
THE ART OF

VA FILTER DESIGN

MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

OO

oo

ωcT/2

Vadim Zavalishin

rev. 1.1.1 (July 22, 2015)

ii

About this book: the book covers the theoretical and practical aspects of the
virtual analog filter design in the music DSP context. Only a basic amount of
DSP knowledge is assumed as a prerequisite. For digital musical instrument
and effect developers.

Front picture: BLT integrator.

DISCLAIMER: THIS BOOK IS PROVIDED “AS IS”, SOLELY AS AN EX-
PRESSION OF THE AUTHOR’S BELIEFS AND OPINIONS AT THE TIME
OF THE WRITING, AND IS INTENDED FOR THE INFORMATIONAL
PURPOSES ONLY.

c© Vadim Zavalishin. The right is hereby granted to freely copy this revision of the book in
software or hard-copy form, as long as the book is copied in its full entirety (including this
copyright note) and its contents are not modified.

To the memory of Elena Golushko,
may her soul travel the happiest path. . .

iv

Contents

Preface vii

1 Fourier theory 1
1.1 Complex sinusoids . 1
1.2 Fourier series . 2
1.3 Fourier integral . 3
1.4 Dirac delta function . 4
1.5 Laplace transform . 5

2 Analog 1-pole filters 7
2.1 RC filter . 7
2.2 Block diagrams . 8
2.3 Transfer function . 9
2.4 Complex impedances . 12
2.5 Amplitude and phase responses 13
2.6 Lowpass filtering . 14
2.7 Cutoff parametrization . 15
2.8 Highpass filter . 17
2.9 Poles, zeros and stability . 18
2.10 LP to HP substitution . 19
2.11 Multimode filter . 20
2.12 Shelving filters . 21
2.13 Allpass filter . 24
2.14 Transposed multimode filter . 26

3 Time-discretization 29
3.1 Discrete-time signals . 29
3.2 Naive integration . 31
3.3 Naive lowpass filter . 31
3.4 Block diagrams . 32
3.5 Transfer function . 34
3.6 Poles . 35
3.7 Trapezoidal integration . 37
3.8 Bilinear transform . 40
3.9 Cutoff prewarping . 43
3.10 Zero-delay feedback . 44
3.11 Direct forms . 49
3.12 Other replacement techniques 52

v

vi CONTENTS

3.13 Instantaneously unstable feedback 55

4 Ladder filter 61
4.1 Linear analog model . 61
4.2 Linear digital model . 63
4.3 Feedback shaping . 64
4.4 Multimode ladder filter . 64
4.5 HP and BP ladders . 68
4.6 Simple nonlinear model . 70
4.7 Advanced nonlinear model . 72
4.8 Diode ladder . 73

5 2-pole filters 81
5.1 Linear analog model . 81
5.2 Linear digital model . 85
5.3 Further filter types . 86
5.4 LP to BP/BS substitutions . 91
5.5 Nonlinear model . 93
5.6 Serial decomposition . 95
5.7 Transposed Sallen–Key filters 98

6 Allpass-based effects 107
6.1 Phasers . 107
6.2 Flangers . 110

7 Frequency shifters 113
7.1 General ideas . 113
7.2 Analytic signals . 115
7.3 Phase splitter . 115
7.4 Implementation structure . 117
7.5 Remez algorithm . 119
7.6 Cutoff optimization . 126
7.7 Analytical construction of phase response 130
7.8 “LP to analytic” substitution 140
7.9 Cutoff prewarping . 143

History 145

Index 147

Preface

The classical way of presentation of the DSP theory is not very well suitable for
the purposes of virtual analog filter design. The linearity and time-invariance
of structures are not assumed merely to simplify certain analysis and design
aspects, but are handled more or less as an “ultimate truth”. The connection
to the continuous-time (analog) world is lost most of the time. The key focus
points, particularly the discussed filter types, are of little interest to a digital
music instrument developer. This makes it difficult to apply the obtained knowl-
edge in the music DSP context, especially in the virtual analog filter design.

This book attempts to amend this deficiency. The concepts are introduced
with the musical VA filter design in mind. The depth of theoretical explanation
is restricted to an intuitive and practically applicable amount. The focus of the
book is the design of digital models of classical musical analog filter structures
using the topology-preserving transform approach, which can be considered as
a generalization of bilinear transform, zero-delay feedback and trapezoidal inte-
gration methods. This results in digital filters having nice amplitude and phase
responses, nice time-varying behavior and plenty of options for nonlinearities.
In a way, this book can be seen as a detailed explanation of the materials pro-
vided in the author’s article “Preserving the LTI system topology in s- to z-plane
transforms.”

The main purpose of this book is not to explain how to build high-quality
emulations of analog hardware (although the techniques explained in the book
can be an important and valuable tool for building VA emulations). Rather it is
about how to build high-quality time-varying digital filters. The author hopes
that these techniques will be used to construct new digital filters, rather than
only to build emulations of existing analog structures.

The prerequisites for the reader include familiarity with the basic DSP con-
cepts, complex algebra and the basic ideas of mathematical analysis. Some basic
knowledge of electronics may be helpful at one or two places, but is not critical
for the understanding of the presented materials.

The author apologizes for possible mistakes and messy explanations, as the
book didn’t go through any serious proofreading.

vii

viii PREFACE

Acknowledgements

The author would like to express his gratitude to a number of people who work
(or worked at a certain time) at NI and helped him with the matters related
to the creation of this book in one or another way: Daniel Haver, Mate Galic,
Tom Kurth, Nicolas Gross, Maike Weber, Martijn Zwartjes, and Mike Daliot.
Special thanks to Stephan Schmitt, Egbert Jürgens, Eike Jonas, Maximilian
Zagler, and Marin Vrbica.

The author is also grateful to a number of people on the KVR Audio DSP
forum and the music DSP mailing list for productive discussions regarding the
matters discussed in the book. Particularly to Martin Eisenberg for the detailed
and extensive discussion of the delayless feedback, to Dominique Wurtz for the
idea of the full equivalence of different BLT integrators, to the forum member
“neotec” for the introduction of the transposed direct form II BLT integrator
in the TPT context, to Teemu Voipio for his active involvement into the related
discussions and research and to Urs Heckmann for being an active proponent of
the ZDF techniques and actually (as far as the author knows) starting the whole
avalanche of their usage. Thanks to Robin Schmidt and Richard Hoffmann for
reporting a number of mistakes in the book text.

One shouldn’t underestimate the small but invaluable contribution by Helene
Kolpakova, whose questions and interest in the VA filter design matters have
triggered the initial idea of writing this book. Thanks to Julian Parker for
productive discussions, which stimulated the creation of the book’s next revision.

Last, but most importantly, big thanks to Bob Moog for inventing the
voltage-controlled transistor ladder filter.

Prior work credits

Various flavors and applications of delayless feedback techniques were in prior
use for quite a while. Particularly there are works by A.Härmä, F.Avancini,
G.Borin, G.De Poli, F.Fontana, D.Rocchesso, T.Serafini and P.Zamboni, al-
though reportedly this subject has been appearing as far ago as in the 70s of
the 20th century.

Chapter 1

Fourier theory

When we are talking about filters we say that filters modify the frequency
content of the signal. E.g. a lowpass filter lets the low frequencies through,
while suppressing the high frequencies, a highpass filter does vice versa etc.
In this chapter we are going to develop a formal definition1 of the concept of
frequencies “contained” in a signal. We will later use this concept to analyse
the behavior of the filters.

1.1 Complex sinusoids

In order to talk about the filter theory we need to introduce complex sinusoidal
signals. Consider the complex identity:

ejt = cos t+ j sin t (t ∈ R)

(notice that, if t is the time, then the point ejt is simply moving along a unit
circle in the complex plane). Then

cos t =
ejt + e−jt

2

and

sin t =
ejt − e−jt

2j
Then a real sinusoidal signal a cos(ωt + ϕ) where a is the real amplitude and
ϕ is the initial phase can be represented as a sum of two complex conjugate
sinusoidal signals:

a cos(ωt+ ϕ) =
a

2

(
ej(ωt+ϕ) + e−j(ωt+ϕ)

)
=
(a

2
ejϕ
)
ejωt +

(a
2
e−jϕ

)
e−jωt

Notice that we have a sum of two complex conjugate sinusoids e±jωt with re-
spective complex conjugate amplitudes (a/2)e±jϕ. So, the complex amplitude
simultaneously encodes both the amplitude information (in its absolute magni-
tude) and the phase information (in its argument). For the positive-frequency
component (a/2)ejϕ · ejωt, the complex “amplitude” a/2 is a half of the real
amplitude and the complex “phase” ϕ is equal to the real phase.

1More precisely we will develop a number of definitions.

1

2 CHAPTER 1. FOURIER THEORY

1.2 Fourier series

Let x(t) be a real periodic signal of a period T:

x(t) = x(t+ T)

Let ω = 2π/T be the fundamental frequency of that signal. Then x(t) can
be represented2 as a sum of a finite or infinite number of sinusoidal signals of
harmonically related frequencies jnω plus the DC offset term3 a0/2:

x(t) =
a0

2
+
∞∑
n=1

an cos(jnωt+ ϕn) (1.1)

The representation (1.1) is referred to as real-form Fourier series. The respective
sinusoidal terms are referred to as the harmonics or the harmonic partials of
the signal.

Using the complex sinusoid notation the same can be rewritten as

x(t) =
∞∑

n=−∞
Xne

jnωt (1.2)

where each harmonic term an cos(jnωt + ϕn) will be represented by a sum of
Xne

jnωt and X−ne
−jnωt, where Xn and X−n are mutually conjugate: Xn =

X∗−n. The representation (1.2) is referred to as complex-form Fourier series.
Note that we don’t have an explicit DC offset partial in this case, it is implicitly
contained in the series as the term for n = 0.

It can be easily shown that the real- and complex-form coefficients are related
as

Xn =
an
2
ejϕn (n > 0)

X0 =
a0

2

This means that intuitively we can use the absolute magnitude and the argument
of Xn (for positive-frequency terms) as the amplitudes and phases of the real
Fourier series partials.

Complex-form Fourier series can also be used to represent complex (rather
than real) periodic signals in exactly the same way, except that the equality
Xn = X∗−n doesn’t hold anymore.

Thus, any real periodic signal can be represented as a sum of harmonically
related real sinusoidal partials plus the DC offset. Alternatively, any periodic
signal can be represented as a sum of harmonically related complex sinusoidal
partials.

2Formally speaking, there are some restrictions on x(t). It would be sufficient to require
that x(t) is bounded and continuous, except for a finite number of discontinuous jumps per
period.

3The reason the DC offset term is notated as a0/2 and not as a0 has to do with simplifying
the math notation in other related formulas.

1.3. FOURIER INTEGRAL 3

1.3 Fourier integral

While periodic signals are representable as a sum of a countable number of
sinusoidal partials, a nonperiodic real signal can be represented4 as a sum of an
uncountable number of sinusoidal partials:

x(t) =
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π

(1.3)

The representation (1.3) is referred to as Fourier integral.5 The DC offset term
doesn’t explicitly appear in this case.

The complex-form version of Fourier integral6 is

x(t) =
∫ ∞
−∞

X(ω)ejωt
dω
2π

(1.4)

For real x(t) we have a Hermitian X(ω): X(ω) = X∗(−ω), for complex x(t)
there is no such restriction. The function X(ω) is referred to as Fourier trans-
form of x(t).7

It can be easily shown that the relationship between the parameters of the
real and complex forms of Fourier transform is

X(ω) =
a(ω)

2
ejϕ(ω) (ω > 0)

This means that intuitively we can use the absolute magnitude and the argument
of X(ω) (for positive frequencies) as the amplitudes and phases of the real
Fourier integral partials.

Thus, any timelimited signal can be represented as a sum of an uncountable
number of sinusoidal partials of infinitely small amplitudes.

4As with Fourier series, there are some restrictions on x(t). It is sufficient to require x(t) to
be absolutely integrable, bounded and continuous (except for a finite number of discontinuous
jumps per any finite range of the argument value). The most critical requirement here is
probably the absolute integrability, which is particularly fulfilled for the timelimited signals.

5The 1/2π factor is typically used to simplify the notation in the theoretical analysis
involving the computation. Intuitively, the integration is done with respect to the ordinary,
rather than circular frequency:

x(t) =

∫ ∞
0

a(f) cos
(
2πft+ ϕ(f)

)
df

Some texts do not use the 1/2π factor in this position, in which case it appears in other places
instead.

6A more common term for (1.4) is inverse Fourier transform. However the term inverse
Fourier transform stresses the fact that x(t) is obtained by computing the inverse of some
transform, whereas in this book we are more interested in the fact that x(t) is representable
as a combination of sinusoidal signals. The term Fourier integral better reflects this aspect.
It also suggests a similarity to the Fourier series representation.

7The notation X(ω) for Fourier transform shouldn’t be confused with the notation X(s)
for Laplace transform. Typically one can be told from the other by the semantics and the
notation of the argument. Fourier transform has a real argument, most commonly denoted as
ω. Laplace transform has a complex argument, most commonly denoted as s.

4 CHAPTER 1. FOURIER THEORY

1.4 Dirac delta function

The Dirac delta function δ(t) is intuitively defined as a very high and a very
short symmetric impulse with a unit area (Fig. 1.1):

δ(t) =

{
+∞ if t = 0
0 if t 6= 0

δ(−t) = δ(t)∫ ∞
−∞

δ(t) dt = 1

t

δ(t)

+∞

0

Figure 1.1: Dirac delta function.

Since the impulse is infinitely narrow and since it has a unit area,∫ ∞
−∞

f(τ)δ(τ) dτ = f(0) ∀f

from where it follows that a convolution of any function f(t) with δ(t) doesn’t
change f(t):

(f ∗ δ)(t) =
∫ ∞
−∞

f(τ)δ(t− τ) dτ = f(t)

Dirac delta can be used to represent Fourier series by a Fourier integral. If
we let

X(ω) =
∞∑

n=−∞
2πδ(ω − nωf)Xn

then
∞∑

n=−∞
Xne

jnωf t =
∫ ∞
−∞

X(ω)ejωt
dω
2π

1.5. LAPLACE TRANSFORM 5

From now on, we’ll not separately mention Fourier series, assuming that Fourier
integral can represent any necessary signal.

Thus, most signals can be represented as a sum of (a possibly infinite number
of) sinusoidal partials.

1.5 Laplace transform

Let s = jω. Then, a complex-form Fourier integral can be rewritten as

x(t) =
∫ +j∞

−j∞
X(s)est

ds
2πj

where the integration is done in the complex plane along the straight line from
−j∞ to +j∞ (apparently X(s) is a different function than X(ω)).8 For time-
limited signals the function X(s) can be defined on the entire complex plane in
such a way that the integration can be done along any line which is parallel to
the imaginary axis:

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

(σ ∈ R) (1.5)

In many other cases such X(s) can be defined within some strip σ1 < Re s < σ2.
Such function X(s) is referred to as bilateral Laplace transform of x(t), whereas
the representation (1.5) can be referred to as Laplace integral.9 10

Notice that the complex exponential est is representable as

est = eRe s·teIm s·t

Considering eRe s·t as the amplitude of the complex sinusoid eIm s·t we notice
that est is:

- an exponentially decaying complex sinusoid if Re s < 0,

- an exponentially growing complex sinusoid if Re s > 0,

- a complex sinusoid of constant amplitude if Re s = 0.

Thus, most signals can be represented as a sum of (a possibly infinite number
of) complex exponential partials, where the amplitude growth or decay speed of
these partials can be relatively arbitrarily chosen.

8As already mentioned, the notation X(ω) for Fourier transform shouldn’t be confused
with the notation X(s) for Laplace transform. Typically one can be told from the other by
the semantics and the notation of the argument. Fourier transform has a real argument, most
commonly denoted as ω. Laplace transform has a complex argument, most commonly denoted
as s.

9A more common term for (1.5) is inverse Laplace transform. However the term inverse
Laplace transform stresses the fact that x(t) is obtained by computing the inverse of some
transform, whereas is this book we are more interested in the fact that x(t) is representable
as a combination of exponential signals. The term Laplace integral better reflects this aspect.

10The representation of periodic signals by Laplace integral (using Dirac delta function) is
problematic for σ 6= 0. Nevertheless, we can represent them by a Laplace integral if we restrict
σ to σ = 0 (that is Re s = 0 for X(s)).

