ(t)

)
=

= sgn
(
(gx[n] + s)− (1 + g)ȳ(t)

)
= sgn

(
a− (1 + g)ȳ(t)

)
where a = gx[n] + s is constant in respect to t. First, assume
1 + g > 0. Further, suppose a− (1 + g)ȳ(0) > 0. Then ˙̄y(0) > 0
and then the value of the expression a − (1 + g)ȳ(t) will start
decreasing until it turns to zero at some t, at which point the
smoothing process converges. On the other hand, if a − (1 +
g)ȳ(0) < 0, then ˙̄y(0) < 0 and the value of the expression a −
(1+g)ȳ(t) will start increasing until it turns to zero at some t, at
which point the smoothing process converges. If a−(1+g)ȳ(0) =
0 then the smoothing is already in a stable equilibrium state.

So, in case 1 + g > 0 the instantaneous feedback smoothing
process always converges. Now assume 1 + g ≤ 0. Further, sup-
pose a−(1+g)ȳ(0) > 0. Then ˙̄y(0) > 0 and then the value of the
expression a − (1 + g)ȳ(t) will start further increasing (or stay
constant if 1+g = 0). Thus, ȳ(t) will grow indefinitely. Respec-
tively, if a− (1 + g)ȳ(0) < 0, then ȳ(t) will decrease indefinitely.
This indefinite growth/decrease will occur within the frozen dis-
crete time. Therefore we can say that ȳ grows infinitely in an
instant. We can refer to this as to an instantaneously unstable
zero-delay feedback loop.

The analysis of the instantaneous stability can also be done
using the analog filter stability analysis means. Let the smoother
be an analog 1-pole lowpass filter with a unit cutoff (whose
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transfer function is 1
s+1 )21 and notice that in that case the struc-

ture in Fig. 3.22 can be redrawn as in Fig. 3.23. This filter has
two formal inputs x[n] and s and one output y[n].

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •

1
s+1

oo

−
OO //��

x[n] y[n]

s

g

Figure 3.23: An instantaneous representation of
a digital 1-pole lowpass filter with a trapezoidal
integrator and an analog lowpass smoother.

We can now e.g. obtain a transfer function from the x[n]
input to the y[n] output. Ignoring the s input signal (assuming
it to be zero), for a continuous-time complex exponential input
signal arriving at the x[n] input, which we denote as x[n](t), we
have a respective continuous-time complex exponential signal at
the y[n] output, which we denote as y[n](t):

y[n](t) = g

(
x[n](t)− 1

s+ 1
y[n](t)

)
21Apparently, the variable s used in the transfer function 1

s+1
is a dif-

ferent s than the one used in the instantaneous response expression for the
integrator. The author apologizes for the slight confusion.



3.13. INSTANTANEOUSLY UNSTABLE FEEDBACK 101

from where
y[n](t) =

g

1 + g 1
s+1

x[n](t)

that is

H(s) =
g

1 + g 1
s+1

= g
s+ 1

s+ (1 + g)

This transfer function has a pole at s = −(1 + g). Therefore,
the structure is stable if 1 + g > 0 and not stable otherwise.

The same transfer function analysis could have been done
between the s input and the y[n] output, in which case we would
have obtained

H(s) =
s+ 1

s+ (1 + g)

The poles of this transfer function however, are exactly the
same, so it doesn’t matter.22

Alright, so we have found out that the filter in Fig. 3.12 is
instantaneously unstable if g ≤ −1, but what can we do about
it? Firstly, the problem typically doesn’t occur, as normally
g > 0 (not only in the 1-pole lowpass filter case, but also in
other cases). Even if it can occur in principle, one can consider,
whether these extreme parameter settings are so necessary to
support, and possibly simply clip the filter parameters in such
a way that the instantaneous instability doesn’t occur.

22This is a common rule: the poles of a system with multiple inputs
and/or multiple outputs are always the same regardless of the particular
input-output pair for which the transfer function is being considered (ex-
ceptions in signular cases, arising out of pole/zero cancellation are possible,
though).
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Secondly, let’s notice that g = ωcT/2. Therefore another
solution could be to increase the sampling rate (and respectively
reduce the sampling period T ).23

Unstable bilinear transform

There is yet another idea, which hasn’t been tried out in practice
yet.24 We are going to discuss it anyway.

The instantaneous instability is occurring at the moment
when one of the analog filter’s poles hits the pole of the inverse
bilinear transform (3.10), which is located at s = 2/T . On
the other hand, recall that the bilinear transform is mapping
the imaginary axis to the unit circle, thus kind-of preserving
the frequency response. If the system is not stable, then the
frequency response doesn’t make sense. Formally, the reason for

23Actually, the instantaneous instability has to do with the fact that
the trapezoidal integration is not capable of producing reasonable approx-
imation of the continuous-time integration, due to too extreme parameter
values. Increasing the sampling rate obviously increases the precision of
the trapezoidal integration as well.

The same idea can also be used to easily and reliably find out, whether
the positive value of the denominator of the feedback equation’s solution
corresponds to the instantaneously stable case or vice versa. The sign which
the denominator has for T → 0 corresponds to the instantaneously stable
case.

24The author just got the idea while writing the book and didn’t find
the time yet to properly experiment with it. Sufficient theoretical analysis
is not possible here due to the fact that practical applications of instanta-
neously unstable (or any unstable, for that matter) filters occur typically
for nonlinear filters, and there’s not much theoretical analysis means for the
latter. Hopefully there are no mistakes in the theoretical transformations,
but even if there are mistakes, at least the idea itself could maybe work.
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this is that the inverse Laplace transform of transfer functions
only converges for σ > max {Re pn} where pn are the poles
of the transfer function, and respectively, if max {Re pn} ≥ 0,
it doesn’t converge on the imaginary axis (σ = 0). However,
instead of the imaginary axis Re s = σ = 0, let’s choose some
other axis Re s = σ > max {Re pn} and use it instead of the
imaginary axis to compute the “frequency response”.

We also need to find a discrete-time counterpart for Re s = σ.
Considering that Re s defines the magnitude growth speed of the
exponentials est we could choose a z-plane circle, on which the
magnitude growth speed of zn is the same as for eσt. Appar-
ently, this circle is |z| = eσT . So, we need to map Re s = σ to
|z| = eσT . Considering the bilinear transform equation (3.5),
we divide z by eσT to make sure ze−σT has a unit magnitude
and shift the s-plane result by σ:

s = σ +
2
T
· ze

−σT − 1
ze−σT + 1

(3.22)

We can refer to (3.22) as the unstable bilinear transform, where
the word “unstable” refers not to the instability of the transform
itself, but rather to the fact that it is designed to be applied
to unstable filters.25 Notice that at σ = 0 the unstable bilinear
transform turns into an ordinary bilinear transform. The inverse
transform is obtained by

(s− σ)T
2

(ze−σT + 1) = ze−σT − 1

25Apparently, the unstable bilinear transform defines the same relation-
ship between Im s and arg z as the ordinary bilinear transform. Therefore
the standard prewarping formula applies.
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from where

ze−σT
(

1− (s− σ)T
2

)
= 1 +

(s− σ)T
2

and

z = eσT
1 + (s−σ)T

2

1− (s−σ)T
2

(3.23)