6 CHAPTER 1. FOURIER THEORY

SUMMARY

The most important conclusion of this chapter is: any signal occurring in prac-
tice can be represented as a sum of sinusoidal (real or complex) components. The
frequencies of these sinusoids can be referred to as the “frequencies contained
in the signal”. For complex representation, the real amplitude and phase infor-
mation is encoded in the absolute magnitude and the argument of the complex
amplitudes of the positive-frequency partials (where the absolute magnitude of
the complex amplitude is a half of the real amplitude).

It is also possible to use complex exponentials instead of sinusoids.

Chapter 2

Analog 1-pole filters

In this chapter we are going to introduce the basic analog RC-filter and use it
as an example to develop the key concepts of the analog filter analysis.

2.1 RC filter

Consider the circuit in Fig. 2.1, where the voltage x(t) is the input signal and the
capacitor voltage y(t) is the output signal. This circuit represents the simplest
1-pole lowpass filter, which we are now going to analyse.

� R
�
�
ÿ
�
�

� C
�
�
þ

����� �ò
y(t)

�
����� �ð

x(t)

Figure 2.1: A simple RC lowpass filter.

Writing the equations for that circuit we have:

x = UR + UC

y = UC

UR = RI

I = q̇C

qC = CUC

where UR is the resistor voltage, UC is the capacitor voltage, I is the current
through the circuit and qC is the capacitor charge. Reducing the number of
variables, we can simplify the equation system to:

x = RCẏ + y

or
ẏ =

1
RC

(x− y)

7

8 CHAPTER 2. ANALOG 1-POLE FILTERS

or, integrating with respect to time:

y = y(t0) +
∫ t

t0

1
RC

(
x(τ)− y(τ)

)
dτ

where t0 is the initial time moment. Introducing the notation ωc = 1/RC we
have

y = y(t0) +
∫ t

t0

ωc
(
x(τ)− y(τ)

)
dτ (2.1)

We will reintroduce ωc later as the cutoff of the filter.
Notice that we didn’t factor 1/RC (or ωc) out of the integral for the case

when the value of R is varying with time. The varying R corresponds to the
varying cutoff of the filter, and this situation is highly typical in the music DSP
context.1

2.2 Block diagrams

The integral equation (2.1) can be expressed in the block diagram form (Fig. 2.2).

+ '!&"%#$//
MMMqqq
//

∫
// •//

−
OO //x(t) y(t)

ωc

Figure 2.2: A 1-pole RC lowpass filter in the block diagram form.

The meaning of the elements of the diagram should be intuitively clear.
The gain element (represented by a triangle) multiplies the input signal by ωc.
Notice the inverting input of the summator, denoted by “−”. The integrator
simply integrates the input signal:

output(t) = output(t0) +
∫ t

t0

input(τ) dτ

The representation of the system by the integral (rather than differential)
equation and the respective usage of the integrator element in the block diagram
has an important intuitive meaning. Intuitively, the capacitor integrates the
current flowing through it, accumulating it as its own charge:

qC(t) = qC(t0) +
∫ t

t0

I(τ) dτ

or, equivalently

UC(t) = UC(t0) +
1
C

∫ t

t0

I(τ) dτ

One can observe from Fig. 2.2 that the output signal is always trying to
“reach” the input signal. Indeed, the difference x− y is always “directed” from

1We didn’t assume the varying C because then our simplification of the equation system
doesn’t hold anymore, since q̇C 6= CU̇C in this case.

2.3. TRANSFER FUNCTION 9

y to x. Since ωc > 0, the integrator will respectively increase or decrease its
output value in the respective direction. This corresponds to the fact that the
capacitor voltage in Fig. 2.1 is always trying to reach the input voltage. Thus,
the circuit works as a kind of smoother of the input signal.

2.3 Transfer function

Consider the integrator:

∫
// //x(t) y(t)

Suppose x(t) = est (where s = jω or, possibly, another complex value). Then

y(t) = y(t0) +
∫ t

t0

esτ dτ = y(t0) +
1
s
esτ
∣∣∣t
τ=t0

=
1
s
est +

(
y(t0)− 1

s
est0

)
Thus, a complex sinusoid (or exponential) est sent through an integrator comes
out as the same signal est just with a different amplitude 1/s plus some DC
term y(t0) − est0/s. Similarly, a signal X(s)est (where X(s) is the complex
amplitude of the signal) comes out as (X(s)/s)est plus some DC term. That
is, if we forget about the extra DC term, the integrator simply multiplies the
amplitudes of complex exponential signals est by 1/s.

Now, the good news is: for our purposes of filter analysis we can simply
forget about the extra DC term. The reason for this is the following. Suppose
the initial time moment t0 was quite long ago (t0 � 0). Suppose further that
the integrator is contained in a stable filter (we will discuss the filter stability
later, for now we’ll simply mention that we’re mostly interested in the stable
filters for the purposes of the current discussion). It can be shown that in this
case the effect of the extra DC term on the output signal is negligible. Since
the initial state y(t0) is incorporated into the same DC term, it also means that
the effect of the initial state is negligible!2

Thus, we simply write (for an integrator):∫
esτ dτ =

1
s
est

This means that est is an eigenfunction of the integrator with the respective
eigenvalue 1/s.

Since the integrator is linear,3 not only are we able to factor X(s) out of the
integration: ∫

X(s)esτ dτ = X(s)
∫
esτ dτ =

1
s
X(s)est

2In practice, typically, a zero initial state is assumed. Then, particularly, in the case of
absence of the input signal, the output signal of the filter is zero from the very beginning
(rather than for t� t0).

3The linearity here is understood in the sense of the operator linearity. An operator Ĥ is
linear, if

Ĥ (λ1f1(t) + λ2f2(t)) = λ1Ĥf1(t) + λ2Ĥf2(t)

10 CHAPTER 2. ANALOG 1-POLE FILTERS

but we can also apply the integration independently to all Fourier (or Laplace)
partials of an arbitrary signal x(t):∫ (∫ σ+j∞

σ−j∞
X(s)esτ

ds
2πj

)
dτ =

∫ σ+j∞

σ−j∞

(∫
X(s)esτ dτ

)
ds
2πj

=

=
∫ σ+j∞

σ−j∞

X(s)
s

esτ
ds
2πj

That is, the integrator changes the complex amplitude of each partial by a 1/s
factor.

Consider again the structure in Fig. 2.2. Assuming the input signal x(t) has
the form est we can replace the integrator by a gain element with a 1/s factor.
We symbolically reflect this by replacing the integrator symbol in the diagram
with the 1/s fraction (Fig. 2.3).4

+ '!&"%#$//
MMMqqq
// 1

s
// •//

−
OO //x(t) y(t)

ωc

Figure 2.3: A 1-pole RC lowpass filter in the block diagram form
with a 1/s notation for the integrator.

So, suppose x(t) = X(s)est and suppose we know y(t). Then the input signal
for the integrator is ωc(x− y). We now will further take for granted the knowl-
edge that y(t) will be the same signal est with some different complex amplitude
Y (s), that is y(t) = Y (s)est (notably, this holds only if ωc is constant, that is,
if the system is time-invariant !!!)5 Then the input signal of the integrator is
ωc(X(s) − Y (s))est and the integrator simply multiplies its amplitude by 1/s.
Thus the output signal of the integrator is ωc(x− y)/s. But, on the other hand
y(t) is the output signal of the integrator, thus

y(t) = ωc
x(t)− y(t)

s

or

Y (s)est = ωc
X(s)− Y (s)

s
est

or

Y (s) = ωc
X(s)− Y (s)

s

from where
sY (s) = ωcX(s)− ωcY (s)

4Often in such cases the input and output signal notation for the block diagram is replaced
with X(s) and Y (s). Such diagram then “works” in terms of Laplace transform, the input of
the diagram is the Laplace transform X(s) of the input signal x(t), the output is respectively
the Laplace transform Y (s) of the output signal y(t). The integrators can then be seen as
s-dependent gain elements, where the gain coefficient is 1/s.

5In other words, we take for granted the fact that est is an eigenfunction of the entire
circuit.

2.3. TRANSFER FUNCTION 11

and
Y (s) =

ωc
s+ ωc

X(s)

Thus, the circuit in Fig. 2.3 (or in Fig. 2.2) simply scales the amplitude of the
input sinusoidal (or exponential) signal X(s)est by the ωc/(s+ ωc) factor.

Let’s introduce the notation

H(s) =
ωc

s+ ωc
(2.2)

Then
Y (s) = H(s)X(s)

H(s) is referred to as the transfer function of the structure in Fig. 2.3 (or
Fig. 2.2). Notice that H(s) is a complex function of a complex argument.

For an arbitrary input signal x(t) we can use the Laplace transform repre-
sentation

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

From the linearity6 of the circuit in Fig. 2.3, it follows that the result of the
application of the circuit to a linear combination of some signals is equal to
the linear combination of the results of the application of the circuit to the
individual signals. That is, for each input signal of the form X(s)est we obtain
the output signalH(s)X(s)est. Then for an input signal which is an integral sum
of X(s)est, we obtain the output signal which is an integral sum of H(s)X(s)est.
That is

y(t) =
∫ σ+j∞

σ−j∞
H(s)X(s)est

ds
2πj

So, the circuit in Fig. 2.3 independently modifies the complex amplitudes of the
sinusoidal (or exponential) partials est by the H(s) factor!

Notably, the transfer function can be introduced for any system which is
linear and time-invariant. For the systems, whose block diagrams consist of
integrators, summators and fixed gains, the transfer function is always a non-
strictly proper7 rational function of s. Particularly, this holds for the electronic
circuits, where the differential elements are capacitors and inductors, since these
types of elements logically perform integration (capacitors integrate the current
to obtain the voltage, while inductors integrate the voltage to obtain the cur-
rent).

It is important to realize that in the derivation of the transfer function con-
cept we used the linearity and time-invariance (the absence of parameter mod-
ulation) of the structure. If these properties do not hold, the transfer function
can’t be introduced! This means that all transfer function-based analysis holds
only in the case of fixed parameter values. In practice, if the parameters are
not changing too quickly, one can assume that they are approximately constant

6Here we again understand the linearity in the operator sense:

Ĥ (λ1f1(t) + λ2f2(t)) = λ1Ĥf1(t) + λ2Ĥf2(t)

The operator here corresponds to the circuit in question: y(t) = Ĥx(t) where x(t) and y(t)
are the input and output signals of the circuit.

7A rational function is nonstrictly proper, if the order of its numerator doesn’t exceed the
order of its denominator.

12 CHAPTER 2. ANALOG 1-POLE FILTERS

during certain time range. That is we can “approximately” apply the transfer
function concept (and the discussed later derived concepts, such as amplitude
and phase responses, poles and zeros, stability criterion etc.) if the modulation
of the parameter values is “not too fast”.

2.4 Complex impedances

Actually, we could have obtained the transfer function of the circuit in Fig. 2.1
using the concept of complex impedances.

Consider the capacitor equation:

I = CU̇

If

I(t) = I(s)est

U(t) = U(s)est

(where I(t) and I(s) are obviously two different functions, the same for U(t)
and U(s)), then

U̇ = sU(s)est = sU(t)

and thus
I(t) = I(s)est = CU̇ = CsU(s)est = sCU(t)

that is
I = sCU

or
U =

1
sC

I

Now the latter equation looks almost like Ohm’s law for a resistor: U = RI. The
complex value 1/sC is called the complex impedance of the capacitor. The same
equation can be written in the Laplace transform form: U(s) = (1/sC)I(s).

For an inductor we have U = Lİ and respectively, for I(t) = I(s)est and
U(t) = U(s)est we obtain U(t) = sLI(t) or U(s) = sLI(s). Thus, the complex
impedance of the inductor is sL.

Using the complex impedances as if they were resistances (which we can do,
assuming the input signal has the form X(s)est), we simply write the voltage
division formula for the circuit in in Fig. 2.1:

y(t) =
UC

UR + UC
x(t)

or, cancelling the common current factor I(t) from the numerator and the de-
nominator, we obtain the impedances instead of voltages:

y(t) =
1/sC

R+ 1/sC
x(t)

from where

H(s) =
y(t)
x(t)

=
1/sC

R+ 1/sC
=

1
1 + sRC

=
1/RC

s+ 1/RC
=

ωc
s+ ωc

which coincides with (2.2).

2.5. AMPLITUDE AND PHASE RESPONSES 13

2.5 Amplitude and phase responses

Consider again the structure in Fig. 2.3. Let x(t) be a real signal and let

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

be its Laplace integral representation. Let y(t) be the output signal (which is
obviously also real) and let

y(t) =
∫ σ+j∞

σ−j∞
Y (s)est

ds
2πj

be its Laplace integral representation. As we have shown, Y (s) = H(s)X(s)
where H(s) is the transfer function of the circuit.

The respective Fourier integral representation of x(t) is apparently

x(t) =
∫ +∞

−∞
X(jω)ejωt

dω
2π

where X(jω) is the Laplace transform X(s) evaluated at s = jω. The real
Fourier integral representation is then obtained as

ax(ω) = 2 · |X(jω)|
ϕx(ω) = argX(jω)

For y(t) we respectively have8 9

ay(ω) = 2 · |Y (jω)| = 2 · |H(jω)X(jω)| = |H(jω)| · ax(ω)
ϕy(ω) = arg Y (jω) = arg (H(jω)X(jω)) = ϕx(ω) + argH(jω)

(ω ≥ 0)

Thus, the amplitudes of the real sinusoidal partials are magnified by the |H(jω)|
factor and their phases are shifted by argH(jω) (ω ≥ 0). The function |H(jω)|
is referred to as the amplitude response of the circuit and the function argH(jω)
is referred to as the phase response of the circuit. Note that both the amplitude
and the phase response are real functions of a real argument ω.

The complex-valued function H(jω) of the real argument ω is referred to
as the frequency response of the circuit. Simply put, the frequency response is
equal to the transfer function evaluated on the imaginary axis.

Since the transfer function concept works only in the linear time-invariant
case, so do the concepts of the amplitude, phase and frequency responses!

8This relationship holds only if H(jω) is Hermitian: H(jω) = H∗(−jω). If it weren’t the
case, the Hermitian property wouldn’t hold for Y (jω) and y(t) couldn’t have been a real signal
(for a real input x(t)). Fortunately, for real systems H(jω) is always Hermitian. Particularly,
rational transfer functions H(s) with real coefficients obviously result in Hermitian H(jω).

9Formally, ω = 0 requires special treatment in case of a Dirac delta component at ω = 0
(arising particularly if the Fourier series is represented by a Fourier integral and there is a
nonzero DC offset). Nevertheless, the resulting relationship between ay(0) and ax(0) is exactly
the same as for ω > 0, that is ay(0) = H(0)ax(0). A more complicated but same argument
holds for the phase.

14 CHAPTER 2. ANALOG 1-POLE FILTERS

2.6 Lowpass filtering

Consider again the transfer function of the structure in Fig. 2.2:

H(s) =
ωc

s+ ωc

The respective amplitude response is

|H(jω)| =
∣∣∣∣ ωc
ωc + jω

∣∣∣∣
Apparently at ω = 0 we have H(0) = 1. On the other hand, as ω grows, the
magnitude of the denominator grows as well and the function decays to zero:
H(+j∞) = 0. This suggests the lowpass filtering behavior of the circuit: it
lets the partials with frequencies ω � ωc through and stops the partials with
frequencies ω � ωc. The circuit is therefore referred to as a lowpass filter, while
the value ωc is defined as the cutoff frequency of the circuit.

It is convenient to plot the amplitude response of the filter in a fully log-
arithmic scale. The amplitude gain will then be plotted in decibels, while the
frequency axis will have a uniform spacing of octaves. For H(s) = ωc/(s+ ωc)
the plot looks like the one in Fig. 2.4.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 2.4: Amplitude response of a 1-pole lowpass filter.

Notice that the plot falls off in an almost straight line as ω →∞. Apparently,
at ω � ωc and respectively |s| � ωc we have H(s) ≈ ωc/s and |H(s)| ≈ ωc/ω.
This is a hyperbola in the linear scale and a straight line in a fully logarithmic
scale. If ω doubles (corresponding to a step up by one octave), the amplitude
gain is approximately halved (that is, drops by approximately 6 decibel). We
say that this lowpass filter has a rolloff of 6dB/oct.

Another property of this filter is that the amplitude drop at the cutoff is
−3dB. Indeed

|H(jωc)| =
∣∣∣∣ ωc
ωc + jωc

∣∣∣∣ =
∣∣∣∣ 1
1 + j

∣∣∣∣ =
1√
2
≈ −3dB

2.7. CUTOFF PARAMETRIZATION 15

2.7 Cutoff parametrization

Suppose ωc = 1. Then the lowpass transfer function (2.2) turns into

H(s) =
1

s+ 1

Now perform the substitution s← s/ωc. We obtain

H(s) =
1

s/ωc + 1
=

ωc
s+ ωc

which is again our familiar transfer function of the lowpass filter.
Consider the amplitude response graph of 1/(s + 1) in a logarithmic scale.

The substitution s ← s/ωc simply shifts this graph to the left or to the right
(depending on whether ωc < 1 or ωc > 1) without changing its shape. Thus,
the variation of the cutoff parameter doesn’t change the shape of the ampli-
tude response graph (Fig. 2.5), or of the phase response graph, for that matter
(Fig. 2.6).

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 2.5: 1-pole lowpass filter’s amplitude response shift by a
cutoff change.

The substitution s← s/ωc is a generic way to handle cutoff parametrization
for analog filters, because it doesn’t change the response shapes. This has a
nice counterpart on the block diagram level. For all types of filters we simply
visually combine an ωc gain and an integrator into a single block:10

MMMqqq
//

∫
// //

ωc

→
ωc
s

// //

10Notice that including the cutoff gain into the integrator makes the integrator block in-
variant to the choice of the time units:

y(t) = y(t0) +

∫ t

t0

ωcx(τ) dτ

because the product ωc dτ is invariant to the choice of the time units. This will become
important once we start building discrete-time models of filters, where we would often assume
unit sampling period.

16 CHAPTER 2. ANALOG 1-POLE FILTERS

ω

argH(jω)

ωcωc/8 8ωc

0

−π/4

−π/2

Figure 2.6: 1-pole lowpass filter’s phase response shift by a cutoff
change.

Apparently, the reason for the ωc/s notation is that this is the transfer function
of the serial connection of an ωc gain and an integrator. Alternatively, we simply
assume that the cutoff gain is contained inside the integrator:

MMMqqq
//

∫
// //

ωc

→
∫

// //

The internal representation of such integrator block is of course still a cutoff
gain followed by an integrator. Whether the gain should precede the integrator
or follow it may depend on the details of the analog prototype circuit. In the
absence of the analog prototype it’s better to put the integrator after the cutoff
gain, because then the integrator will smooth the jumps and further artifacts
arising out of the cutoff modulation.

With the cutoff gain implied inside the integrator block, the structure from
Fig. 2.2 is further simplified to the one in Fig. 2.7:

+ '!&"%#$//
∫

// •//
−

OO //x(t) y(t)

Figure 2.7: A 1-pole RC lowpass filter with an implied cutoff.

As a further shortcut arising out of the just discussed facts, it is common to
assume ωc = 1 during the filter analysis. Particularly, the transfer function of
a 1-pole lowpass filter is often written as

H(s) =
1

s+ 1

It is assumed that the reader will perform the s ← s/ωc substitution as neces-
sary.

2.8. HIGHPASS FILTER 17

2.8 Highpass filter

If instead of the capacitor voltage in Fig. 2.1 we pick up the resistor voltage as
the output signal, we obtain the block diagram representation as in Fig. 2.8.

+ '!&"%#$// •//
∫

//
−

OO

//

x(t)

y(t)

Figure 2.8: A 1-pole highpass filter.

Obtaining the transfer function of this filter we get

H(s) =
s

s+ ωc

or, in the unit-cutoff form,

H(s) =
s

s+ 1

It’s easy to see that H(0) = 0 and H(+j∞) = 1, whereas the biggest change in
the amplitude response occurs again around ω = ωc. Thus, we have a highpass
filter here. The amplitude response of this filter is shown in Fig. 2.9 (in the
logarithmic scale).

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 2.9: Amplitude response of a 1-pole highpass filter.

It’s not difficult to observe and not difficult to show that this response is
a mirrored version of the one in Fig. 2.4. Particularly, at ω � ωc we have
H(s) ≈ s/ωc, so when the frequency is halved (dropped by an octave), the
amplitude gain is approximately halved as well (drops by approximately 6dB).
Again, we have a 6dB/oct rolloff.

18 CHAPTER 2. ANALOG 1-POLE FILTERS

2.9 Poles, zeros and stability

Consider the lowpass transfer function:

H(s) =
ωc

s+ ωc

Apparently, this function has a pole in the complex plane at s = −ωc. Similarly,
the highpass transfer function

H(s) =
s

s+ ωc

also has a pole at s = −ωc, but it also has a zero at s = 0.
Recall that the transfer functions of linear time-invariant differential systems

are nonstrictly proper rational functions of s. Thus they always have poles and
often have zeros, the numbers of poles and zeros matching the orders of the
numerator and the denominator respectively. The poles and zeros of transfer
function (especially the poles) play an important role in the filter analysis. For
simplicity they are referred to as the poles and zeros of the filters.

The transfer functions of real linear time-invariant differential systems have
real coefficients in the numerator and denominator polynomials. Apparently,
this doesn’t prevent them from having complex poles and zeros, however, being
roots of real polynomials, those must come in complex conjugate pairs. E.g. a
transfer function with a 3rd order denominator can have either three real poles,
or one real and two complex conjugate poles.

The lowpass and highpass filters discussed so far, each have one pole. For
that reason they are referred to as 1-pole filters. Actually, the number of poles
is always equal to the order of the filter or (which is the same) to the number of
integrators in the filter.11 Therefore it is common, instead of e.g. a “4th-order
filter” to say a “4-pole filter”.

The most important property of the poles is that a filter12 is stable if and
only if all its poles are located in the left complex semiplane (that is to the left
of the imaginary axis). For our lowpass and highpass filters this is apparently
true, as long as ωc > 0.13 If ωc < 0, the pole is moved to the right semiplane,
the filter becomes unstable and will “explode”. Also the definition of the fre-
quency response doesn’t make much sense in this case. If we put a sinusoidal
signal through a stable filter we will (as we have shown) obtain an amplitude-
modified and phase-shifted sinusoidal signal of the same frequency.14 If we put
a sinusiodal signal through an unstable filter, the filter simply “explodes” (its

11In certain singular cases, depending on the particular definition details, these numbers
might be not equal to each other.

12More precisely a linear time-invariant system, which particularly implies fixed parame-
ters. This remark is actually unnecessary, since, as we mentioned, the transfer function (and
respectively the poles) are defined only for the linear time-invariant case.

13Notably, the same condition ensures the stability of the 1-pole RC lowpass and highpass
filters in the time-varying case, which can be directly seen from the fact that the lowpass
filter’s output never exceeds the maximum level of its input.

14Strictly speaking, this will happen only after the filter has stabilized itself “to the new
signal”. This takes a certain amount of time. The closer the poles are to the imaginary
axis (from the left), the larger is this stabilization time. The characteristic time value of
the stabilization has the order of magnitude of −1/max {Re pn}, where pn are the poles.
Actually the effects of the transition (occurring at the moment of the appearance of the
sinusoidal signal) decay exponentially as etmax{Re pn}.

2.10. LP TO HP SUBSTITUTION 19

output grows infinitely), thus it makes no sense to talk of amplitude and phase
responses.

It is also possible to obtain an intuitive understanding of the effect of the
pole position on the filter stability. Consider a transfer function of the form

H(s) =
F (s)

N∏
n=1

(s− pn)

where F (s) is the numerator of the transfer function and pn are the poles.
Suppose all poles are initially in the left complex semiplane and now one of
the poles (let’s say p1) starts moving towards the imaginary axis. As the pole
gets closer to the axis, the amplitude response at ω = Im p1 grows. When p1

gets onto the axis, the amplitude response at ω = Im p1 is infinitely large (since
jω = p1, we have H(jω) = H(p1) = ∞). This corresponds to the filter getting
unstable.15 16

The poles and zeros also define the rolloff speed of the amplitude response.
Let Np be the number of poles and Nz be the number of zeros. Since the transfer
function must be nonstrictly proper, Np ≥ Nz. It’s not difficult to see that the
amplitude response rolloff at ω → +∞ is 6(Np −Nz)dB/oct. Respectively, the
rolloff at ω → 0 is 6Nz0dB/oct, where Nz0 is the number of zeros at s = 0
(provided there are no poles at s = 0). Considering that 0 ≤ Nz0 ≤ Nz ≤ Np,
the rolloff speed at ω → +∞ or at ω → 0 can’t exceed 6NpdB/oct. Also, if
all zeros of a filter are at s = 0 (that is Nz0 = Nz) then the sum of the rolloff
speeds at ω → 0 and ω → +∞ is exactly 6NpdB/oct.

2.10 LP to HP substitution

The symmetry between the lowpass and the highpass 1-pole amplitude responses
has an algebraic explanation. The 1-pole highpass transfer function can be
obtained from the 1-pole lowpass transfer function by the LP to HP (lowpass
to highpass) substitution:

s← 1/s

Applying the same substitution to a highpass 1-pole we obtain a lowpass 1-pole.
The name “LP to HP substitution” originates from the fact that a number of
filters are designed as lowpass filters and then are being transformed to their
highpass versions.

Recalling that s = jω, the respective transformation of the imaginary axis
is jω ← 1/jω or, equivalently

ω ← −1/ω

Recalling that the amplitude responses of real systems are symmetric between
positive and negative frequencies (|H(jω)| = |H(−jω)|) we can also write

ω ← 1/ω (for amplitude response only)
15The reason, why the stable area is the left (and not the right) complex semiplane, falls

outside the scope of this book.
16The discussed 1-pole lowpass filter is actually still kind of stable at ω = 0 (corresponding

to the pole at s = 0. In fact, it has a constant output level (its state is not changing) in this
case. However, strictly speaking, this case is not really stable, since all signals in a truely
stable filter must decay to zero in the absence of the input signal.

20 CHAPTER 2. ANALOG 1-POLE FILTERS

Taking the logarithm of both sides gives:

logω ← − logω (for amplitude response only)

Thus, the amplitude response is flipped around ω = 1 in the logarithmic scale.
The LP to HP substitutions also transforms the filter’s poles and zeros by

the same formula:
s′ = 1/s

where we substitute pole and zero positions for s. Clearly this transformation
maps the complex values in the left semiplane to the values in the left semiplane
and the values in the right semiplane to the right semiplane. Thus, the LP to
HP substitution exactly preserves the stability of the filters.

The LP to HP substitution can be performed not only algebraically (on a
transfer function), but also directly on a block diagram, if we allow the usage
of differentiators. Since the differentiator’s transfer function is H(s) = s, re-
placing all integrators by differentiators will effectively perform the 1/s ← s
substitution, which apparently is the same as the s ← 1/s substitution. Shall
the usage of the differentiators be forbidden, it might still be possible to convert
differentiation to the integration by analytical transformations of the equations
expressed by the block diagram.

2.11 Multimode filter

Actually, we can pick up the lowpass and highpass signals simultaneously from
the same structure (Fig. 2.10). This is referred to as a multimode filter.

+ '!&"%#$// •//
∫

// •//
−

OO

//

//x(t) yLP(t)

yHP(t)

Figure 2.10: A 1-pole multimode filter.

It’s easy to observe that yLP(t) + yHP(t) = x(t), that is the input signal is
split by the filter into the lowpass and highpass components. In the transfer
function form this corresponds to

HLP(s) +HHP(s) =
ωc

s+ ωc
+

s

s+ ωc
= 1

The multimode filter can be used to implement a 1st-order differential filter
for practically any given transfer function, by simply mixing its outputs. Indeed,
let

H(s) =
b1s+ b0
s+ a0

(a0 6= 0)

2.12. SHELVING FILTERS 21

where we can eliminate the case a0 = 0, because it is not defining a stable
filter.17 Letting ωc = a0 we obtain

H(s) =
b1s+ b0
s+ ωc

= b1
s

s+ ωc
+
b0
ωc
· ωc
s+ ωc

= b1HHP(s) +
(
b0
ωc

)
HLP(s))

Thus we simply need to set the filter’s cutoff to a0 and take the sum

y = b1yHP(t) +
(
b0
ωc

)
yLP(t)

as the output signal.

2.12 Shelving filters

By adding/subtracting the lowpass-filtered signal to/from the unmodified input
signal one can build a low-shelving filter:

y(t) = x(t) +K · yLP(t)

The transfer function of the low-shelving filter is respectively:

H(s) = 1 +K
1

s+ 1

The amplitude response is plotted Fig. 2.11. Typically K ≥ −1. At K = 0 the
signal is unchanged. At K = −1 the filter turns into a highpass.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

+6

Figure 2.11: Amplitude response of a 1-pole low-shelving filter (for
various K).

The high-shelving filter is built in a similar way:

y(t) = x(t) +K · yHP(t)
17If supporting the case a0 = 0 is really desired, it can be done by introducing a gain

element into the feedback path of the 1-pole filter.

22 CHAPTER 2. ANALOG 1-POLE FILTERS

and
H(s) = 1 +K

s

s+ 1
The amplitude response is plotted Fig. 2.12.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

+6

Figure 2.12: Amplitude response of a 1-pole high-shelving filter
(for various K).

There are a couple of nontrivial moments here, though. The first one has
to do with the fact that the amplitude boost or drop for the “shelf” is more
convenient to be specified in decibels. Which requires translation of the level
change specified in decibels into the K factor. It’s not difficult to realize that

dB = 20 log10(K + 1)

Indeed, e.g. for the low-shelving filter at ω = 0 (that is s = 0) we have18

H(0) = 1 +K

We also obtain H(+j∞) = 1 +K for the high-shelving filter.
A further nontrivial moment is that the definition of the cutoff at ω = 1 for

such filters is not really convenient. Indeed, looking at the amplitude response
graphs in Figs. 2.11 and 2.12 we would rather wish to have the cutoff point
positioned exactly at the middle of the respective slopes. Let’s find where the
middle is. E.g. for the lowpass (and remembering that both scales of the graph
are logarithmic) we first find the mid-height, which is the geometric average of
the shelf’s gain and the unit gain:

√
1 +K. Then we need to find ω at which

the amplitude response is
√

1 +K:∣∣∣∣1 +K
1

jω + 1

∣∣∣∣2 =
∣∣∣∣jω + 1 +K

jω + 1

∣∣∣∣2 =
(1 +K)2 + ω2

1 + ω2
= 1 +K

18H(0) = 1 +K is not a fully trivial result here. We have it only because the lowpass filter
doesn’t change the signal’s phase at ω = 0. If instead it had e.g. inverted the phase, then we
would have obtained 1−K here.

2.12. SHELVING FILTERS 23

from where
ω =
√

1 +K

This is the frequency of the midslope point of a low-shelving filter built from
a unit-cutoff lowpass. If we want the midslope point to be at ω = 1 then the
lowpass cutoff needs to be set to 1/

√
1 +K. Other midslope point frequencies

are obtained in a similar fashion

ωc =
ωmid√
1 +K

(low-shelving)

The amplitude responses for various K then begin to look like in Fig. 2.13.

ω

|H(jω)|, dB

ωmidωmid/8 8ωmid

0

-6

-12

-18

+6

Figure 2.13: Fixed-midpoint amplitude responses of a 1-pole low-
shelving filter.

Notably, the low-shelving filter’s amplitude response is symmetric around
the midpoint in the fully logarithmic scale plot. This can be better illustrated
by starting off with a shelving filter transfer function written in a differently
scaled way:

G(s) =
s+M

Ms+ 1

Clearly, the “LP to HP” substitution applied to G(s) simply reciprocates it,
thus |G(jω)| is naturally symmetric in the fully logarithmic scale around the
point ω = 1, |G(j)| = 1 (so, ωmid = 1 for G(s)).

In order to establish the relationship between G(s) and H(s) notice that

G(s) =
s+M

Ms+ 1
=

1
M
· Ms+M2

Ms+ 1
=

1
M
· (s/ωc) +M2

(s/ωc) + 1

where ωc = 1/M . Comparing to

H(s) = 1 +K
1

s+ 1
=
s+ (1 +K)

s+ 1

24 CHAPTER 2. ANALOG 1-POLE FILTERS

we have

H(s) = M ·G(s) where M =
√

1 +K and ωc = 1/
√

1 +K

For a high-shelving filter there is a similar symmetry. Starting with a recip-
rocal of the low-shelving filter’s G(s):

G(s) =
Ms+ 1
s+M

=
1
M
· M

2(s/M) + 1
(s/M) + 1

=
1
M
· M

2(s/ωc) + 1
(s/ωc) + 1

Comparing to

H(s) = 1 +K
s

s+ 1
=

(1 +K)s
s+ 1

we have

H(s) = M ·G(s) where M =
√

1 +K and ωc =
√

1 +K

Respectively, for a non-unity ωmid:

ωc = ωmid

√
1 +K (high-shelving)

The fixed-midpoint high-shelving amplitude responses are plotted in Fig. 2.14.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

+6

Figure 2.14: Fixed-midpoint amplitude responses of a 1-pole high-
shelving filter.