Apparently the inverse unstable bilinear transform (3.23) has a
pole at s = σ + 2

T . In order to avoid hitting that pole by the
poles of the filter’s transfer function (or maybe even generally
avoid the real parts of the poles to go past that value) we could
e.g. simply let

σ = max {0, Re pn}

or we could position σ midways:

σ = max
{

0, Re pn −
1
T

}
In order to construct an integrator defined by (3.22) we first

need to obtain the expression for 1/s from (3.22):

1
s

=
1

σ + 2
T ·

ze−σT−1
ze−σT+1

= T
ze−σT + 1

σT (ze−σT + 1) + 2(ze−σT − 1)
=

= T
ze−σT + 1

(σT + 2)e−σT z + (σT − 2)
=

= T
1 + eσT z−1

(σT + 2)− (2− σT )eσT z−1
=
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=
T

2 + σT
· 1 + eσT z−1

1− 2−σT
2+σT e

σT z−1

That is
1
s

=
T

2 + σT
· 1 + eσT z−1

1− 2−σT
2+σT e

σT z−1
(3.24)

A discrete-time structure implementing (3.24) could be e.g. the
one in Fig. 3.24. Yet another approach could be to convert the
right-hand side of (3.24) to the analog domain by the inverse
bilinear transform, construct an analog implementation of the
resulting transfer function and apply the trapezoidal integrator
replacement to convert back to the digital domain. It is ques-
tionable, whether this produces better (or even different) results
than Fig. 3.24.

SUMMARY

We have considered three essentially different approaches to ap-
plying time-discretization to analog filter models: naive, TPT
(by trapezoidal integrator replacement), and the classical bilin-
ear transform (using direct forms). The TPT approach com-
bines the best features of the naive implementation and the
classical bilinear transform.
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Figure 3.24: Transposed direct form II-style “un-
stable” trapezoidal integrator.



Chapter 4

Ladder filter

In this chapter we are going to discuss the most classical analog
filter model: the transistor ladder filter. We will also discuss to
an extent the diode ladder version.

4.1 Linear analog model

The analog transistor ladder filter is an essentially nonlinear
structure. However, as the first approximation (and actually
a quite good one) we will use its linearized model (Fig. 4.1).
The LP1 blocks denote four identical (same cutoff) 1-pole low-
pass filters (Fig. 2.2). The k coefficient controls the amount of
negative feedback, which affects the filter resonance. Typically

107
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k ≥ 0, although k < 0 is also sometimes used.1

+ '!&"%#$// LP1
// LP1

// LP1
// LP1

// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.1: Transistor ladder filter.

Let

H1(s) =
1

1 + s

be the 1-pole lowpass transfer function. Assuming complex ex-
ponential x and y we write

y = H4
1 (s) · (x− ky)

from where
y(1 + kH4

1 (s)) = H4
1 (s) · x

1The reason for the negative (rather than positive) feedback is actually
quite intuitively simple. Considering the phase response of four serially
connected 1-pole lowpass filters at the cutoff:(

1

1 + s

)4 ∣∣∣∣
s=j

=
1

(1 + j)4
= −

1

4

we notice that the signal phase at the cutoff is inverted. Therefore we have
to invert it once again in the feedback to achieve the resonance effect.
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and the transfer function of the ladder filter is

H(s) =
y

x
=

H4
1 (s)

1 + kH4
1 (s)

=
1

(1+s)4

1 + k 1
(1+s)4

=
1

k + (1 + s)4
(4.1)

At k = 0 the filter behaves as 4 serially connected 1-pole lowpass
filters.

The poles of the filter are respectively

s = −1 + (−k)1/4

where the raising to the 1/4th power is understood in the com-
plex sense, therefore giving 4 different values:

s = −1 +
±1± j√

2
k1/4 (k ≥ 0)

(this time k1/4 is understood in the real sense). Therefore, at
k = 0 all poles are located at s = −1, as k grows they move
apart in 4 straight lines (all going at “45◦ angles”). As k grows
from 0 to 4 the two of the poles (at s = −1+ 1±j√

2
k1/4) are moving

towards the imaginary axis, producing a resonance peak in the
amplitude response (Fig. 4.2). At k = 4 they hit the imaginary
axis:

Re
(
−1 +

1± j√
2

41/4

)
= 0

and the filter becomes unstable.
In Fig. 4.2 one could notice that, as the resonance increases,

the filter gain at low frequencies begins to drop. Indeed, substi-
tuting s = 0 into (4.1) we obtain

H(0) =
1

1 + k



110 CHAPTER 4. LADDER FILTER

ω

|H(jω)|, dB
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Figure 4.2: Amplitude response of the ladder filter
for various k.

This is a general issue with ladder filter designs.

4.2 Linear digital model

A naive digital implementation of the ladder filter shouldn’t
pose any problems. We will therefore immediately skip to the
TPT approach.

Recalling the instantaneous response of a single 1-pole low-
pass filter (3.14), we can construct the instantaneous response
of a serial connection of four of such filters. Indeed, let’s de-
note the instantaneous responses of the respective 1-poles as
fn(ξ) = gξ + sn (obviously, the coefficient g is identical for all
four, whereas sn depends on the filter state and therefore cannot



4.2. LINEAR DIGITAL MODEL 111

be assumed identical). Combining two such filters in series we
have

f2(f1(ξ)) = g(gξ + s1) + s2 = g2ξ + gs1 + s2

Adding the third one:

f3(f2(f1(ξ))) = g(g2ξ + gs1 + s2) + s3 = g3ξ + g2s1 + gs2 + s3

and the fourth one:

f4(f3(f2(f1(ξ)))) = g(g3ξ + g2s1 + gs2 + s3) =

= g4ξ + g3s1 + g2s2 + gs3 + s4 = Gξ + S

where

G = g4

S = g3s1 + g2s2 + gs3 + s4

Using the obtained instantaneous response Gξ+S of the series of
4 1-poles, we can redraw the ladder filter structure as in Fig. 4.3.

+ '!&"%#$// Gξ + S// •//

qqq
MMM oo

−
OO //x[n] y[n]

k

u[n]

Figure 4.3: TPT ladder filter in the instantaneous
response form.
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Rather than solving for y, let’s solve for the signal u at the
feedback point. From Fig. 4.3 we obtain

u = x− ky = x− k(Gu+ S)

from where

u =
x− kS
1 + kG

(4.2)

We can then use the obtained value of u to process the 1-pole
lowpasses one after the other, updating their state, and com-
puting y[n] as the output of the fourth lowpass.

Notice that for positive cutoff values of the underlying 1-
pole lowpasses we have g > 0. Respectively G = g4 > 0. This
means that for k ≥ 0 the denominator of (4.2) is always positive
and never turns to zero, so we should be safe regarding the
instantaneously unstable feedback.2

For k < 0 the situation is however different. Since 0 < g < 1
(for ωc > 0), it follows that 0 < G < 1. Thus 1 + kG > 0
∀k ≥ −1, however at k < −1 we can get into an instantaneously
unstable feedback case.

2Strictly speaking, we should have checked the instantaneous stability
using the feedback smoother approach. However typically a positive de-
nominator of the form 1 + g or 1 + kG implies that everything is fine.