2.13 Allpass filter

By subtracting the highpass output from the lowpass output of the multimode
filter we obtain the allpass filter :

H(s) = HLP(s)−HHP(s) =
1

1 + s
− s

1 + s
=

1− s
1 + s

2.13. ALLPASS FILTER 25

The amplitude response of the allpass filter is always unity:

|H(jω)| = 1 ∀ω

Indeed, the numerator 1 − jω and the denominator 1 + jω of the frequency
response are mutually conjugate, therefore they have equal magnitudes.

The allpass filter is used because of its phase response (Fig. 2.15). That is
sometimes we wish to change the phases of the signal’s partials without changing
their amplitudes. The most common VA use for the allpass filters is probably
in phasers.

ω

argH(jω)

ωcωc/8 8ωc

0

−π/2

−π

Figure 2.15: Phase response of a 1-pole allpass filter.

We could also subtract the lowpass from the highpass:

H(s) =
s

s+ 1
− 1
s+ 1

=
s− 1
1 + s

Apparently the result differs from the previous one only by the inverted phase.

In regards to the unit amplitude response of the 1-pole allpass filter, we
could have simply noticed that the zero and the pole of the filter are mutu-
ally symmetric relatively to the imaginary axis. This is a general property of
differential allpass filters: their poles and zeros always come in pairs, located
symmetrically relatively to the imaginary axis (since the poles of a stable filter
have to be in the left complex semiplane, the zeros will be in the right complex
semiplane). Expressing the transfer function’s numerator and denominator in
the multiplicative form, we have

|H(s)| =

∣∣∣∣∣∣∣∣∣∣

N∏
n=1

(s− zn)

N∏
n=1

(s− pn)

∣∣∣∣∣∣∣∣∣∣
=

N∏
n=1

|s− zn|

N∏
n=1

|s− pn|

where pn and zn are poles and zeros. If each pair pn and zn is mutually sym-
metric relatively to the imaginary axis (pn = −z∗n), then the factors |jω − zn|

26 CHAPTER 2. ANALOG 1-POLE FILTERS

and |jω − pn| of the amplitude response are always equal, thus the amplitude
response is always unity.

The requirement pn = −z∗n is not only sufficient but also necessary in order
for a differential system to be an allpass. Indeed, let

H(jω) = g · P (ω)
Q(ω)

= g ·

N∏
n=1

(jω − zn)

N∏
n=1

(jω − pn)

= g ·

N∏
n=1

(ω + jzn)

N∏
n=1

(ω + jpn)

where P (ω) and Q(ω) are polynomials of ω and g is some unknown coefficient.
We also assume that H(s) doesn’t have any cancellation between its poles and
zeros.

From |H(∞)| = 1 it follows that |g| = 1. The allpass property dictates that

|P (ω)| = |Q(ω)| ∀ω ∈ R

or equivalently
P (ω)P ∗(ω) = Q(ω)Q∗(ω) ∀ω ∈ R (2.3)

Particularly for ω = −jzn we have P (ω) = 0, therefore the left-hand side of
(2.3) is zero and so the right-hand side must be zero as well, which implies
either Q(ω) = 0 or Q∗(ω) = 0. Now, Q(ω) = 0 is imposssible, since this
would mean that P (ω) and Q(ω) have a common root and there is pole/zero
cancellation in H(s). Then ω = −jzn must be a root of Q∗(ω). Considering
that for ω ∈ R

Q∗(ω) =
N∏
n=1

(ω − jp∗n)

the value ω = jzn being a root of Q∗(ω) implies

−jzn − jpn′ = 0 for some n′

That is zn = −p∗n′ .

2.14 Transposed multimode filter

We could apply the transposition to the block diagram in Fig. 2.10. The trans-
position process is defined as reverting the direction of all signal flow, where
forks turn into summators and vice versa (Fig. 2.16).19 The transposition keeps
the transfer function relationship within each pair of an input and an output
(where the input becomes the output and vice versa). Thus in Fig. 2.16 we have
a lowpass and a highpass input and a single output.

The transposed multimode filter has less practical use than the nontrans-
posed one in Fig. 2.10. However, one particular usage case is feedback shaping.
Imagine we are mixing an input signal xin(t) with a feedback signal xfbk(t), and

19The inverting input of the summator in the transposed version was obtained from the
respective inverting input of the summator in the non-transposed version as follows. First the
inverting input is replaced by an explicit inverting gain element (gain factor −1), then the
transposition is performed, then the inverting gain is merged into the new summator.

SUMMARY 27

•oo + '!&"%#$oo
∫

oo + '!&"%#$oo OO
−

�� ooy(t) xLP(t)

xHP(t)

Figure 2.16: A 1-pole transponsed multimode filter.

we wish to filter each one of those by a 1-pole filter, and the cutoffs of these
1-pole filters are identical. That is, the transfer functions of those filters share a
common denominator. Then we could use a single transposed 1-pole multimode
filter as in Fig. 2.17.

TMMF

+ '!&"%#$ //

+ '!&"%#$ //

MMMqqq
//• ////

MMMqqq
////

111

OO

•

OO

oo

111OO

OO
//

xin(t)

y(t)

xfbk(t)

LP

HP

A

B

C D

Figure 2.17: A transposed multimode filter (TMMF) used for feed-
back signal mixing.

The mixing coefficients A, B, C and D will define the numerators of the re-
spective two transfer functions (in exactly the same way as we have been mixing
the outputs of a nontransposed multimode filter), whereas the denominator will
be s+ ωc, where ωc is the cutoff of the transposed multimode filter.

SUMMARY

The analog 1-pole filter implementations are built around the idea of the mul-
timode 1-pole filter in Fig. 2.10. The transfer functions of the lowpass and
highpass 1-pole filters are

HLP(s) =
ωc

s+ ωc

and
HHP(s) =

s

s+ ωc

respectively. Other 1-pole filter types can be built by combining the lowpass
and the highpass signals.

28 CHAPTER 2. ANALOG 1-POLE FILTERS

Chapter 3

Time-discretization

Now that we have introduced the basic ideas of analog filter analysis, we will
develop an approach to convert analog filter models to the discrete time.

3.1 Discrete-time signals

The discussion of the basic concepts of discrete-time signal representation and
processing is outside the scope of this book. We are assuming that the reader
is familiar with the basic concepts of discrete-time signal processing, such as
sampling, sampling rate, sampling period, Nyquist frequency, analog-to-digital
and digital-to-analog signal conversion. However we are going to make some
remarks in this respect.

As many other texts do, we will use the square bracket notation to denote
discrete-time signals and round parentheses notation to denote continuous-time
signals: e.g. x[n] and x(t).

We will often assume a unit sampling rate fs = 1 (and, respectively, a unit
sampling period T = 1), which puts the Nyquist frequency at 1/2, or, in the
circular frequency terms, at π. Apparently, this can be achieved simply by a
corresponding choice of time units.

Theoretical DSP texts typically state that discrete-time signals have periodic
frequency spectra. This might be convenient for certain aspects of theoretical
analysis such as analog-to-digital and digital-to-analog signal conversion, but it’s
highly unintuitive otherwise. It would be more intuitive, whenever talking of a
discrete-time signal, to imagine an ideal DAC connected to this signal, and think
that the discrete-time signal represents the respective continuous-time signal
produced by such DAC. Especially, since by sampling this continuous-time sig-
nal we obtain the original discrete-time signal again. So the DAC and ADC con-
versions are exact inverses of each other (in this case). Now, the continuous-time
signal produced by such DAC doesn’t contain any partials above the Nyquist
frequency. Thus, its Fourier integral representation (assuming T = 1) is

x[n] =
∫ π

−π
X(ω)ejωn

dω
2π

29

30 CHAPTER 3. TIME-DISCRETIZATION

and its Laplace integral representation is

x[n] =
∫ σ+jπ

σ−jπ
X(s)esn

ds
2πj

Introducing notation z = es and noticing that

ds = d(log z) =
dz
z

we can rewrite the Laplace integral as

x[n] =
∮
X(z)zn

dz
2πjz

(where X(z) is apparently a different function than X(s)) where the integration
is done counterclockwise along a circle of radius eσ centered at the complex
plane’s origin:1

z = es = eσ+jω = eσ · ejω (−π ≤ ω ≤ π) (3.1)

We will refer the representation (3.1) as the z-integral.2 The function X(z) is
referred to as the z-transform of x[n].

In case of non-unit sampling period T 6= 1 the formulas are the same, except
that the frequency-related parameters get multiplied by T (or divided by fs), or
equivalently, the n index gets multiplied by T in continuous-time expressions:3

x[n] =
∫ πfs

−πfs
X(ω)ejωTn

dω
2π

x[n] =
∫ σ+jπfs

σ−jπfs
X(s)esTn

ds
2πj

z = esT

x[n] =
∮
X(z)zn

dz
2πjz

(z = eσ+jωT , −πfs ≤ ω ≤ πfs)

The notation zn is commonly used for discrete-time complex exponential
signals. A continuous-time signal x(t) = est is written as x[n] = zn in discrete-
time, where z = esT . The Laplace-integral amplitude coefficient X(s) in X(s)est

then may be replaced by a z-integral amplitude coefficient X(z) such as in
X(z)zn.

1As with Laplace transform, sometimes there are no restrictions on the radius eσ of the
circle, sometimes there are.

2A more common term for (3.1) is the inverse z-transform, but we will prefer the z-integral
term for the same reason as with Fourier and Laplace integrals.

3Formally the σ parameter of the Laplace integral (and z-integral) should have been mul-
tiplied by T as well, but it doesn’t matter, since this parameter is chosen rather arbitrarily.

3.2. NAIVE INTEGRATION 31

3.2 Naive integration

The most “interesting” element of analog filter block diagrams is obviously the
integrator. The time-discretization for other elements is trivial, so we should
concentrate on building the discrete-time models of the analog integrator.

The continuous-time integrator equation is

y(t) = y(t0) +
∫ t

t0

x(τ) dτ

In discrete time we could approximate the integration by a summation of the
input samples. Assuming for simplicity T = 1, we could have implemented a
discrete-time integrator as

y[n] = y[n0 − 1] +
n∑

ν=n0

x[ν]

We will refer to the above as the naive digital integrator.
A pseudocode routine for this integrator could simply consist of an accumu-

lating assignment:

// perform one sample tick of the integrator
integrator_output := integrator_output + integrator_input;

It takes the current state of the integrator stored in the integrator output vari-
able and adds the current sample’s value of the integrator input on top of that.

In case of a non-unit sampling period T 6= 1 we have to multiply the accu-
mulated input values by T :4

// perform one sample tick of the integrator
integrator_output := integrator_output + integrator_input*T;

3.3 Naive lowpass filter

We could further apply this “naive” approach to construct a discrete-time model
of the lowpass filter in Fig. 2.2. We will use the naive integrator as a basis for
this model.

Let the x variable contain the current input sample of the filter. Consid-
ering that the output of the filter in Fig. 2.2 coincides with the output of the
integrator, let the y variable contain the integrator state and simultaneously
serve as the output sample. As we begin to process the next input sample, the
y variable will contain the previous output value. At the end of the processing
of the sample (by the filter model) the y variable will contain the new output
sample. In this setup, the input value for the integrator is apparently (x−y)ωc,
thus we simply have

// perform one sample tick of the lowpass filter
y := y + (x-y)*omega_c;

4Alternatively, we could, of course, scale the integrator’s output by T , but this is less
useful in practice, because the T factor will be usually combined with the cutoff gain factor
ωc preceding the integrator.

32 CHAPTER 3. TIME-DISCRETIZATION

(mind that ωc must have been scaled to the time units corresponding to the
unit sample period!)

A naive discrete-time model of the multimode filter in Fig. 2.10 could have
been implemented as:

// perform one sample tick of the multimode filter
hp := x-lp;
lp := lp + hp*omega_c;

where the integrator state is stored in the lp variable.
The above naive implementations (and any other similar naive implemen-

tations, for that matter) work reasonably well as long as ωc � 1, that is the
cutoff must be much lower than the sampling rate. At larger ωc the behavior
of the filter becomes rather strange, ultimately the filter gets unstable. We will
now develop some theoretical means to analyse the behavior of the discrete-time
filter models, figure out what are the problems with the naive implementations,
and then introduce another discretization approach.

3.4 Block diagrams

Let’s express the naive discrete-time integrator in the form of a discrete-time
block diagram. The discrete-time block diagrams are constructed from the same
elements as continuous-time block diagrams, except that instead of integrators
they have unit delays. A unit delay simply delays the signal by one sample.
That is the output of a unit delay comes “one sample late” compared to the
input. Apparently, the implementation of a unit delay requires a variable, which
will be used to store the new incoming value and keep it there until the next
sample. Thus, a unit delay element has a state, while the other block diagram
elements are obviously stateless. This makes the unit delays in a way similar to
the integrators in the analog block diagrams, where the integrators are the only
elements with a state.

A unit delay element in a block diagram is denoted as:

z−1// //

The reason for the notation z−1 will be explained a little bit later. Using a unit
delay, we can create a block diagram for our naive integrator (Fig. 3.1). For an
arbitrary sampling period we obtain the structure in Fig. 3.2. For an integrator
with embedded cutoff gain we can combine the ωc gain element with the T gain
element (Fig. 3.3). Notice that the integrator thereby becomes invariant to the
choice of the time units, since ωcT is invariant to this choice.

Now let’s construct the block diagram of the naive 1-pole lowpass filter.
Recalling the implementation routine:

// perform one sample tick of the lowpass filter
y := y + (x-y)*omega_c;

we obtain the diagram in Fig. 3.4. The z−1 element in the feedback from the
filter’s output to the leftmost summator is occurring due to the fact that we are

3.4. BLOCK DIAGRAMS 33

+ '!&"%#$// •//

z−1 oo

OO //x[n] y[n]

Figure 3.1: Naive integrator for T = 1.

MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]
T

Figure 3.2: Naive integrator for arbitrary T .

MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]
ωcT

Figure 3.3: Naive integrator with embedded cutoff.

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO •//

z−1 oo

−
OO //

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�
�

x[n] y[n]
ωcT

Figure 3.4: Naive 1-pole lowpass filter (the dashed line denotes the
integrator).

picking up the previous value of y in the routine when computing the difference
x− y.

This unit delay occurring in the discrete-time feedback is a common problem
in discrete-time implementations. This problem is solvable, however it doesn’t
make too much sense to solve it for the naive integrator-based models, as the
increased complexity doesn’t justify the improvement in sound. We will address
the problem of the zero-delay discrete-time feedback later, for now we’ll con-

34 CHAPTER 3. TIME-DISCRETIZATION

centrate on the naive model in Fig. 3.4. This model can be simplified a bit, by
combining the two z−1 elements into one (Fig. 3.5), so that the block diagram
explicitly contains a single state variable (as does its pseudocode counterpart).

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1

•��

OO
−

OO //

�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�
�
�
�
�

x[n] y[n]
ωcT

Figure 3.5: Naive 1-pole lowpass filter with just one z−1 element
(the dashed line denotes the integrator).

3.5 Transfer function

Let x[n] and y[n] be respectively the input and the output signals of a unit
delay:

z−1// //x[n] y[n]

For a complex exponential input x[n] = esn = zn we obtain

y[n] = es(n−1) = esne−s = znz−1 = z−1x[n]

That is
y[n] = z−1x[n]

That is, z−1 is the transfer function of the unit delay! It is common to express
discrete-time transfer functions as functions of z rather than functions of s. The
reason is that in this case the transfer functions are nonstrictly proper5 rational
functions, similarly to the continuous-time case, which is pretty convenient. So,
for a unit delay we could write H(z) = z−1.

Now we can obtain the transfer function of the naive integrator in Fig. 3.1.
Suppose6 x[n] = X(z)zn and y[n] = Y (z)zn, or shortly, x = X(z)zn and
y = Y (z)zn. Then the output of the z−1 element is yz−1. The output of the
summator is then x+ yz−1, thus

y = x+ yz−1

5Under the assumption of causality, which holds if the system is built of unit delays.
6As in continuous-time case, we take for granted the fact that complex exponentials zn are

eigenfunctions of discrete-time linear time-invariant systems.