A quicker way to check for the instantaneous feedback would be to let
the sampling rate infinitely grow (T → 0) and then check, whether the de-
nominator changes its sign along the way. In our case G = g4 = (ωcT/2)4,
which means the denominator is always larger than 1 (under the assumption
k ≥ 0), regardless of T .
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4.3 Feedback shaping

We have observed that at high resonance settings the amplitude
gain of the filter at low frequencies drops (Fig. 4.2). An obvious
way to fix this problem would be e.g. to boost the input signal by
the (1 + k) factor.3 However there’s another way to address the
same issue. We could “kill” the resonance at the low frequencies
by introducing a highpass filter in the feedback (Fig. 4.4). In
the simplest case this could be a 1-pole highpass.

+ '!&"%#$// LP1
// LP1

// LP1
// LP1

// •

HP ooqqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.4: Transistor ladder filter with a highpass
in the feedback.

The cutoff of the highpass filter can be static or vary along
with the cutoff of the lowpasses. The static version has a nice
feature that it kills the resonance effect at low frequencies re-
gardless of the master cutoff setting, which may be desirable if
the resonance at low frequencies is considered rather unpleasant
(Fig. 4.5).

In principle one can also use other filter types in the feedback

3We boost the input rather than the output signal for the same reason
as when preferring to place the cutoff gains in front of the integrators.
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ω

|H(jω)|, dB

ωHPωHP/8 8ωHP

0

-6

-12

-18

Figure 4.5: Amplitude response of the ladder filter
with a static-cutoff highpass in the feedback for
various lowpass cutoffs.

shaping. One has to be careful though, since this changes the
positions of the filter poles. Particularly, inserting a lowpass into
the feedback can easily destabilize an otherwise stable filter.

4.4 Multimode ladder filter

Warning! The multimode functionality of the ladder filter is a
rather exotic feature. If you’re looking for the bread-and-butter
bandpass, highpass, notch etc. filters, you should first take a look
at the multimode 2-pole state-variable filter discussed later in the
book.

By picking up intermediate signals of the ladder filter as in
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Fig. 4.6 we obtain the multimode version of this filter. We then
can use linear combinations of signals yn to produce various
kinds of filtered signal.4

+ '!&"%#$// •// LP1
// •// LP1

// •// LP1
// •// LP1

// •

qqq
MMM oo

−
OO //

OO OO OO OO

x y4

k

y0 y1 y2 y3

Figure 4.6: Multimode ladder filter.

Suppose k = 0. Apparently, in this case, the respective
transfer functions associated with each of the yn outputs are

Hn(s) =
1

(1 + s)n
(n = 0, . . . , 4)

If k 6= 0 then from

H4(s) =
1

k + (1 + s)4

4Actually, instead of y0 we could have used the input signal x for these
linear combinations. However, it doesn’t matter. Since y0 = x − ky4,
we can express x via y0 or vice versa. It’s just that some useful linear
combinations have simpler (independent of k) coefficients if y0 rather than
x is being used.
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using the obvious relationship Hn+1(s) = Hn(s)/(s+ 1) we ob-
tain

Hn(s) =
(1 + s)4−n

k + (1 + s)4

Let’s say we want to build a 4th-order highpass filter. Con-
sidering that the 4th order lowpass transfer function (under the
assumption k = 0) is built as a product of four 1st order lowpass
transfer functions 1/(1 + s)

HLP(s) =
1

(1 + s)4

we might decide to build the 4th order highpass transfer function
as a product of four 1st order highpass transfer functions s/(1+
s):

HHP(s) =
s4

(1 + s)4

Let’s attempt to build HHP(s) as a linear combination of Hn(s).
Apparently, a linear combination of Hn(s) must have the de-
nominator k + (1 + s)4, so let’s instead construct

HHP(s) =
s4

k + (1 + s)4
(4.3)

which at k = 0 will turn into s4/(1 + s)4:

s4

k + (1 + s)4
=

=
a0(1 + s)4 + a1(1 + s)3 + a2(1 + s)2 + a3(1 + s) + a4

k + (1 + s)4
=
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=
1

(1 + s)4

(
a0s

4 + (a1 + 4a0)s3 + (a2 + 3a1 + 6a0)s2+

+ (a3 + 2a2 + 3a1 + 4a0)s+ (a0 + a1 + a2 + a3 + a4)
)

from where

a0 = 1
a1 + 4a0 = 0
a2 + 3a1 + 6a0 = 0
a3 + 2a2 + 3a1 + 4a0 = 0
a0 + a1 + a2 + a3 + a4 = 0

from where a0 = 1, a1 = −4, a2 = 6, a3 = −4, a4 = 1. The
amplitude response corresponding to (4.3) is plotted in Fig. 4.7.5

A bandpass filter can be built as

HBP(s) =
s2

k + (1 + s)4
(4.4)

The two zeros at s = 0 will provide for a −12dB/oct rolloff at
low frequencies and will reduce the −24dB/oct rolloff at high
frequencies to the same −12dB/oct. Notice that the phase re-
sponse at the cutoff is zero:

HBP(j) =
−1

k + (1 + j)4
=

1
4− k

5We could have also constructed a true ladder highpass filter by us-
ing four 1-pole highpass filters instead of four 1-pole lowpass filters as the
fundamental blocks of the ladder filter.
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Figure 4.7: Amplitude response of the highpass
mode of the ladder filter for various k.

Finding the coefficients is left as an exercise for the reader. The
amplitude response corresponding to (4.3) is plotted in Fig. 4.8.6

Further filter types can be built in a similar way.

4.5 Simple nonlinear model

At k ≥ 4 the ladder filter becomes unstable, as the resonance
becomes too strong. We could however prevent the signal level

6We could have also constructed a true ladder bandpass filter by using
two 2-pole bandpass filters (e.g. SVF bandpasses, or serial combinations
of a 1-pole lowpass and a 1-pole highpass at the same cutoff) instead of
four 1-pole lowpass filters as the fundamental blocks of the ladder filter.
Notice that in the bandpass case, we need a positive rather than negative
(inverted) feedback, since the phase shift at the bandpass’ cutoff is zero.
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Figure 4.8: Amplitude response of the bandpass
mode of the ladder filter for various k.

from growing infinitely by putting a saturator into the feedback
path. This will allow the filter to go into selfoscillation at k > 4.
The best place for such saturator is probably at the feedback
point, since then it will process both the input and the feedback
signals simultaneously, applying a nice overdrive-like saturation
to the input signal. A hyperbolic tangent function should pro-
vide a nice saturator (Fig. 4.9). It is transparent at low signal
levels, therefore at low signal levels the filter behaves as a linear
one.

The introduction of the nonlinearity in the feedback path
poses no problems for a naive digital model. In the TPT case
however this complicates the things quite a bit. Consider Fig. 4.3
redrawn to contain the feedback nonlinearity (Fig. 4.10).
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+ '!&"%#$// tanh// 4× LP// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.9: Transistor ladder filter with a saturator
at the feedback point.

+ '!&"%#$// tanh// Gξ + s// •//

qqq
MMM oo

−
OO //x[n] y[n]

k

u[n]

Figure 4.10: Nonlinear TPT ladder filter in the
instantaneous response form.