3.6. POLES 35

from where
y(1− z−1) = x

and
H(z) =

y

x
=

1
1− z−1

This is the transfer function of the naive integrator (for T = 1).
It is relatively common to express discrete-time transfer functions as ratio-

nal functions of z−1 (like the one above) rather than rational functions of z.
However, for the purposes of the analysis it is also often convenient to have
them expressed as rational functions of z (particularly, for finding their poles
and zeros). We can therefore multiply the numerator and the denominator of
the above H(z) by z, obtaining:

H(z) =
z

z − 1

Since z = es, the frequency response is obtained as H(ejω). The amplitude
and phase responses are

∣∣H(ejω)
∣∣ and argH(ejω) respectively.7

For T 6= 1 we obtain
H(z) = T

z

z − 1

and, since z = esT , the frequency response is H(ejωT).

Now let’s obtain the transfer function of the naive 1-pole lowpass filter in
Fig. 3.5, where, for the simplicity of notation, we assume T = 1. Assuming
complex exponentials x = X(z)zn and y = Y (z)zn we have x and yz−1 as
the inputs of the first summator. Respectively the integrator’s input is ωc(x−
yz−1). And the integrator output is the sum of yz−1 and the integrator’s input.
Therefore

y = yz−1 + ωc(x− yz−1)

From where (
1− (1− ωc)z−1

)
y = ωcx

and
H(z) =

y

x
=

ωc
1− (1− ωc)z−1

=
ωcz

z − (1− ωc)

The transfer function for T 6= 1 can be obtained by simply replacing ωc by ωcT .
The respective amplitude response is plotted in Fig. 3.6. Comparing it to

the amplitude response of the analog prototype we can observe serious deviation
closer to the Nyquist frequency. The phase response (Fig. 3.7) has similar
deviation problems.

3.6 Poles

Discrete-time block diagrams are differing from continuous-time block diagrams
only by having z−1 elements instead of integrators. Recalling that the transfer

7Another way to look at this is to notice that in order for zn to be a complex sinusoid ejωn

we need to let z = ejω .

36 CHAPTER 3. TIME-DISCRETIZATION

ω

|H(ejω)|, dB

π0.1π0.01π0.001π 0.02π 1 1.2

0

-6

-12

-18

Figure 3.6: Amplitude response of a naive 1-pole lowpass filter for a
number of different cutoffs. Dashed curves represent the respective
analog filter responses for the same cutoffs.

ω

argH(ejω)

π0.1π0.01π0.001π 0.02π 1 1.2

0

−π/4

−π/2

Figure 3.7: Phase response of a naive 1-pole lowpass filter for a
number of different cutoffs. Dashed curves represent the respective
analog filter responses for the same cutoffs.

function of an integrator is s−1, we conclude that from the formal point of view
the difference is purely notational.

Now, the transfer functions of continuous-time block diagrams are non-
strictly proper rational functions of s. Respectively, the transfer functions of
discrete-time block diagrams are nonstrictly proper rational functions of z.

Thus, discrete-time transfer functions will have poles and zeros in a way sim-
ilar to continuous-time transfer functions. Similarly to continuous-time transfer
functions, the poles will define the stability of a linear time-invariant filter. Con-
sider that z = esT and recall the stability criterion Re s < 0 (where s = pn,
where pn are the poles). Apparently, Re s < 0 ⇐⇒ |z| < 1. We might there-
fore intuitively expect the discrete-time stability criterion to be |pn| < 1 where
pn are the discrete-time poles. This is indeed the case, a linear time-invariant

3.7. TRAPEZOIDAL INTEGRATION 37

difference system8 is stable if and only if all its poles are located inside the unit
circle.

3.7 Trapezoidal integration

Instead of naive integration, we could attempt using the trapezoidal integration
method (T = 1):

// perform one sample tick of the integrator
integrator_output := integrator_output +

(integrator_input + previous_integrator_input)/2;
previous_integrator_input := integrator_input;

Notice that now we need two state variables per integrator: integrator output
and previous integrator input. The block diagram of a trapezoidal integrator is
shown in Fig. 3.8. We’ll refer to this integrator as a direct form I trapezoidal
integrator. The reason for this term will be explained later.

•// + '!&"%#$//

z−1//

OO
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]

1/2

Figure 3.8: Direct form I trapezoidal integrator (T = 1).

We could also construct a trapezoidal integrator implementation with only
a single state variable. Consider the expression for the trapezoidal integrator’s
output:

y[n] = y[n0 − 1] +
n∑

ν=n0

x[ν − 1] + x[ν]
2

(3.2)

Suppose y[n0−1] = 0 and x[n0−1]=0, corresponding to a zero initial state (recall
that both y[n0 − 1] and x[n0 − 1] are technically stored in the z−1 elements).
Then

y[n] =
n∑

ν=n0

x[ν − 1] + x[ν]
2

=
1
2

(
n∑

ν=n0

x[ν − 1] +
n∑

ν=n0

x[ν]

)
=

=
1
2

(
n∑

ν=n0+1

x[ν − 1] +
n∑

ν=n0

x[ν]

)
=

1
2

(
n−1∑
ν=n0

x[ν] +
n∑

ν=n0

x[ν]

)
=

=
u[n− 1] + u[n]

2
8Difference systems can be defined as those, whose block diagrams consist of gains, sum-

mators and unit delays. More precisely those are causal difference systems. There are also
difference systems with a lookahead into the future, but we don’t consider them in this book.

38 CHAPTER 3. TIME-DISCRETIZATION

where

u[n] =
n∑

ν=n0

x[ν]

Now notice that u[n] is the output of a naive integrator, whose input signal
is x[n]. At the same time y[n] is the average of the previous and the current
output values of the naive integrator. This can be implemented by the structure
in Fig. 3.9. Similar considerations apply for nonzero initial state. We’ll refer to
the integrator in Fig. 3.9 as a direct form II or canonical trapezoidal integrator.
The reason for this term will be explained later.

+ '!&"%#$// •// + '!&"%#$//

z−1

��

•��

OO OO
MMMqqq
// //x[n] y[n]

1/2

Figure 3.9: Direct form II (canonical) trapezoidal integrator (T =
1).

We can develop yet another form of the bilinear integrator with a single state
variable. Let’s rewrite (3.2) as

y[n] = y[n0 − 1] +
x[n0 − 1]

2
+

n−1∑
ν=n0

x[ν] +
x[n]

2

and let

u[n− 1] = y[n]− x[n]
2

= y[n0 − 1] +
x[n0 − 1]

2
+

n−1∑
ν=n0

x[ν]

Notice that

y[n] = u[n− 1] +
x[n]

2
(3.3)

and

u[n] = u[n− 1] + x[n] = y[n] +
x[n]

2
(3.4)

Expressing (3.3) and (3.4) in a graphical form, we obtain the structure in
Fig. 3.10, where the output of the z−1 block corresponds to u[n − 1]. We’ll
refer to the integrator in Fig. 3.10 as a transposed direct form II or transposed
canonical trapezoidal integrator. The reason for this term will be explained
later.

The positioning of the 1/2 gain prior to the integrator in Fig. 3.10 is quite
convenient, because we can combine the 1/2 gain with the cutoff gain into a
single gain element. In case of an arbitrary sampling period we could also
include the T factor into the same gain element, thus obtaining the structure in

3.7. TRAPEZOIDAL INTEGRATION 39

MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

1/2

Figure 3.10: Transposed direct form II (transposed canonical)
trapezoidal integrator (T = 1).

Fig. 3.11. A similar trick can be performed for the other two integrators, if we
move the 1/2 gain element to the input of the respective integrator. Since the
integrator is a linear time-invariant system, this doesn’t affect the integrator’s
behavior in a slightest way.

MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

ωcT/2

Figure 3.11: Transposed direct form II (transposed canonical)
trapezoidal integrator with “embedded” cutoff gain.

Typically one would prefer the direct form II integrators to the direct form I
integrator, because the former have only one state variable. In this book we will
mostly use the transposed direct form II integrator, because this is resulting in
slightly simpler zero-delay feedback equations and also offers a nice possibility
for the internal saturation in the integrator.

The transfer functions of all three integrators are identical. Let’s obtain e.g.
the transfer function of the transposed canonical integrator (in Fig. 3.10). Let
u be the output signal of the z−1 element. Assuming signals of the exponential
form zn, we have

u =
(x

2
+ y
)
z−1

y =
x

2
+ u

from where
u = y − x

2
and

y − x

2
=
(x

2
+ y
)
z−1

40 CHAPTER 3. TIME-DISCRETIZATION

or (
y − x

2

)
z =

x

2
+ y

from where
y(z − 1) =

x

2
(z + 1)

and the transfer function of the trapezoidal integrator is thus

H(z) =
y

x
=

1
2
· z + 1
z − 1

For an arbitrary T one has to multiply the result by T , to take the respective
gain element into account:

H(z) =
T

2
· z + 1
z − 1

If also the cutoff gain is included, we obtain

H(z) =
ωcT

2
· z + 1
z − 1

One can obtain the same results for the other two integrators.
What is so special about this transfer function, that makes the trapezoidal

integrator so superior to the naive one, is to be discussed next.

3.8 Bilinear transform

Suppose we take an arbitrary continuous-time block diagram, like the familiar
lowpass filter in Fig. 2.2 and replace all continuous-time integrators by discrete-
time trapezoidal integrators. On the transfer function level, this will correspond
to replacing all s−1 with T

2 ·
z+1
z−1 . That is, technically we perform a substitution

s−1 =
T

2
· z + 1
z − 1

in the transfer function expression.
It would be more convenient to write this substitution explicitly as

s =
2
T
· z − 1
z + 1

(3.5)

The substitution (3.5) is referred to as the bilinear transform, or shortly BLT.
For that reason we can also refer to trapezoidal integrators as BLT integrators.
Let’s figure out, how does the bilinear transform affect the frequency response
of the filter, that is, what is the relationship between the original continuous-
time frequency response prior to the substitution and the resulting discrete-time
frequency response after the substitution.

Let Ha(s) be the original continuous-time transfer function. Then the re-
spective discrete-time transfer function is

Hd(z) = Ha

(
2
T
· z − 1
z + 1

)
(3.6)

3.8. BILINEAR TRANSFORM 41

Respectively, the discrete-time frequency response is

Hd(ejωT) = Ha

(
2
T
· e

jωT − 1
ejωT + 1

)
= Ha

(
2
T
· e

jωT/2 − e−jωT/2

ejωT/2 + e−jωT/2

)
=

= Ha

(
2
T
j tan

ωT

2

)
Notice that Ha(s) in the last expression is evaluated on the imaginary axis!!!
That is, the bilinear transform maps the imaginary axis in the s-plane to the
unit circle in the z-plane! Now, Ha

(
2
T j tan ωT

2

)
is the analog frequency response

evaluated at 2
T tan ωT

2 . That is, the digital frequency response at ω is equal to
the analog frequency response at 2

T tan ωT
2 . This means that the analog fre-

quency response in the range 0 ≤ ω < +∞ is mapped into the digital frequency
range 0 ≤ ωT < π (0 ≤ ω < πfs), that is from zero to Nyquist!9 Denoting
the analog frequency as ωa and the digital frequency as ωd we can express the
argument mapping of the frequency response function as

ωa =
2
T

tan
ωdT

2
(3.7)

or, in a more symmetrical way

ωaT

2
= tan

ωdT

2
(3.8)

Notice that for frequencies much smaller that Nyquist frequency we have ωT �
1 and respectively ωa ≈ ωd.

This is what is so unique about the bilinear transform. It simply warps the
frequency range [0,+∞) into the zero-to-Nyquist range, but otherwise doesn’t
change the frequency response at all! Considering in comparison a naive inte-
grator, we would have obtained:

s−1 =
z

z − 1

s =
z − 1
z

(3.9)

Hd(z) = Ha

(
z − 1
z

)
Hd(ejω) = Ha

(
ejω − 1
ejω

)
= Ha

(
1− e−jω

)
which means that the digital frequency response is equal to the analog transfer
function evaluated on a circle of radius 1 centered at s = 1. This hardly defines
a clear relationship between the two frequency responses.

So, by simply replacing the analog integrators with digital trapezoidal in-
tegrators, we obtain a digital filter whose frequency response is essentially the
same as the one of the analog prototype, except for the frequency warping.
Particularly, the relationship between the amplitude and phase responses of the
filter is fully preserved, which is particularly highly important if the filter is to
be used as a building block in a larger filter. Very close to perfect!

9A similar mapping obviously occurs for the negative frequencies.

42 CHAPTER 3. TIME-DISCRETIZATION

Furthermore, the bilinear transform maps the left complex semiplane in the
s-domain into the inner region of the unit circle in the z-domain. Indeed, let’s
obtain the inverse bilinear transform formula. From (3.5) we have

(z + 1)
sT

2
= z − 1

from where

1 +
sT

2
= z

(
1− sT

2

)
and

z =
1 + sT

2

1− sT
2

(3.10)

The equation (3.10) defines the inverse bilinear transform. Now, if Re s < 0,
then, obviously ∣∣∣∣1 +

sT

2

∣∣∣∣ < ∣∣∣∣1− sT

2

∣∣∣∣
and |z| < 1. Thus, the left complex semiplane in the s-plane is mapped to the
inner region of the unit circle in the z-plane. In the same way one can show
that the right complex semiplane is mapped to the outer region of the unit
circle. And the imaginary axis is mapped to the unit circle itself. Comparing
the stability criterion of analog filters (the poles must be in the left complex
semiplane) to the one of digital filters (the poles must be inside the unit circle),
we conclude that the bilinear transform exactly preserves the stability of the
filters!

In comparison, for a naive integrator replacement we would have the follow-
ing. Inverting the (3.9) substitution we obtain

sz = z − 1

z(1− s) = 1

and
z =

1
1− s

Assuming Re s < 0 and considering that in this case∣∣∣∣z − 1
2

∣∣∣∣ =
∣∣∣∣ 1
1− s

− 1
2

∣∣∣∣ =
∣∣∣∣1− 1

2 + s
2

1− s

∣∣∣∣ =
∣∣∣∣12 · 1 + s

1− s

∣∣∣∣ < 1
2

we conclude that the left semiplane is mapped into a circle of radius 0.5 cen-
tered at z = 0.5. So the naive integrator overpreserves the stability, which is
not nice, since we would rather have digital filters behaving as closely to their
analog prototypes as possible. Considering that this comes in a package with a
poor frequency response transformation, we should rather stick with trapezoidal
integrators.

So, let’s replace e.g. the integrator in the familiar lowpass filter structure in
Fig. 2.2 with a trapezoidal integrator. Performing the integrator replacement,
we obtain the structure in Fig. 3.12. We will refer to the trapezoidal integrator
replacement method as the topology-preserving transform (TPT) method. This
term will be explained and properly introduced later. For now, before we simply
attempt to implement the structure in Fig. 3.12 in code, we should become aware
of a few further issues.

3.9. CUTOFF PREWARPING 43

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •//

+ '!&"%#$//

z−1

OO

OO

oo

•//
−

OO //

�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�
�
�
�
�

x[n] y[n]

ωcT/2

Figure 3.12: 1-pole TPT lowpass filter (the dashed line denotes the
trapezoidal integrator).

3.9 Cutoff prewarping

Suppose we are using the lowpass filter structure in Fig. 3.12 and we wish to
have its cutoff at ωc. If we however simply put this ωc parameter into the
respective integrator gain element ωcT/2, our frequency response at the cutoff
will be different from the expected one. Considering the transfer function of an
analog 1-pole lowpass filter (2.2), at the cutoff we expect

H(jωc) =
ωc

ωc + jωc
=

1
1 + j

corresponding to a −3dB drop in amplitude and a 45◦ phase shift. However,
letting ωa = ωc in (3.8) we will obtain some ωd 6= ωc. That is the cutoff point
of the analog frequency response will be mapped to some other frequency ωd in
the digital frequency response (Fig. 3.13). This is the result of the frequency
axis warping by the bilinear transform.10

However, if we desire to have the 1/(1 + j) frequency response exactly at
ωd = ωc, we can simply apply (3.7) to ωd = ωc, thereby obtaining some ωa. This
ωa should be used in the gain element of the integrator, that is the gain should
be ωaT/2 instead of ωcT/2. This cutoff substitution is referred to as the cutoff
prewarping.11 The result of the cutoff prewarping is illustrated in Fig. 3.14.

Apparently, the importance of the cutoff prewarping grows as the cutoff
values get higher. For cutoff values much lower than the Nyquist frequency the
prewarping has only a minor effect.