Writing the zero-delay feedback equation we obtain

u = x− k(G tanhu+ s) (4.5)

Apparently, the equation (4.5) is a transcendental one. It can
be solved only using numerical methods. Also, a linear zero-
delay feedback equation had only one solution, but how many
solutions does (4.5) have? In order to answer the latter question,
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let’s rewrite (4.5) as

(x− ks)− u = kG tanhu (4.6)

If k ≥ 0 and G > 0, then the right-hand side of (4.6) is a
nonstrictly increasing function of u, while the left-hand side of
(4.6) is a strictly decreasing function of u. Thus, (4.6) and
respectively (4.5) have a single solution in this case. If k <
0, (4.5) can have multiple solutions (up to three). One could
use the smoother paradigm introduced in the instantaneously
unstable feedback discussion to find out the applicable one.

It is possible to avoid the need of solving the transcendental
equation by using a saturator function which still allows analytic
solution. This is particularly the case with second-order curves,
such as hyperbolas. E.g. one could consider a saturator function
f(x) = x/(1 + |x|) consisting of two hyperbolic segments, which
turns (4.6) into

(x− ks)− u = kG
u

1 + |u|
(4.7)

In order to solve (4.7) one first has to check whether the solution
occurs at u > 0 or u < 0, which can be done by simply evaluat-
ing the left-hand side of (4.7) at u = 0. Then one can replace
|u| by u or −u respectively and solve the resulting quadratic
equation.7

7The same kind of quadratic equation appears for any other second-
order curve (hyperbola, ellipse, parabola, including their rotated versions).
In solving the quadratic equation one has not only to choose the right one
of the two roots of the equation. One also has to choose the right one of
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Yet another approach (which also works for multiple nonlin-
earities!) is to first solve the feedback equation for the linear
case, and then apply the nonlinearites “on top”. E.g. we use
the structure in Fig. 4.3 to obtain the value of u. However
then we pretend that we have found the value of u for Fig. 4.10
(or Fig. 4.9, for that matter) and proceed accordingly, putting u
through the hyperbolic tangent shaper and then further through
the 1-pole lowpasses. We refer to this approach as the “cheap
method” of applying the nonlinearities to the TPT structures.
It is intuitively clear, that the cheap method is more likely to
produce “wrong” results at high cutoff values.

No matter, which approach we chose to compute nonlin-
earities, one shouldn’t forget that nonlinear shaping introduces
overtones (usually an infinite amount of those) into the signal,
which in turn introduces aliasing. Meaning: the stronger are
the nonlinearities in your structure, the more you might need to
oversample. If the oversampling is extreme anyway, there might
be little difference in quality between the naive and the TPT
approach.8

the two solution formulas for the quadratic equation Ax2 − 2Bx+ C = 0:

x =
B ±

√
B2 −AC
A

or x =
C

B ∓
√
B2 −AC

(where the choice of the formula is based on the sign of B and on the choice
of the “±” sign, corresponding to choosing between the two solutions).
The reason to use these two different formulas is that they can become ill-
conditioned, resulting in computation precision losses. More details on this
approach are discussed in the author’s article “Computational optimization
of nonlinear zero-delay feedback by second-order piecewise approximation”.

8Before making a final decision, it might be worth asking a few mu-
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4.6 Advanced nonlinear model

The nonlinearity introduced in Fig. 4.9 does a good job and
sounds reasonably close to a hardware analog transistor ladder
filter, however this is not how the nonlinearities in the hard-
ware ladder filter “really” work. In order to describe a closer
to reality nonlinear model of the ladder filter, we need to start
by introducing nonlinearities into the underlying 1-pole lowpass
filters (Fig. 4.11).

tanh// + '!&"%#$//
∫

// •//

tanh oo

−
OO //x(t) y(t)

Figure 4.11: A nonlinear 1-pole lowpass element of
the ladder filter.

So the equation (2.1) is transformed into

y = y(t0) +
∫ t

t0

ωc
(
tanhx(τ)− tanh y(τ)

)
dt

Which effect does this have? Apparently, the presence of the
tanh function reduces the absolute value of the difference tanhx−

sicians with an ear for analog sound to perform a listening test, whether
the differences between the naive and TPT models of a particular filter are
inaudible and uncritical.
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tanh y, if the level of one or both of the signals is sufficiently
high. If both x and y have large values of the same sign, it’s
possible that the difference tanhx− tanh y is close to zero, even
though the difference x − y is very large. This means that the
filter will update its state slower than in (2.1). Intuitively this
feels a little bit like “cutoff reduction” at large signal levels.

We can then connect the 1-pole models from Fig. 4.11 into
a series of four 1-poles and put a feedback around them, ex-
actly the same way as in Fig. 4.1. Notice that when connecting
Fig. 4.11 filters in series, one could use a common tanh mod-
ule between each of them, thereby optimizing the computation
(Fig. 4.12).9

One could further enhance the nonlinear behavior of the lad-
der filter model by putting another saturator (possibly of a dif-
ferent type, or simply differently scaled) into the feedback path.

4.7 Diode ladder

In the diode ladder filter the serial connection of four 1-pole
lowpass filters (implemented by the transistor ladder) is replaced
by a more complicated structure of 1-pole filters (implemented
by the diode ladder). The equations of the diode ladder itself

9There is an issue which may appear when using simple tanh approxi-
mations having a fully horizontal saturation curve. If both the input and
the output signals of a 1-pole are having large values of the same sign,
the tanh approximations will return two identical values and the difference
tanhx−tanh y will be approximated by zero. This might result in the filter
getting “stuck” (the cutoff effectively reduced to zero).
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−
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−
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y3(t)

y4(t)

Figure 4.12: Advanced nonlinear transistor ladder
(the main feedback path of the ladder filter not
shown).



126 CHAPTER 4. LADDER FILTER

(without the feedback path) are

ẏ1 = ωc
(
tanhx− tanh(y1 − y2)

)
ẏ2 =

ωc
2
(
tanh(y1 − y2)− tanh(y2 − y3)

)
ẏ3 =

ωc
2
(
tanh(y2 − y3)− tanh(y3 − y4)

)
ẏ4 =

ωc
2
(
tanh(y3 − y4)− tanh y4

)
which is implemented by the structure in Fig. 4.13 (compare to
Fig. 4.12). The diode ladder itself is then built by providing
the feedback path around the diode ladder, where the fourth
output of the diode ladder is fed back into the diode ladder’s
input (Fig. 4.14).

The linearized form of the diode ladder equations is obtained
by assuming tanh ξ ≈ ξ, resulting in

ẏ1 = ωc
(
(x+ y2)− y1

)
ẏ2 = ωc

(
(y1 + y3)/2− y2

)
ẏ3 = ωc

(
(y2 + y4)/2− y2

)
ẏ4 = ωc

(
y3/2− y4

)
which apparently is representable as a serial connection of four
identical 1-pole lowpass filters (all having the same cutoff ωc)
with some extra gains and feedback paths (Fig. 4.15).