Notice that it’s possible to choose any other point for the prewarping, not
necessarily the cutoff point. That is it’s possible to make any single chosen
point on the analog frequency response to be located at the desired digital
frequency. In order to do so we first choose ωd of interest, then use (3.7) to
find the respective ωa. Now we want a particular point on the analog frequency

10The response difference at the cutoff in Fig. 3.13 might seem negligible. However it will be
even higher for cutoffs closer to Nyquist. Also for filters with strong resonance the detuning
of the cutoff by frequency warping might be way more noticeable.

11Since the value ωaT/2 is the one explicitly used in the integrator, it’s more practical to
directly use (3.8) rather than (3.7) for the prewarping.

44 CHAPTER 3. TIME-DISCRETIZATION

ω

|H(ejω)|, dB

π0.1π0.01π0.001π 0.02π 1 1.2

0

-6

-12

-18

Figure 3.13: Amplitude response of an unprewarped bilinear-
transformed 1-pole lowpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Observe the difference between the analog and
digital responses at each cutoff.

ω

|H(ejω)|, dB

π0.1π0.01π0.001π 0.02π 1 1.2

0

-6

-12

-18

Figure 3.14: Amplitude response of an prewarped bilinear-
transformed 1-pole lowpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Observe the identical values of the analog and
digital responses at each cutoff.

response to be located at ωa, which can be achieved by a proper choice of the
analog cutoff value. Now we put this cutoff value into the integrators and that’s
it!

3.10 Zero-delay feedback

There is a further problem with the trapezoidal integrator replacement in the
TPT method. Replacing the integrators with trapezoidal ones introduces delay-

3.10. ZERO-DELAY FEEDBACK 45

less feedback loops (that is, feedback loops not containing any delay elements)
into the structure. E.g. consider the structure in Fig. 3.12. Carefully examining
this structure, we find that it has a feedback loop which doesn’t contain any
unit delay elements. This loop goes from the leftmost summator through the
gain, through the upper path of the integrator to the filter’s output and back
through the large feedback path to the leftmost summator.

Why is this delayless loop a problem? Let’s consider for example the naive
lowpass filter structure in Fig. 3.5. Suppose we don’t have the respective pro-
gram code representation and wish to obtain it from the block diagram. We
could do it in the following way. Consider Fig. 3.15, which is the same as Fig. 3.5,
except that it labels all signal points. At the beginning of the computation of
a new sample the signals A and B are already known. A = x[n] is the current
input sample and B is taken from the internal state memory of the z−1 element.
Therefore we can compute C = A − B. Then we can compute D = (ωcT)C
and finally E = D+B. The value of E is then stored into the internal memory
of the z−1 element (for the next sample computation) and is also sent to the
output as the new y[n] value. Easy, right?

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1

•��

OO
−

OO //A

B

C D E
x[n] y[n]

ωcT

Figure 3.15: Naive 1-pole lowpass filter and the respective signal
computation order.

Now the same approach doesn’t work for the structure in Fig. 3.12. Because
there is a delayless loop, we can’t find a starting point for the computation
within that loop.

The classical way of solving this problem is exactly the same as what we had
in the naive approach: introduce a z−1 into the delayless feedback, turning it
into a feedback containing a unit delay (Fig. 3.16). Now there are no delayless
feedback paths and we can arrange the computation order in a way similar to
Fig. 3.15. This however destroys the resulting frequency response, because the
transfer function is now different. In fact the obtained result is not significantly
better (if better at all) than the one from the naive approach. There are some
serious artifacts in the frequency response closer to the Nyquist frequency, if the
filter cutoff is sufficiently high.

Therefore we shouldn’t introduce any modifications into the structure and
solve the zero-delay feedback problem instead. The term “zero-delay feedback”
originates from the fact that we avoid introducing a one-sample delay into the
feedback (like in Fig. 3.16) and instead keep the feedback delay equal to zero.

So, let’s solve the zero-delay feedback problem for the structure in Fig. 3.12.

46 CHAPTER 3. TIME-DISCRETIZATION

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •//

+ '!&"%#$//

z−1

OO

OO

oo

•//

z−1 oo

−
OO //x[n] y[n]

ωcT/2

Figure 3.16: Digital 1-pole lowpass filter with a trapezoidal inte-
grator and an extra delay in the feedback.

Notice that this structure simply consists of a negative feedback loop around
a trapezoidal integrator, where the trapezoidal integrator structure is exactly
the one from Fig. 3.11. We will now introduce the concept of the instantaneous
response of this integrator structure.

So, consider the integrator structure in Fig. 3.11 and let u[n] denote the
input signal of the z−1 element, respectively its output will be u[n − 1]. Since
there are no delayless loops in the integrator, it’s not difficult to obtain the
following expression for y[n]:

y[n] =
ωcT

2
x[n] + u[n− 1] (3.11)

Notice that, at the time x[n] arrives at the integrator’s input, all values in
the right-hand side of (3.11) are known (no unknown variables). Introducing
notation

g =
ωcT

2
s[n] = u[n− 1]

we have
y[n] = gx[n] + s[n]

or, dropping the discrete time argument notation for simplicity,

y = gx+ s

That is, at any given time moment n, the output of the integrator y is a linear
function of its input x, where the values of the parameters of this linear function
are known. The g parameter doesn’t depend on the internal state of the integra-
tor, while the s parameter does depend on the internal state of the integrator.
We will refer to the linear function f(x) = gx+ s as the instantaneous response
of the integrator at the respective implied time moment n. The coefficient g can
be referred to as the instantaneous response gain or simply instantaneous gain.
The term s can be referred to as the instantaneous response offset or simply
instantaneous offset.

3.10. ZERO-DELAY FEEDBACK 47

Let’s now redraw the filter structure in Fig. 3.12 as in Fig. 3.17. We have
changed the notation from x to ξ in the gx+s expression to avoid the confusion
with the input signal x[n] of the entire filter.

+ '!&"%#$// gξ + s// •//
−

OO //x[n] y[n]

Figure 3.17: 1-pole TPT lowpass filter with the integrator in the
instantaneous response form.

Now we can easily write and solve the zero-delay feedback equation. Indeed,
suppose we already know the filter output y[n]. Then the output signal of the
feedback summator is x[n]−y[n] and the output of the integrator is respectively
g(x[n]− y[n]) + s. Thus

y[n] = g(x[n]− y[n]) + s

or, dropping the time argument notation for simplicity,

y = g(x− y) + s (3.12)

The equation (3.12) is the zero-delay feedback equation for the filter in Fig. 3.17
(or, for that matter, in Fig. 3.12). Solving this equation, we obtain

y(1 + g) = gx+ s

and respectively

y =
gx+ s

1 + g
(3.13)

Having found y (that is, having predicted the output y[n]), we can then proceed
with computing the other signals in the structure in Fig. 3.12, beginning with
the output of the leftmost summator.12

It’s worth mentioning that (3.13) can be used to obtain the instantaneous
response of the entire filter from Fig. 3.12. Indeed, rewriting (3.13) as

y =
g

1 + g
x+

s

1 + g

and introducing notations

G =
g

1 + g

S =
s

1 + g

we have
y = Gx+ S (3.14)

12Notice that the choice of the signal point for the prediction is rather arbitrary. We could
have chosen any other point within the delayless feedback loop.

48 CHAPTER 3. TIME-DISCRETIZATION

So, the instantaneous response of the entire lowpass filter in Fig. 3.12 is again a
linear function of the input. We could use the expression (3.14) e.g. to solve the
zero-delay feedback problem for some larger feedback loop containing a 1-pole
lowpass filter.

Let’s now convert the structure in Fig. 3.12 into a piece of code. We already
know y from (3.14). Let’s notice that the output of the ωcT/2 gain is used twice
in the structure. Let v denote the output of this gain. Since g = ωcT/2, we
have

v = g(x− y) = g (x−Gx− S) = g

(
x− g

1 + g
x− s

1 + g

)
=

= g

(
1

1 + g
x− s

1 + g

)
= g

x− s
1 + g

(3.15)

Recall that s is the output value of the z−1 element and let u denote its input
value. Then

y = v + s (3.16)

and

u = y + v (3.17)

The equations (3.15), (3.16) and (3.17) can be directly expressed in program
code:

// perform one sample tick of the lowpass filter
v := (x-z1_state)*g/(1+g);
y := v + z1_state;
z1_state := y + v;

or instead expressed in a block diagram form (Fig. 3.18). Notice that the block
diagram doesn’t contain any delayless loops anymore.

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

•OO

OO

oo

−
OOx[n] y[n]

g/(1 + g)

Figure 3.18: 1-pole TPT lowpass filter with resolved zero-delay
feedback.

3.11. DIRECT FORMS 49

3.11 Direct forms

Consider again the equation (3.6), which describes the application of the bilin-
ear transform to convert an analog transfer function to a digital one. There is a
classical method of digital filter design which is based directly on this transfor-
mation, without using any integrator replacement techniques. In the author’s
experience, for music DSP needs this method typically has a largely inferior
quality, compared to the TPT. Nevertheless we will describe it here for com-
pleteness and for a couple of other reasons. Firstly, it would be nice to try to
analyse and understand the reasons for the problems of this method. Secondly,
this method could be useful once in a while. Particularly, its deficiencies mostly
disappear in the time-invariant (unmodulated or sufficiently slowly modulated)
case.

Having obtained a digital transfer function from (3.6), we could observe,
that, since the original analog transfer function was a rational function of s, the
resulting digital transfer function will necessarily be a rational function of z.
E.g. using the familiar 1-pole lowpass transfer function

Ha(s) =
ωc

s+ ωc

we obtain

Hd(z) = Ha

(
2
T
· z − 1
z + 1

)
=

ωc
2
T ·

z−1
z+1 + ωc

=

=
ωcT

2 (z + 1)
(z − 1) + ωcT

2 (z + 1)
=

ωcT
2 (z + 1)(

1 + ωcT
2

)
z −

(
1− ωcT

2

)
Now, there are standard discrete-time structures allowing an implementation
of any given nonstrictly proper rational transfer function. It is easier to use
these structures, if the transfer function is expressed as a rational function of
z−1 rather than the one of z. In our particular example, we can multiply the
numerator and the denominator by z−1, obtaining

Hd(z) =
ωcT

2 (1 + z−1)(
1 + ωcT

2

)
−
(
1− ωcT

2

)
z−1

The further requirement is to have the constant term in the denominator equal
to 1, which can be achieved by dividing everything by 1 + ωcT/2:

Hd(z) =

ωcT
2

1+ωcT
2

(1 + z−1)

1− 1−ωcT2
1+ωcT

2
z−1

(3.18)

Now suppose we have an arbitrary rational nonstrictly proper transfer function
of z, expressed via z−1 and having the constant term in the denominator equal
to 1:

H(z) =

N∑
n=0

bnz
−n

1−
N∑
n=1

anz
−n

(3.19)

50 CHAPTER 3. TIME-DISCRETIZATION

This transfer function can be implemented by the structure in Fig. 3.19 or by
the structure in Fig. 3.20. One can verify (by computing the transfer functions
of the respective structures) that they indeed implement the transfer function
(3.19). There are also transposed versions of these structures, which the readers
should be able to construct on their own.

•// z−1// •// z−1// •// z−1. . . //

111
��

+ '!&"%#$��

111
��

+ '!&"%#$��

111
��

+ '!&"%#$��

111
��

+ '!&"%#$��
. . .oooooo

•��oo z−1// •// z−1// •// z−1. . . //

111
OO

OO

111
OO

OO

111
OO

OO

b0 b1 b2 bN

a1 a2 aN

x(t)

y(t)

Figure 3.19: Direct form I (DF1).

+ '!&"%#$//

•�� z−1// •// z−1// •// z−1. . . // •//

111
OO

+ '!&"%#$OO

111
OO

+ '!&"%#$OO

111
OO

. . .oooooo

111
��

+ '!&"%#$��

111
��

+ '!&"%#$��

111
��

+ '!&"%#$��

111
��

. . .oooooooo

b0 b1 b2 bN

a1 a2 aN

x(t)

y(t)

Figure 3.20: Direct form II (DF2), a.k.a. canonical form.

Let’s use the direct form II to implement (3.18). Apparently, we have

N = 1

b0 = b1 =
ωcT

2

1 + ωcT
2

3.11. DIRECT FORMS 51

a1 =
1− ωcT

2

1 + ωcT
2

and the direct form implementation itself is the one in Fig. 3.21 (we have merged
the b0 and b1 coefficients into a single gain element).

+ '!&"%#$// •// + '!&"%#$//

z−1

��

•��

111OO

OO OO
MMMqqq
// //x[n] y[n]
b0

a1

Figure 3.21: Direct form II 1-pole lowpass filter.

In the time-invariant (unmodulated) case the performance of the direct form
filter in Fig. 3.21 should be identical to the TPT filter in Fig. 3.12, since both
implement the same bilinear-transformed analog transfer function (2.2). When
the cutoff is modulated, however, the performance will be different.

This is very easy to understand intuitively. First, consider the two following
analog structures, implementing two different ways of combining a cutoff gain
with an integrator:

MMMqqq
//

∫
// //

ωc

and
∫

//
MMMqqq
// //
ωc

Suppose the input signal is a sine and there is a sudden jump in the cutoff
parameter. In this case there will also be a sudden jump in the input of the first
integrator, however the jump will be converted into a break by the integration.
In the second case the jump will not be converted, because it appears after the
integrator. Ignoring the problem of a DC offset possibly introduced by such
jump in the first structure (because in real stable filters this DC offset will
quickly disappear with time), we should say that the first structure has a better
modulation performance, since the cutoff jumps do not produce so audible clicks
in the output.

Apparently the two structures behave differently in the time-varying case,
even though both have the same transfer function ωc/s. We say that the two
structures have the same transfer function but different topology (the latter
term referring to the components used in the block diagram and the way they
are connected to each other). As mentioned, the transfer function is applicable
only to the time-invariant case. No wonder its possible to have structures with
identical transfer functions, but different time-varying behavior.

Now, returning to the comparison of implementations in Figs. 3.21 and 3.12,
we notice that the structure in Fig. 3.21 contains a gain element at the output,
the value of this gain being approximately proportional to the cutoff (at low
cutoffs). This will particularly produce unsmoothed jumps in the output in
response to jumps in the cutoff value. In the structure in Fig. 3.12, on the other
hand, the cutoff jumps will be smoothed by the integrator. Thus, the difference

52 CHAPTER 3. TIME-DISCRETIZATION

between the two structures is similar to the just discussed effect of the cutoff
gain placement with the integrator.

We should conclude that, other things being equal, the structure in Fig. 3.21
is inferior to the one in Fig. 3.12 (or Fig. 3.18). In this respect consider that
Fig. 3.12 is trying to explicitly emulate the analog integration behavior, preserv-
ing the topology of the original analog structure, while Fig. 3.21 is concerned
solely with implementing a correct transfer function. Since Fig. 3.21 implements
a classical approach to the bilinear transform application for digital filter design
(which ignores the filter topology) we’ll refer to the trapezoidal integration re-
placement technique as the topology-preserving bilinear transform (or, shortly,
TPBLT). Or, even shorter, we can refer to this technique as simply the topology-
preserving transform (TPT), implicitly assuming that the bilinear transform is
being used.13

In principle, sometimes there are possibilities to “manually fix” the struc-
tures such as in Fig. 3.21. E.g. the time-varying performance of the latter is
drastically improved by moving the b0 gain to the input. The problem however
is that this kind of fixing quickly gets more complicated (if being possible at
all) with larger filter structures. On the other hand, the TPT method explicitly
aims at emulating the time-varying behavior of the analog prototype structure,
which aspect is completely ignored by the classical transform approach. Be-
sides, if the structure contains nonlinearities, preserving the topology becomes
absolutely critical, because otherwise these nonlinearites can not be placed in
the digital model.14 Also, the direct forms suffer from precision loss issues, the
problem growing bigger with the order of the system. For that reason in practice
the direct forms of orders higher than 2 are rarely used,15 but even 2nd-order
direct forms could already noticeably suffer from precision losses.

3.12 Other replacement techniques

The trapezoidal integrator replacement technique can be seen as a particular
case of a more general set of replacement techniques. Suppose we have two
filters, whose frequency response functions are F1(ω) and F2(ω) respectively.
The filters do not need to have the same nature, particularly one can be an
analog filter while the other can be a digital one. Suppose further, there is a
frequency axis mapping function ω′ = µ(ω) such that

F2(ω) = F1(µ(ω))

Typically µ(ω) should map the entire domain of F2(ω) onto the entire domain
of F1(ω) (however the exceptions are possible).

13Apparently, naive filter design techniques also preserve the topology, but they do a rather
poor job on the transfer functions. Classical bilinear transform approach does a good job on
the transfer function, but doesn’t preserved the topology. The topology-preserving transform
achieves both goals simultaneously.

14This is related to the fact that transfer functions can be defined only for linear time-
invariant systems. Nonlinear cases are obviously not linear, thus some critical information
can be lost, if the conversion is done solely based on the transfer functions.

15A higher-order transfer function is typically decomposed into a product of transfer func-
tions of 1st- and 2nd-order rational functions (with real coefficients!). Then it can be imple-
mented by a serial connection of the respective 1st- and 2nd-order direct form filters.

3.12. OTHER REPLACEMENT TECHNIQUES 53

To make the subsequent discussion more intuitive, we will assume that µ(ω)
is monotone, although this is absolutely not a must.16 In this case we could say
that F2(ω) is obtained from F1(ω) by a frequency axis warping. Particularly,
this is exactly what happens in the bilinear transform case (the mapping µ(ω)
is then defined by the equation (3.7)). One cool thing about the frequency axis
warping is that it preserves the relationship between the amplitude and phase.

Suppose that we have a structure built around filters of frequency response
F1(ω), and the rest of the structure doesn’t contain any memory elements (such
as integrators or unit delays). Then the frequency response F (ω) of this struc-
ture will be a function of F1(ω):

F (ω) = Φ(F1(ω))

where the specifics of the function Φ(w) will be defined by the details of the
container structure. E.g. if the building-block filters are analog integrators, then
F1(ω) = 1/jω. For the filter in Fig. 2.2 we then have

Φ(w) =
w

w + 1

Indeed, substituting F1(ω) into Φ(w) we obtain

F (ω) = Φ(F1(ω)) = Φ(1/jω) =
1/jω

1 + 1/jω
=

1
1 + jω

which is the already familiar to us frequency response of the analog lowpass
filter.

Now, we can view the trapezoidal integrator replacement as a substitution
of F2 instead of F1, where µ(ω) is obtained from (3.7):

ωa = µ(ωd) =
2
T

tan
ωdT

2

The frequency response of the resulting filter is obviously equal to Φ(F2(ω)),
where F2(ω) is the frequency response of the trapezoidal integrators (used in
place of analog ones). But since F2(ω) = F1(µ(ω)).

Φ(F2(ω)) = Φ(F1(µ(ω)))

which means that the frequency response Φ(F2(·)) of the structure with trape-
zoidal integrators is obtained from the frequency response Φ(F1(·)) of the struc-
ture with analog integrators simply by warping the frequency axis. If the warp-
ing is not too strong, the frequency responses will be very close to each other.
This is exactly what is happening in the trapezoidal integrator replacement and
generally in the bilinear transform.

Differentiator-based filters

We could have used some other two filters, with their respective frequency re-
sponses F1 and F2. E.g. we could consider continuous-time systems built around

16Strictly speaking, we don’t even care whether µ(ω) is single-valued. We could have instead
required that

F2(µ2(ω)) = F1(µ1(ω))

for some µ1(ω) and µ2(ω).

54 CHAPTER 3. TIME-DISCRETIZATION

differentiators rather than integrators.17 The transfer function of a differentia-
tor is apparently simply H(s) = s, so we could use (3.5) to build a discrete-time
“trapezoidal differentiator”. Particularly, if we use the direct form II approach,
it could look similarly to the integrator in Fig. 3.9. When embedding the cutoff
control into a differentiator (in the form of a 1/ωc gain), it’s probably better
to position it after the differentiator, to avoid the unnecessary “de-smoothing”
of the control modulation by the differentiator. Replacing the analog differen-
tiators in a structure by such digital trapezoidal differentiators we effectively
perform a differentiator-based TPT.

E.g. if we replace the integrator in the highpass filter in Fig. 2.8 by a dif-
ferentiator, we essentially perform a 1/s← s substitution, thus we should have
obtained a (differentiator-based) lowpass filter. Remarkably, if we perform a
differentiator-based TPT on such filter, the obtained digital structure is fully
equivalent to the previously obtained integrator-based TPT 1-pole lowpass fil-
ter.

Allpass substitution

One particularly interesting case occurs when F1 and F2 define two different
allpass frequency responses. That is |F1(ω)| ≡ 1 and |F2(ω)| ≡ 1. In this case
the mapping µ(ω) is always possible. Especially since the allpass responses (de-
fined by rational transfer functions of analog and digital systems) always cover
the entire phase range from −π to π.18 In intuitive terms it means: for a filter
built of identical allpass elements, we can always replace those allpass elements
with an arbitrary other type of allpass elements (provided all other elements are
memoryless, that is there are only gains and summators). We will refer to this
process as allpass substitution. Whereas in the trapezoidal integrator replace-
ment we have replaced analog integrators by digital trapezoidal integrators, in
the allpass substitution we replace allpass filters of one type by allpass filters of
another type.

We can even replace digital allpass filters with analog ones and vice versa.
E.g., noticing that z−1 elements are allpass filters, we could replace them with
analog allpass filters. One particularly interesting case arises out of the inverse
bilinear transform (3.10). From (3.10) we obtain

z−1 =
1− sT

2

1 + sT
2

(3.20)

The right-hand side of (3.20) obviously defines a stable 1-pole allpass filter,
whose cutoff is 2/T . We could take a digital filter and replace all z−1 elements
with an analog allpass filter structure implementing (3.20). By doing this we
would have performed a topology-preserving inverse bilinear transform.

We could then apply the cutoff parametrization to these underlying analog
allpass elements:

sT

2
← s

ωc

17The real-world analog electronic circuits are “built around” integrators rather than dif-
ferentiators. However, formally one still can “invert” the causality direction in the equations
and pretend that ẋ(t) is defined by x(t), and not vice versa.

18Actually, for −∞ < ω < +∞, they cover this range exactly N times, where N is the order
of the filter.

3.13. INSTANTANEOUSLY UNSTABLE FEEDBACK 55

so that we obtain

z−1 =
1− s/ωc
1 + s/ωc

The expression s/ωc can be also rewritten as sT/2α, where α is the cutoff scaling
factor:

z−1 =
1− sT/2α
1 + sT/2α

(3.21)

Finally, we can apply the trapezoidal integrator replacement to the cutoff-scaled
analog filter, converting it back to the digital domain. By doing so, we have
applied the cutoff scaling in the digital domain! On the transfer function level
this is equivalent to applying the bilinear transform to (3.21), resulting in

z−1 =
1− sT/2α
1 + sT/2α

←
1− z−1

α(z+1)

1 + z−1
α(z+1)

=

=
α(z + 1)− (z − 1)
α(z + 1) + (z − 1)

=
(α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

That is, we have obtained a discrete-time allpass substitution

z−1 ← (α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

which applies cutoff scaling in the digital domain.19 The allpass filter

H(z) =
(α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

should have been obtained, as described, by the trapezoidal integrator replace-
ment in an analog implementation of (3.21), alternatively we could use a direct
form implementation. Notice that this filter has a pole at z = (α− 1)/(α+ 1).
Since |α− 1| < |α+ 1| ∀α > 0, the pole is always located inside the unit circle,
and the filter is always stable.

3.13 Instantaneously unstable feedback

Writing the solution (3.13) for the zero-delay feedback equation (3.12) we in fact
have slightly jumped the gun. Why? Let’s consider once again the structure in
Fig. 3.17 and suppose g gets negative and starts growing in magnitude further
in the negative direction.20 When g becomes equal to −1, the denominator of
(3.13) turns into zero. Something bad must be happening at this moment.

In order to understand the meaning of this situation, let’s consider the de-
layless feedback path as if it was an analog feedback. An analog signal value

19Differently from the analog domain, the digital cutoff scaling doesn’t exactly shift the
response along the frequency axis in a logarithmic scale, as some frequency axis warping is
involved. The resulting frequency response change however is pretty well approximated as
shiting in the lower frequency range.

20Of course, such lowpass filter formally has a negative cutoff value. It is also unstable.
However unstable circuits are very important as the linear basis for the analysis and imple-
mentation of e.g. nonlinear self-oscillating filters. Therefore we wish to be able to handle
unstable circuits as well.

56 CHAPTER 3. TIME-DISCRETIZATION

can’t change instantly. It can change very quickly, but not instantly, it’s always
a continuous function of time. We could imagine there is a smoother unit some-
where in the feedback path (Fig. 3.22). This smoother unit has a very very fast
response time. We introduce the notation ȳ for the output of the smoother.

+ '!&"%#$// gξ + s// •//

σ̂ oo

−
OO //x[n] y[n]

ȳ

Figure 3.22: Digital 1-pole lowpass filter with a trapezoidal inte-
grator in the instantaneous response form and a smoother unit σ̂
in the delayless feedback path.

So, suppose we wish to compute a new output sample y[n] for the new input
sample x[n]. At the time x[n] “arrives” at the filter’s input, the smoother still
holds the old output value y[n− 1]. Let’s freeze the discrete time at this point
(which formally means we simply are not going to update the internal state
of the z−1 element). At the same time we will let the continuous time t run,
formally starting at t = 0 at the discrete time moment n.

In this time-frozen setup we can choose arbitrary units for the continuous
time t. The smoother equation can be written as

sgn ˙̄y(t) = sgn
(
y(t)− ȳ(t)

)
That is, we don’t specify the details of the smoothing behavior, however the
smoother output always changes in the direction from ȳ towards y at some (not
necessarily constant) speed.21 Particularly, we can simply define a constant
speed smoother:

˙̄y = sgn(y − ȳ)

or we could use a 1-pole lowpass filter as a smoother:

˙̄y = y − ȳ

The initial value of the smoother is apparently ȳ(0) = y[n− 1].
Now consider that

sgn ˙̄y(t) = sgn
(
y(t)− ȳ(t)

)
= sgn

(
g(x[n]− ȳ(t)) + s− ȳ(t)

)
=

= sgn
(
(gx[n] + s)− (1 + g)ȳ(t)

)
= sgn

(
a− (1 + g)ȳ(t)

)
where a = gx[n]+s is constant in respect to t. First, assume 1+g > 0. Further,
suppose a− (1+g)ȳ(0) > 0. Then ˙̄y(0) > 0 and then the value of the expression
a−(1+g)ȳ(t) will start decreasing until it turns to zero at some t, at which point
the smoothing process converges. On the other hand, if a−(1+g)ȳ(0) < 0, then
˙̄y(0) < 0 and the value of the expression a−(1+g)ȳ(t) will start increasing until
it turns to zero at some t, at which point the smoothing process converges. If
a− (1 + g)ȳ(0) = 0 then the smoothing is already in a stable equilibrium state.

21We also assume that the smoothing speed is sufficiently large to ensure that the smoothing
process will converge at all cases where it potentially can converge (this statement should
become clearer as we discuss more details).

3.13. INSTANTANEOUSLY UNSTABLE FEEDBACK 57

So, in case 1 + g > 0 the instantaneous feedback smoothing process always
converges. Now assume 1 + g ≤ 0. Further, suppose a− (1 + g)ȳ(0) > 0. Then
˙̄y(0) > 0 and then the value of the expression a− (1 + g)ȳ(t) will start further
increasing (or stay constant if 1 + g = 0). Thus, ȳ(t) will grow indefinitely.
Respectively, if a − (1 + g)ȳ(0) < 0, then ȳ(t) will decrease indefinitely. This
indefinite growth/decrease will occur within the frozen discrete time. Therefore
we can say that ȳ grows infinitely in an instant. We can refer to this as to an
instantaneously unstable zero-delay feedback loop.

The analysis of the instantaneous stability can also be done using the analog
filter stability analysis means. Let the smoother be an analog 1-pole lowpass
filter with a unit cutoff (whose transfer function is 1

s+1)22 and notice that in
that case the structure in Fig. 3.22 can be redrawn as in Fig. 3.23. This filter
has two formal inputs x[n] and s and one output y[n].

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •

1
s+1

oo

−
OO //��

x[n] y[n]

s

g

Figure 3.23: An instantaneous representation of a digital 1-pole
lowpass filter with a trapezoidal integrator and an analog lowpass
smoother.

We can now e.g. obtain a transfer function from the x[n] input to the y[n]
output. Ignoring the s input signal (assuming it to be zero), for a continuous-
time complex exponential input signal arriving at the x[n] input, which we
denote as x[n](t), we have a respective continuous-time complex exponential
signal at the y[n] output, which we denote as y[n](t):

y[n](t) = g

(
x[n](t)− 1

s+ 1
y[n](t)

)
from where

y[n](t) =
g

1 + g 1
s+1

x[n](t)

that is

H(s) =
g

1 + g 1
s+1

= g
s+ 1

s+ (1 + g)

This transfer function has a pole at s = −(1 + g). Therefore, the structure is
stable if 1 + g > 0 and not stable otherwise.

22Apparently, the variable s used in the transfer function 1
s+1

is a different s than the one

used in the instantaneous response expression for the integrator. The author apologizes for
the slight confusion.

58 CHAPTER 3. TIME-DISCRETIZATION

The same transfer function analysis could have been done between the s
input and the y[n] output, in which case we would have obtained

H(s) =
s+ 1

s+ (1 + g)

The poles of this transfer function however, are exactly the same, so it doesn’t
matter.23

Alright, so we have found out that the filter in Fig. 3.12 is instantaneously
unstable if g ≤ −1, but what can we do about it? Firstly, the problem typically
doesn’t occur, as normally g > 0 (not only in the 1-pole lowpass filter case,
but also in other cases). Even if it can occur in principle, one can consider,
whether these extreme parameter settings are so necessary to support, and
possibly simply clip the filter parameters in such a way that the instantaneous
instability doesn’t occur.

Secondly, let’s notice that g = ωcT/2. Therefore another solution could be
to increase the sampling rate (and respectively reduce the sampling period T).24

Unstable bilinear transform

There is yet another idea, which hasn’t been tried out in practice yet.25 We are
going to discuss it anyway.

The instantaneous instability is occurring at the moment when one of the
analog filter’s poles hits the pole of the inverse bilinear transform (3.10), which
is located at s = 2/T . On the other hand, recall that the bilinear transform
is mapping the imaginary axis to the unit circle, thus kind-of preserving the
frequency response. If the system is not stable, then the frequency response
doesn’t make sense. Formally, the reason for this is that the inverse Laplace
transform of transfer functions only converges for σ > max {Re pn} where pn are
the poles of the transfer function, and respectively, if max {Re pn} ≥ 0, it doesn’t
converge on the imaginary axis (σ = 0). However, instead of the imaginary axis
Re s = σ = 0, let’s choose some other axis Re s = σ > max {Re pn} and use it
instead of the imaginary axis to compute the “frequency response”.

We also need to find a discrete-time counterpart for Re s = σ. Considering
that Re s defines the magnitude growth speed of the exponentials est we could
choose a z-plane circle, on which the magnitude growth speed of zn is the same

23This is a common rule: the poles of a system with multiple inputs and/or multiple outputs
are always the same regardless of the particular input-output pair for which the transfer
function is being considered (exceptions in singular cases, arising out of pole/zero cancellation
are possible, though).

24Actually, the instantaneous instability has to do with the fact that the trapezoidal integra-
tion is not capable of producing reasonable approximation of the continuous-time integration,
due to too extreme parameter values. Increasing the sampling rate obviously increases the
precision of the trapezoidal integration as well.

The same idea can also be used to easily and reliably find out, whether the positive value
of the denominator of the feedback equation’s solution corresponds to the instantaneously
stable case or vice versa. The sign which the denominator has for T → 0 corresponds to the
instantaneously stable case.

25The author just got the idea while writing the book and didn’t find the time yet to
properly experiment with it. Sufficient theoretical analysis is not possible here due to the
fact that practical applications of instantaneously unstable (or any unstable, for that matter)
filters occur typically for nonlinear filters, and there’s not many theoretical analysis means
for the latter. Hopefully there are no mistakes in the theoretical transformations, but even if
there are mistakes, at least the idea itself could maybe work.