These more complicated connections between the lowpasses
“destroy” the frequency response of the ladder in a remark-
able form, responsible for the characteristic diode ladder filter
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Figure 4.13: Diode ladder.
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+ '!&"%#$// Diode ladder// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.14: Diode ladder filter.
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�� �� �� ��
x(t) y1(t) y2(t) y3(t) y4(t)

1/2 1/2 1/2

Figure 4.15: Linearized diode ladder.

sound. Generally, the behavior of the diode ladder filter is less
“straightforward” than the one of the transistor ladder filter.

Transfer function

In order to obtain the transfer function of the structure in
Fig. 4.15 let

G(s) =
1

1 + s
(4.8)
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be the transfer function of the underlying lowpass filters. Let
F (s) = 2G(s), or, simplifying the notation, F = 2G. Assuming
complex exponential signals est, we obtain from Fig. 4.15

y4 = Fy3

Respectively
y3 = F · (y2 + y4)

Multiplying both sides by F we have

Fy3 = F 2 · (y2 + y4)

from where, recalling that y4 = Fy3:

y4 = F 2 · (y2 + y4)

that is

y4 =
F 2

1− F 2
y2

Further,
y2 = F · (y1 + y3) = Fy1 + y4

Multiplying both sides by F 2/(1− F 2):

y4 =
F 3

1− F 2
y1 +

F 2

1− F 2
y4

from where

y4

(
1− F 2

1− F 2

)
=

F 3

1− F 2
y1
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and respectively

y4 =
F 3

1− 2F 2
y1

And finally,
y1 = 2F · (x+ y2)

Multiplying both sides by F 3/(1− 2F 2):

y4 =
2F 4

1− 2F 2

(
x+

1− F 2

F 2
· F 2

1− F 2
y2

)
=

=
2F 4

1− 2F 2

(
x+

1− F 2

F 2
y4

)
=

=
2F 4

1− 2F 2
x+ 2F 2 1− F 2

1− 2F 2
y4

from where

y4

(
1− 2F 2 1− F 2

1− 2F 2

)
=

2F 4

1− 2F 2
x

from where
y4

(
1− 4F 2 + 2F 4

)
= 2F 4x

and

y4 =
2F 4

1− 4F 2 + 2F 4
x =

G4/8
1−G2 +G4/8

x

That is, the transfer function ∆(s) of the diode ladder is

∆(s) =
G4/8

G4/8−G2 + 1
where G(s) =

1
1 + s
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from where we obtain the transfer function of the entire diode
ladder filter as

H(s) =
∆

1 + k∆
The corresponding amplitude response is plotted in Fig. 4.16.

ω

|H(jω)|, dB

k = 16

k = 0

ωcωc/8 8ωc

0
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-12

-18

-24

Figure 4.16: Amplitude response of the diode lad-
der filter for various k.

Let’s find the positions of the poles of the diode ladder filter.
Equating the denominator to zero:

1 + k∆ = 0

we have

1 = −k∆ =
−kG4/8

G4/8−G2 + 1
that is

−kG
4

8
=
G4

8
−G2 + 1
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that is
1 + k

8
G4 −G2 + 1 = 0

Solving for G2:

G2 =
1±

√
1− 1+k

2

1+k
4

=
1±

√
1−k

2

1+k
4

(4.9)

Equating (4.9) and the squared form of (4.8) we have

1
(1 + s)2

=
1±

√
1−k

2

1+k
4

that is

(s+ 1)2 =
1+k

4

1±
√

1−k
2

=

1+k
4

(
1∓

√
1−k

2

)
1− 1−k

2

=

=

1+k
4

(
1∓

√
1−k

2

)
1+k

2

=
1∓

√
1−k

2

2

that is

(s+ 1)2 =
1
2
± 1

2

√
1− k

2
(4.10)

The equation (4.10) defines the positions of the poles of the
diode ladder filter. Apparently, it’s easily solvable. We would
be interested to find out, at which k does the selfoscillation start.
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If the poles are to be on the imaginary axis, then s = jω.
Substituting s = jω into (4.10) we get

(1− ω2) + 2jω =
1
2
∓ j

2

√
k − 1

2
(4.11)

Equating the real parts of (4.11) we obtain 1−ω2 = 1
2 and ω =

± 1√
2
. Equating the imaginary parts of (4.11) and substituting

ω = ± 1√
2

we obtain

± 2√
2

= ±1
2

√
k − 1

2

from where
±4 = ±

√
k − 1

and, since k ∈ R, we have k = 17.
That is, given the unit cutoff of the underlying one-pole low-

pass filters, the selfoscillation starts at k = 17, where the reso-
nance peak is located at ω = 1/

√
2.

TPT model

Converting Fig. 4.15 to the instantaneous response form we ob-
tain the structure in Fig. 4.17. From Fig. 4.17 we wish to obtain
the instantaneous response of the entire diode ladder. Then we
could use this response to solve the zero-delay feedback equation
for the main feedback loop of Fig. 4.14.

From Fig. 4.17 we have y4 = gy3 + s4. We can rewrite it as

y4 = G4y3 + S4 where G4 = g, S4 = s4
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+ '!&"%#$// 2gξ+s1// •// + '!&"%#$// gξ+s2// •// + '!&"%#$// gξ+s3// •// gξ+s4// •//
�� �� ��

�� �� �� ��
x y1 y2 y3 y4

Figure 4.17: Linearized diode ladder in the instan-
taneous response form.

Further, from Fig. 4.17 we also have

y3 = g(y2 + y4) + s3 = g(y2 +G4y3 + S4) + s3

from where

y3 =
gy2 + gS4 + s3

1− gG4
= G3y2 + S3

where G3 =
g

1− gG4
, S3 =

gS4 + s3

1− gG4

Further,

y2 = g(y1 + y3) + s2 = g(y1 +G3y2 + S3) + s2

from where

y2 =
gy1 + gS3 + s2

1− gG3
= G2y1 + S2
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where G2 =
g

1− gG3
, S2 =

gS3 + s2

1− gG3

And ultimately

y1 = 2g(x+ y2) + s1 = 2g(x+G2y1 + S2) + s1

from where

y1 =
2gx+ 2gS2 + s1

1− 2gG2
= G1x+ S1

where G1 =
2g

1− 2gG2
, S1 =

2gS2 + s1

1− 2gG2

Thus, we have

yn = Gnyn−1 + Sn (where y0 = x)

from where it’s easy to obtain the instantaneous response of the
entire diode ladder as

y4 = G4y3 + S4 = G4(G3y2 + S3) + S4 =
= G4G3y2 + (G4S3 + S4) =
= G4G3(G2y1 + S2) + (G4S3 + S4) =

= G4G3G2y1 + (G4G3S2 +G4S3 + S4) =
= G4G3G2(G1x+ S1) + (G4G3S2 +G4S3 + S4) =

= G4G3G2G1x+ (G4G3G2S1 +G4G3S2 +G4S3 + S4) =
= Gx+ S

Notice, that we should have checked that we don’t have instan-
taneously unstable feedback problems within the diode ladder.
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That is, we need to check that all denominators in the expres-
sions for Gn and Sn don’t turn to zero or to negative values.
Considering that 0 < g < 1

2 and that G4 = g, we have

0 < G4 <
1
2

and
1− gG4 = 1− g2 >

3
4

Respectively

0 < G3 = g/(1− gG4) <
1/2
3/4

=
2
3

and
1− gG3 > 1− 1

2
· 2

3
= 1− 1

3
=

2
3

Then

0 < G2 = g/(1− gG3) <
1/2
2/3

=
3
4

and
1− 2gG2 > 1− 2

1
2

3
4

= 1− 3
4

=
1
4

and thus all denominators are always positive.
Also

0 < G1 =
2g

1− 2gG2
<

1
1/4

= 4

Thus
0 < G = G4G3G2G1 <

1
2
· 2

3
· 3

4
· 4 = 1
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Using the obtained instantaneous response of the entire diode
ladder we now can solve the main feedback equation for Fig. 4.14.

For a nonlinear diode ladder model we could use the struc-
ture in Fig. 4.13. However, it might be too complicated to
process. Even the application of the “cheap” TPT nonlinear
processing approach is not fully trivial.

One can therefore use simpler nonlinear structures instead,
e.g. the one from Fig. 4.9. Also, the other ideas discussed for
the transistor ladder can be applied. In regards to the mul-
timode diode ladder filter, notice that the transfer functions
corresponding to the yn(t) outputs are different from the ones
of the transistor ladder, therefore the mixing coefficients which
worked for the modes of the transistor ladder filter, are not going
to work the same for the diode ladder.

SUMMARY

The transistor ladder filter model is constructed by placing a
negative feedback around a chain of four identical 1-pole low-
pass filters. The feedback amount controls the resonance. A
nonlinearity in the feedback path (e.g. at the feedback point)
could be used to contain the signal level, so that selfoscillation
becomes possible.
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Chapter 5

2-pole filters

The other classical analog filter model is the 2-pole filter design
commonly referred to in the music DSP field as the state-variable
filter (SVF). It can also serve as a generic analog model for
building 2-pole filters, similarly to previously discussed 1-pole
RC filter model.

5.1 Linear analog model

The block diagram of the state-variable filter is shown in Fig. 5.1.
The three outputs are the highpass, bandpass and lowpass sig-

139
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nals.12

+ '!&"%#$// •//
∫
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∫
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−
OO //

// //

x(t) yLP(t)

2R

yHP(t) yBP(t)

Figure 5.1: 2-pole multimode state-variable filter.

From Fig. 5.1 one can easily obtain the transfer functions
for the respective signals. Assume complex exponential signals.
Then, assuming unit cutoff,

yHP = x− 2RyBP − yLP

yBP =
1
s
yHP

1One can notice that the filter in Fig. 5.1 essentially implements an
analog-domain canonical form, similar to the one in Fig. 3.20. Indeed let’s
substitute in Fig. 3.20 the z−1 elements by s−1 elements (integrators) and
let a1 = −2R, a2 = −1. Then the gains b0, b1 and b2 are simply picking
up the highpass, bandpass and lowpass signals respectively.

2As usual, one can apply transposition to obtain a filter with highpass,
bandpass and lowpass inputs.
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yLP =
1
s
yBP

from where

yHP = x− 2R · 1
s
yHP −

1
s2
yHP

from where (
1 +

2R
s

+
1
s2

)
yHP = x

and

HHP(s) =
yHP

x
=

1
1 + 2R

s + 1
s2

=
s2

s2 + 2Rs+ 1

Thus

HHP(s) =
s2

s2 + 2Rs+ 1

HBP(s) =
s

s2 + 2Rs+ 1

HLP(s) =
1

s2 + 2Rs+ 1

The respective amplitude responses are plotted in Fig. 5.2, Fig. 5.3
and Fig. 5.4. One could observe that the highpass response is
a mirrored version of the lowpass response,3 while the band-

3As with the 1-pole filters, the highpass transfer function can be ob-
tained from the lowpass transfer function by the s ← 1/s (LP to HP)
substitution.
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pass response is symmetric by itself.4 It can also be easily
shown mathematically. The slope rolloff speed is apparently
−12dB/oct for the low- and highpass, and −6dB/oct for the
bandpass.

ω

|H(jω)|, dB

R = 1

R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.2: Amplitude response of a 2-pole lowpass
filter.

4The bandpass response can be obtained from the lowpass response by
a so-called LP to BP (lowpass to bandpass) substitution:

s←
1

2R
·
(
s+

1

s

)
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ω

|H(jω)|, dB

R = 1

R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.3: Amplitude response of a 2-pole high-
pass filter.

Notice that yLP(t) + 2RyBP(t) + yHP(t) = x(t), that is, the
input signal is split into lowpass, bandpass and highpass com-
ponents. The same can be expressed in the transfer function
form:

HLP(s) + 2RHBP(s) +HHP(s) = 1

The resonance of the filter is controlled by the R parameter.
Contrarily to the ladder filter, where the resonance increases
with the feedback amount, in the state-variable filter the band-
pass signal feedback serves as a damping means for the reso-
nance. In the absence of the bandpass signal feedback the filter
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ω

|H(jω)|, dB
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ωcωc/8 8ωc
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-12
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Figure 5.4: Amplitude response of a 2-pole band-
pass filter.

will get unstable. The R parameter therefore may be referred
to as the damping parameter.

Solving s2 + 2Rs+ 1 = 0 we obtain the poles of the filter at

s = −R±
√
R2 − 1 =

{
−R±

√
R2 − 1 if R ≥ 1

−R± j
√

1−R2 if −1 ≤ R ≤ 1

Without trying to give a precise definition of the resonance con-
cept, we could say that at R = 1 there is no resonance (there
are two real poles at s = −1). As R starts decreasing from 1
towards 0 there appear two mutually conjugate complex poles
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moving along the unit circle towards the imaginary axis, so the
resonance slowly appears. At R = 0 the filter becomes unstable.

The amplitude response at the cutoff (ω = 1) is 1/2R for all
three filter types. Except for the bandpass, the point ω = 1 is
not exactly the peak location but it’s pretty close (the smaller
the value of R, the closer is the true peak to ω = 1). The phase
response at the cutoff is −90◦ for lowpass, 0◦ for bandpass and
+90◦ for highpass.

5.2 Linear digital model

Skipping the naive implementation, which the readers should be
perfectly capable of creating and analysing themselves by now,
we proceed with the discussion of the TPT model.

Assuming gξ+sn instantaneous responses for the two trape-
zoidal integrators one can redraw Fig. 5.1 to obtain the discrete-
time model in Fig. 5.5.

Picking yHP as the zero-delay feedback equation’s unknown5

we obtain from Fig. 5.5:

yHP = x− 2R(gyHP + s1)− g(gyHP + s1)− s2

from where(
1 + 2Rg + g2

)
yHP = x− 2Rs1 − gs1 − s2

5The state-variable filter has two feedback paths sharing a common path
segment. In order to obtain a single feedback equation rather than an equa-
tion system we should pick a signal on this common path as the unknown
variable.
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yHP[n] yBP[n]

Figure 5.5: TPT 2-pole multimode state-variable
filter in the instantaneous response form.

from where

yHP =
x− 2Rs1 − gs1 − s2

1 + 2Rg + g2
(5.1)

Using yHP we can proceed defining the remaining signals in the
structure.6

5.3 Further filter types

By mixing the lowpass, bandpass and highpass outputs one can
obtain further filter types.

6Apparently, 1 + 2Rg + g2 > 0 ∀g > 0, provided R > −1. Thus,
instantaneously unstable feedback may appear only if R ≤ −1.
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Unit gain bandpass

HBP1(s) = 2RHBP(s) =
2Rs

s2 + 2Rs+ 1

This version of the bandpass filter has a unit gain at the cut-
off (Fig. 5.6). Notice that the unit gain bandpass signal can
be directly picked up at the output of the 2R gain element in
Fig. 5.1.

ω

|H(jω)|, dB
R = 5

R = 1
R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

Figure 5.6: Amplitude response of a 2-pole unit
gain bandpass filter.
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Band-shelving filter

By adding/subtracting the unit gain bandpass signal to/from
the input signal one obtains the band-shelving filter (Fig. 5.7):7

HBS(s) = 1 + 2RKHBP(s) = 1 +
2RKs

s2 + 2Rs+ 1

Similarly to the other shelving filter types we can specify the
mid-slope requirement |HBS(jω)| =

√
1 +K (for some ω), from

where we obtain

R =

∣∣ω − ω−1
∣∣

2
√

1 +K
=

∣∣2∆/2 − 2−∆/2
∣∣

2
√

1 +K

where ∆ is the desired mid-slope bandwidth (in octaves) of the
peak.

Notch filter

At K = −1 the band-shelving filter turns into a notch (or band-
stop) filter (Fig. 5.8):

HN(s) = 1− 2RHBP(s) =
s2 + 1

s2 + 2Rs+ 1

7In the same way one could obtain 2-pole low- and high-shelving filters,
however one has to be careful, because the phase response of the underly-
ing low- and high-pass filters might produce weird peaks and dips in the
resulting shelving filter’s response.
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-12
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Figure 5.7: Amplitude response of a 2-pole band-
shelving filter for R = 1 and varying K.

Allpass filter

At K = −2 the band-shelving filter turns into an allpass filter
(Fig. 5.9):

HAP(s) = 1− 4RHBP(s) =
s2 − 2Rs+ 1
s2 + 2Rs+ 1

Notice how the damping parameter affects the phase response
slope.



150 CHAPTER 5. 2-POLE FILTERS

ω
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R = 5

R = 0.2

R = 1

ωcωc/8 8ωc

1

0.5

0

Figure 5.8: Amplitude response of a 2-pole notch
filter. The amplitude scale is linear.
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0

−π

−2π

Figure 5.9: Phase response of a 2-pole allpass filter.
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Peaking filter

By subtracting the highpass signal from the lowpass signal (or
also vice versa) we obtain the peaking filter (Fig. 5.10):

HPK(s) = HLP(s)−HHP(s) =
1− s2

s2 + 2Rs+ 1

ω

|H(jω)|, dB

R = 0.2

R = 5

R = 1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.10: Amplitude response of a 2-pole peak-
ing filter.
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5.4 Nonlinear model

In the ladder filter the resonance was created as the result of the
feedback. Therefore by limiting the feedback level (by a satu-
rator) we could control the resonance amount and respectively
prevent the filter from becoming unstable.

The feedback in the SVF has a more complicated structure.
Particularly, the bandpass path is responsible for damping the
resonance. We could therefore apply an inverse idea: try boost-
ing the bandpass signal in case the signal level becomes too
strong. This can be achieved e.g. by placing an inverse hy-
perbolic tangent nonlinearity into the bandpass feedback path
(Fig. 5.11).8 The idea is that at low signal levels

tanh−1 yBP′ + (R− 1)yBP′ ≈ RyBP′

at higher signal levels the nonlinearity boosts the bandpass sig-
nal. Notice that the bandpass signal should be rather picked up
at the output of the nonlinearity than at the yBP′ point to make
sure it has a similar level as the lowpass and highpass.

The nonlinear feedback equation can be obtained using yHP

as the unknown:

yHP = x−2 tanh−1(gyHP+s1)−2(R−1)(gyHP+s1)−g(gyHP+s1)−s2

Instead of using the hyperbolic tangent function, one could also
use a hyperbolic shaper of a similar shape f(x) = x/(1 − |x|)

8Since the domain of the inverse hyperbolic tangent is restricted to
(−1, 1), the “cheap” TPT nonlinearity application method doesn’t work
in this case, at least not in a straightforward manner.
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Figure 5.11: 2-pole state-variable filter with a non-
linearity.

to allow analytical solution of the nonlinear zero-delay feedback
equation.

A more straightforward possibility is to introduce saturation
into the integrators, or at least into the first of them. In the
TPT approach one could use the direct form I-style integrator
(Fig. 3.8) resulting in the integrator in Fig. 5.12. Or one could
equivalently use the transposed direct form II-style integrator
(Fig. 3.10) resulting in the integrator in Fig. 5.13.
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Figure 5.12: Saturating direct form I trapezoidal
integrator.
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Figure 5.13: Saturating transposed direct form II
trapezoidal integrator.
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5.5 Cascading decomposition

First, recall that a 1-pole multimode filter can be used to im-
plement any 1st-order rational transfer function. Similarly, a
multimode SVF can be used to implement practically any 2nd-
order rational transfer function. Indeed, consider

H(s) =
b2s

2 + b1s+ b0
s2 + a1s+ a0

where we assume a0 > 0.9

Let’s perform the cutoff scaling substitution s ← s
√
a0,

which turns H(s) into something of the form

H(s) =
b2s

2 + b1s+ b0
s2 + a1s+ 1

(the coefficient values are now different in the above). Now sim-
ply let R = a1/2 and use b2, b1 and b0 as the mixing coefficients
for the highpass, bandpass and lowpass signals.

This further allows to implement practically any given stable
transfer function by a serial connection of a number of 2-pole

9If a0 < 0, this means that H(s) has two real poles of different signs.
If a0 = 0 then at least one of the poles is at s = 0. In either case, this
filter is already unstable, which means, if we are practically interested in
its implementation, most likely there is a nonlinear analog prototype, and
we simply can apply TPT to this prototype to obtain a digital structure. If
we insist on using the SVF structure (why would we?), we can also extend
it to the canonical form by introducing a gain element into the lowpass
feedback path.
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(and possibly 1-pole) filters. Indeed, simply factor the numer-
ator and the denominator into 2nd- and possibly 1st-order fac-
tors (where the 2nd-order real factors will necessarily appear for
complex conjugate pairs of roots and optionally for pairs of real
roots). Any pair of 2nd-order factors (one in the numerator, one
in the denominator) can be implemented by a 2-pole multimode
SVF. Any pair of 1st-order factors can be implemented by a
1-pole multimode. If there are not enough 2nd-order factors in
the numerator or denominator, a pair of 1st order factors in the
numerator or denominator can be combined into a 2nd-order
factor.

SUMMARY

The state-variable filter has the structure shown in Fig. 5.1.
Contrarily to the ladder filter, the resonance strength in the SVF
is controlled by controlling the damping signal. The multimode
outputs have the transfer functions

HHP(s) =
s2

s2 + 2Rs+ 1

HBP(s) =
s

s2 + 2Rs+ 1

HLP(s) =
1

s2 + 2Rs+ 1

and can be combined to build further filter types.
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Allpass-based effects

Phasers are essentially ladder filters built around allpass filters
instead of lowpass filters. Flangers can be obtained from phasers
by an allpass substitution. For these reasons both types belong
to the VA filter discussion.

6.1 Phasers

The simplest phaser is built by mixing the unmodified (dry)
input signal with an allpass-filtered (wet) signal as in Fig. 6.1,
where the allpass filter’s cutoff is typically modulated by an
LFO.1 The allpass filter can be rather arbitrary, except than it

1In the absence of LFO modulation the structure should be rather re-
ferred to as a (multi-) notch filter.

157
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has to be a differential filter.2

•// + '!&"%#$��
AP// //

MMMqqq
// //x(t) y(t)

ydry(t)

ywet(t)

1/2

Figure 6.1: The simplest phaser.

At the points where the allpass filter’s phase response is 180◦,
the wet and the dry signals will cancel each other, producing a
notch. At the points where the allpass filter’s phase response is
0◦ the wet and the dry signals will boost each other, producing
a peak (Fig. 6.2).

The phaser structure in Fig. 6.1 contains no feedback, there-
fore there is no difference between naive and TPT digital im-
plementations (except that the underlying allpass filters should
be better constructed in a TPT way).

Mixing at arbitrary ratios

Instead of mixing at the 50/50 ratio we can mix at any other
ratio, where the sum of the dry and wet mixing gains should

2Phasers typically use differential allpass filters or their digital counter-
parts. If e.g. a delay (which is not a differential filter, but is an allpass) is
used as the allpass, the structure should be rather referred to as a flanger.
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ω

|H(jω)|

ωcωc/8 8ωc

1

0.5

0

Figure 6.2: Amplitude response of the simplest
phaser from Fig. 6.1 (using four identical 1-pole
allpass filters with the same cutoff as the allpass
core of the phaser).

amount to unity. This will affect the depth of the notches and
the height of the peaks. For the phaser in Fig. 6.1 the mixing
ratio higher than 50/50 (where the wet signal amount is more
than 50%) hardly makes sense.

Wet signal inversion

By inverting the wet signal, one swaps the peaks and the notches.
Notice that the phase response of differential allpasses at ω = 0
can be either 0◦ or 180◦, the same holds for the phase response
at ω = +∞. For that reason the possibility to swap the peaks
and the notches might be handy.
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Notch spacing

In the simplest case one uses a series of identical 1-pole allpasses
inside a phaser. In order to control the notch spacing in an
easy and nice way, one should rather use a series of identical 2-
pole allpasses. As mentioned earlier, by changing the resonance
amount of the 2-pole allpasses one controls the phase slope of
the filters. This affects the spacing of the notches (Fig. 6.3).

ω

|H(jω)|
R = 5R = 0.3

R = 1

ωcωc/8 8ωc

1

0.5

0

Figure 6.3: Effect of the allpass resonance on the
notch spacing (using two 2-pole allpass filters as
the allpass core of the phaser).

Feedback

We can also introduce feedback into the phaser. Similarly to the
case of the ladder filter modes, the dry signal is better picked
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up after the feedback point (Fig. 6.4) The feedback changes the
shape of the peaks and notches (Fig. 6.5).

+ '!&"%#$// •// + '!&"%#$��
AP// •// //

MMMqqq
// //

qqq
MMM oo

OOx(t) y(t)

1/2

k

Figure 6.4: Phaser with feedback.

With the introduction of feedback we have a zero-delay feed-
back loop in the phaser structure. It can be solved using typical
TPT means.3

6.2 Flangers

A delay is a linear time-invariant allpass. It even has a transfer
function H(s) = e−sT where T is the delay time. Obviously
|H(s)| = |e−sT | = 1. However it is not a differential filter, for
that reason the transfer function is not a rational function of

3Inserting a unit delay in the feedback produces subtle but rather un-
pleasant artifacts in the phasing response, one should better use the TPT
approach here.
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Figure 6.5: Effect of the feedback amount in
Fig. 6.4 on the notch and peak shapes.

s. Digital delay models are typically built using interpolation
techniques, the details of which fall outside the scope of this
book.

Using the allpass substitution principle we can replace the
allpass filter chain in a phaser by a delay. This produces a
flanger. The discussion of the phasers mostly didn’t assume
any details about the underlying allpass, therefore most of it is
applicable to flangers.

The main difference with using a delay is that the 0◦ and
180◦ phase response points are evenly spaced in the linear fre-
quency scale (Fig. 6.6), whereas the spacing of the same points
in responses of differential allpasses is not that regular. Also,
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a delay’s phase response can easily have lots of 0◦ and 180◦

points (the larger the delay time is, the more of those points
it has within the audible frequency range), while the number
of those points in a differential allpass filter’s phase response is
limited by the filter’s order.
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0

Figure 6.6: Amplitude response of the simplest
flanger using the structure from Fig. 6.1.

Rather than modulating the delay time linearly by an LFO,
one should consider that a filter’s cutoff should be typically mod-
ulated in the logarithmic frequency scale (a.k.a. the pitch scale),
therefore one in principle should do the same for the delay in
a flanger. The delay’s cutoff for that purpose can be simply
defined as ωc = 2π/T , where T is the delay time.
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SUMMARY

A phaser is made of an allpass differential filter connected in
parallel with the dry signal path. This creates notches at the
points of 180◦ phase difference and peaks at 0◦ points. The
allpass cutoff should be modulated by an LFO. Using a delay
instead of a differential allpass creates a flanger. Feedback can
be used to change the shape of the peaks and notches in the
amplitude response.
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inverse, 71
topology-preserving, 89
unstable, 103
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BLT integrator, see trapezoidal
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cutoff, 13, 25
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2-pole, 139
4-pole, 107
allpass, 41, 149
bandpass, 139, 147
highpass, 31, 113, 139
ladder, 107
lowpass, 11, 107, 139
multimode, 35, 114, 139
notch, 148
peaking, 151
shelving, 37, 148
stable, 33

flanger, 162
Fourier integral, 5
Fourier series, 3
Fourier transform, 5
frequency response, 24, 58

gain element, 14

harmonics, 3
Hermitian, 5
highpass filter, 31, 113, 139

instantaneous gain, 80
instantaneous offset, 80
instantaneous response, 80
instantaneously unstable

feedback, 99

integrator, 14
BLT, see integrator, trape-

zoidal
naive, 51
trapezoidal, 62

ladder filter, 107
diode, 124

Laplace integral, 9
Laplace transform, 9
linearity, 19
lowpass filter, 11, 25, 107, 139

multimode filter, 35, 114, 139

naive integrator, 51
nonstrictly proper, 20
notch filter, 148

partials, 3
peaking filter, 151
phase response, 24, 58
phaser, 157
pole, 32
prewarping, 75

rolloff, 26

shelving filter, 37, 148
stable filter, 33
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state-variable filter, 139
summator, 14
SVF, 139

time-invariant, 18
topology, 89
topology-preserving transform,

72, 90
TPBLT, 89
TPT, 72, 90

cheap, 122
transfer function, 19, 57
transposition, 43
trapezoidal integrator, 62

unit delay, 53

z-integral, 49
z-transform, 49
zero, 32
zero-delay feedback, 79
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