3.13. INSTANTANEOUSLY UNSTABLE FEEDBACK 59

as for eσt. Apparently, this circle is |z| = eσT . So, we need to map Re s = σ
to |z| = eσT . Considering the bilinear transform equation (3.5), we divide z by
eσT to make sure ze−σT has a unit magnitude and shift the s-plane result by σ:

s = σ +
2
T
· ze

−σT − 1
ze−σT + 1

(3.22)

We can refer to (3.22) as the unstable bilinear transform, where the word “un-
stable” refers not to the instability of the transform itself, but rather to the
fact that it is designed to be applied to unstable filters.26 Notice that at σ = 0
the unstable bilinear transform turns into an ordinary bilinear transform. The
inverse transform is obtained by

(s− σ)T
2

(ze−σT + 1) = ze−σT − 1

from where

ze−σT
(

1− (s− σ)T
2

)
= 1 +

(s− σ)T
2

and

z = eσT
1 + (s−σ)T

2

1− (s−σ)T
2

(3.23)

Apparently the inverse unstable bilinear transform (3.23) has a pole at s = σ+ 2
T .

In order to avoid hitting that pole by the poles of the filter’s transfer function
(or maybe even generally avoid the real parts of the poles to go past that value)
we could e.g. simply let

σ = max {0, Re pn}

or we could position σ midways:

σ = max
{

0, Re pn −
1
T

}
In order to construct an integrator defined by (3.22) we first need to obtain

the expression for 1/s from (3.22):

1
s

=
1

σ + 2
T ·

ze−σT−1
ze−σT+1

= T
ze−σT + 1

σT (ze−σT + 1) + 2(ze−σT − 1)
=

= T
ze−σT + 1

(σT + 2)e−σT z + (σT − 2)
= T

1 + eσT z−1

(σT + 2)− (2− σT)eσT z−1
=

=
T

2 + σT
· 1 + eσT z−1

1− 2−σT
2+σT e

σT z−1

That is
1
s

=
T

2 + σT
· 1 + eσT z−1

1− 2−σT
2+σT e

σT z−1
(3.24)

26Apparently, the unstable bilinear transform defines the same relationship between Im s
and arg z as the ordinary bilinear transform. Therefore the standard prewarping formula
applies.

60 CHAPTER 3. TIME-DISCRETIZATION

A discrete-time structure implementing (3.24) could be e.g. the one in Fig. 3.24.
Yet another approach could be to convert the right-hand side of (3.24) to the
analog domain by the inverse bilinear transform, construct an analog implemen-
tation of the resulting transfer function and apply the trapezoidal integrator
replacement to convert back to the digital domain. It is questionable, whether
this produces better (or even different) results than Fig. 3.24.

MMMqqq
// •// + '!&"%#$// •// //

111
��

+ '!&"%#$ oo
111OO

z−1

OO

OO

//

x[n] y[n]

T
2+σT

2−σT
2+σTeσT

Figure 3.24: Transposed direct form II-style “unstable” trapezoidal
integrator.

SUMMARY

We have considered three essentially different approaches to applying time-
discretization to analog filter models: naive, TPT (by trapezoidal integrator
replacement), and the classical bilinear transform (using direct forms). The
TPT approach combines the best features of the naive implementation and the
classical bilinear transform.

Chapter 4

Ladder filter

In this chapter we are going to discuss the most classical analog filter model:
the transistor ladder filter. We will also discuss to an extent the diode ladder
version.

4.1 Linear analog model

The analog transistor ladder filter is an essentially nonlinear structure. How-
ever, as the first approximation (and actually a quite good one) we will use
its linearized model (Fig. 4.1).1 The LP1 blocks denote four identical (same
cutoff) 1-pole lowpass filters (Fig. 2.2). The k coefficient controls the amount of
negative feedback, which affects the filter resonance. Typically k ≥ 0, although
k < 0 is also sometimes used.2

+ '!&"%#$// LP1
// LP1

// LP1
// LP1

// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.1: Transistor ladder filter.

Let

H1(s) =
1

1 + s

1A widely known piece of work describing this linear model is Analyzing the Moog VCF
with considerations for digital implementation by T.Stilson and J.Smith.

2The reason for the negative (rather than positive) feedback is actually quite intuitively
simple. Considering the phase response of four serially connected 1-pole lowpass filters at the
cutoff: (

1

1 + s

)4 ∣∣∣∣
s=j

=
1

(1 + j)4
= −

1

4

we notice that the signal phase at the cutoff is inverted. Therefore we have to invert it once
again in the feedback to achieve the resonance effect.

61

62 CHAPTER 4. LADDER FILTER

be the 1-pole lowpass transfer function. Assuming complex exponential x and
y we write

y = H4
1 (s) · (x− ky)

from where
y(1 + kH4

1 (s)) = H4
1 (s) · x

and the transfer function of the ladder filter is

H(s) =
y

x
=

H4
1 (s)

1 + kH4
1 (s)

=
1

(1+s)4

1 + k 1
(1+s)4

=
1

k + (1 + s)4
(4.1)

At k = 0 the filter behaves as 4 serially connected 1-pole lowpass filters.
The poles of the filter are respectively

s = −1 + (−k)1/4

where the raising to the 1/4th power is understood in the complex sense, there-
fore giving 4 different values:

s = −1 +
±1± j√

2
k1/4 (k ≥ 0) (4.2)

(this time k1/4 is understood in the real sense). Therefore, at k = 0 all poles are
located at s = −1, as k grows they move apart in 4 straight lines (all going at
“45◦ angles”). As k grows from 0 to 4 the two of the poles (at s = −1+ 1±j√

2
k1/4)

are moving towards the imaginary axis, producing a resonance peak in the
amplitude response (Fig. 4.2). At k = 4 they hit the imaginary axis:

Re
(
−1 +

1± j√
2

41/4

)
= 0

and the filter becomes unstable.

ω

|H(jω)|, dB

k = 3

k = 0

ωcωc/8 8ωc

0

-6

-12

-18

Figure 4.2: Amplitude response of the ladder filter for various k.

In Fig. 4.2 one could notice that, as the resonance increases, the filter gain at
low frequencies begins to drop. Indeed, substituting s = 0 into (4.1) we obtain

H(0) =
1

1 + k

4.2. LINEAR DIGITAL MODEL 63

This is a general issue with ladder filter designs.

4.2 Linear digital model

A naive digital implementation of the ladder filter shouldn’t pose any problems.
We will therefore immediately skip to the TPT approach.

Recalling the instantaneous response of a single 1-pole lowpass filter (3.14),
we can construct the instantaneous response of a serial connection of four of
such filters. Indeed, let’s denote the instantaneous responses of the respective
1-poles as fn(ξ) = gξ + sn (obviously, the coefficient g is identical for all four,
whereas sn depends on the filter state and therefore cannot be assumed identi-
cal). Combining two such filters in series we have

f2(f1(ξ)) = g(gξ + s1) + s2 = g2ξ + gs1 + s2

Adding the third one:

f3(f2(f1(ξ))) = g(g2ξ + gs1 + s2) + s3 = g3ξ + g2s1 + gs2 + s3

and the fourth one:

f4(f3(f2(f1(ξ)))) = g(g3ξ + g2s1 + gs2 + s3) =

= g4ξ + g3s1 + g2s2 + gs3 + s4 = Gξ + S

where

G = g4

S = g3s1 + g2s2 + gs3 + s4

Using the obtained instantaneous response Gξ+ S of the series of 4 1-poles, we
can redraw the ladder filter structure as in Fig. 4.3.

+ '!&"%#$// Gξ + S// •//

qqq
MMM oo

−
OO //x[n] y[n]

k

u[n]

Figure 4.3: TPT ladder filter in the instantaneous response form.

Rather than solving for y, let’s solve for the signal u at the feedback point.
From Fig. 4.3 we obtain

u = x− ky = x− k(Gu+ S)

from where
u =

x− kS
1 + kG

(4.3)

We can then use the obtained value of u to process the 1-pole lowpasses one
after the other, updating their state, and computing y[n] as the output of the
fourth lowpass.

64 CHAPTER 4. LADDER FILTER

Notice that for positive cutoff values of the underlying 1-pole lowpasses we
have g > 0. Respectively G = g4 > 0. This means that for k ≥ 0 the denomi-
nator of (4.3) is always positive and never turns to zero, so we should be safe
regarding the instantaneously unstable feedback.3

For k < 0 the situation is however different. Since 0 < g < 1 (for ωc > 0), it
follows that 0 < G < 1. Thus 1 + kG > 0 ∀k ≥ −1, however at k < −1 we can
get into an instantaneously unstable feedback case.

4.3 Feedback shaping

We have observed that at high resonance settings the amplitude gain of the
filter at low frequencies drops (Fig. 4.2). An obvious way to fix this problem
would be e.g. to boost the input signal by the (1 + k) factor.4 However there’s
another way to address the same issue. We could “kill” the resonance at the
low frequencies by introducing a highpass filter in the feedback (Fig. 4.4). In
the simplest case this could be a 1-pole highpass.

+ '!&"%#$// LP1
// LP1

// LP1
// LP1

// •

HP ooqqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.4: Transistor ladder filter with a highpass in the feedback.

The cutoff of the highpass filter can be static or vary along with the cutoff
of the lowpasses. The static version has a nice feature that it kills the resonance
effect at low frequencies regardless of the master cutoff setting, which may be
desirable if the resonance at low frequencies is considered rather unpleasant
(Fig. 4.5).

In principle one can also use other filter types in the feedback shaping.
One has to be careful though, since this changes the positions of the filter
poles. Particularly, inserting a lowpass into the feedback can easily destabilize
an otherwise stable filter.

4.4 Multimode ladder filter

Warning! The multimode functionality of the ladder filter is a rather exotic
feature. If you’re looking for the bread-and-butter bandpass, highpass, notch etc.

3Strictly speaking, we should have checked the instantaneous stability using the feedback
smoother approach. However typically a positive denominator of the form 1 + g or 1 + kG
implies that everything is fine.

A quicker way to check for the instantaneous feedback would be to let the sampling rate
infinitely grow (T → 0) and then check, whether the denominator changes its sign along the
way. In our case G = g4 = (ωcT/2)4, which means the denominator is always larger than 1
(under the assumption k ≥ 0), regardless of T .

4We boost the input rather than the output signal for the same reason as when preferring
to place the cutoff gains in front of the integrators.

4.4. MULTIMODE LADDER FILTER 65

ω

|H(jω)|, dB

ωHPωHP/8 8ωHP

0

-6

-12

-18

Figure 4.5: Amplitude response of the ladder filter with a static-
cutoff highpass in the feedback for various lowpass cutoffs.

filters, you should first take a look at the multimode 2-pole state-variable filter
discussed later in the book.

By picking up intermediate signals of the ladder filter as in Fig. 4.6 we obtain
the multimode version of this filter. We then can use linear combinations of
signals yn to produce various kinds of filtered signal.5

+ '!&"%#$// •// LP1
// •// LP1

// •// LP1
// •// LP1

// •

qqq
MMM oo

−
OO //

OO OO OO OO

x y4

k

y0 y1 y2 y3

Figure 4.6: Multimode ladder filter.

Suppose k = 0. Apparently, in this case, the respective transfer functions
associated with each of the yn outputs are

Hn(s) =
1

(1 + s)n
(n = 0, . . . , 4) (4.4)

If k 6= 0 then from

H4(s) =
1

k + (1 + s)4

5Actually, instead of y0 we could have used the input signal x for these linear combinations.
However, it doesn’t matter. Since y0 = x−ky4, we can express x via y0 or vice versa. It’s just
that some useful linear combinations have simpler (independent of k) coefficients if y0 rather
than x is being used.

66 CHAPTER 4. LADDER FILTER

using the obvious relationship Hn+1(s) = Hn(s)/(s+ 1) we obtain

Hn(s) =
(1 + s)4−n

k + (1 + s)4
(4.5)

4-pole highpass mode

Considering that the 4th order lowpass transfer function (under the assumption
k = 0) is built as a product of four 1st order lowpass transfer functions 1/(1+s)

HLP(s) =
1

(1 + s)4

we might decide to build the 4th order highpass transfer function as a product
of four 1st order highpass transfer functions s/(1 + s):

HHP(s) =
s4

(1 + s)4

Let’s attempt to build HHP(s) as a linear combination of Hn(s). Apparently,
a linear combination of Hn(s) must have the denominator k + (1 + s)4, so let’s
instead construct

HHP(s) =
s4

k + (1 + s)4
(4.6)

which at k = 0 will turn into s4/(1 + s)4:

s4

k + (1 + s)4
=
a0(1 + s)4 + a1(1 + s)3 + a2(1 + s)2 + a3(1 + s) + a4

k + (1 + s)4

that is

s4 = a0(1 + s)4 + a1(1 + s)3 + a2(1 + s)2 + a3(1 + s) + a4

Formally replacing s+ 1 by s (and respectively s by s− 1):

(s− 1)4 = a0s
4 + a1s

3 + a2s
2 + a3s+ a4

From where immediately

a0 = 1, a1 = −4, a2 = 6, a3 = −4, a4 = 1

The amplitude response corresponding to (4.6) is plotted in Fig. 4.7.

4-pole bandpass mode

A bandpass filter can be built as

HBP(s) =
s2

k + (1 + s)4
(4.7)

The two zeros at s = 0 will provide for a−12dB/oct rolloff at low frequencies and
will reduce the −24dB/oct rolloff at high frequencies to the same −12dB/oct.
Notice that the phase response at the cutoff is zero:

HBP(j) =
−1

k + (1 + j)4
=

1
4− k

4.4. MULTIMODE LADDER FILTER 67

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 4.7: Amplitude response of the highpass mode of the ladder
filter for various k.

The coefficients are found from

s2 = a0(1 + s)4 + a1(1 + s)3 + a2(1 + s)2 + a3(1 + s) + a4

(s− 1)2 = a0s
4 + a1s

3 + a2s
2 + a3s+ a4

The amplitude response corresponding to (4.7) is plotted in Fig. 4.8.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 4.8: Amplitude response of the bandpass mode of the ladder
filter for various k.

Lower-order modes

Recalling the transfer functions of the modal outputs yn in the absence of the
resonance (4.4), we can consider the modal signals yn and their respective trans-
fer functions (4.5) as a kind of “n-pole lowpass filters with 4-pole resonance”.

“Lower-order” highpasses can be build by considering the zero-resonance

68 CHAPTER 4. LADDER FILTER

transfer functions

HHP(s) =
sN

(s+ 1)N
=

(s+ 1)4−NsN

(s+ 1)4

which for k 6= 0 turn into

HHP(s) =
(s+ 1)4−NsN

k + (s+ 1)4

In a similar way we can build a “2-pole” bandpass

HBP(s) =
s

(s+ 1)2
=

(s+ 1)2s

(s+ 1)4
(k = 0)

HBP(s) =
(s+ 1)2s

k + (s+ 1)4
(k 6= 0)

Other modes

Continuing in the same fashion we can build further modes (the transfer func-
tions are given for k = 0):

s

(s+ 1)3
3-pole bandpass, 6/12 dB/oct

s2

(s+ 1)3
3-pole bandpass, 12/6 dB/oct

(s+ 1)4 +Ks2

(s+ 1)4
band-shelving

(s′2 + ω0)2

(s+ 1)4
notch (s′ = s/

√
ω0, where

ω0 is the notch frequency)

(s′2 + 2Rs+ ω0)2 + (s′2 − 2Rs+ ω0)2

2(s+ 1)4
2 notches

(R affects the notch spreading,
neutral setting R = 1)

s′2 + 1
(s+ 1)4

2-pole lowpass + notch (s′ = s/ω0)

(1 + 1/s′2)s4

(s+ 1)4
2-pole highpass + notch

(s′ + 1/s′)s2

(s+ 1)4
2-pole bandpass + notch

etc. Notably, these modes are not necessarily perfectly matching their descrip-
tions, the parameters may have some weird side effects.

4.5 HP and BP ladders

Performing an LP to HP transformation on the lowpass ladder filter we ef-
fectively perform it on each of the underlying 1-pole lowpasses, thus turning

4.5. HP AND BP LADDERS 69

them into 1-pole highpasses. Thereby we obtain a “true” highpass ladder filter
(Fig. 4.9). Obviously, the amplitude response of the ladder highpass is symmet-
ric to the amplitude response of the ladder lowpass.

+ '!&"%#$// HP1
// HP1

// HP1
// HP1

// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.9: A “true” highpass ladder filter.

In order to build a “true” 4-pole bandpass ladder, we replace only half of
the lowpasses with highpasses (it doesn’t matter which two of the four 1-pole
lowpasses are replaced). The total transfer function of the feedforward path is
thereby

s2

(1 + s)4
=

s

(1 + s)2
· s

(1 + s)2

where each of the s/(1+s)2 factors is built from a serial combination of a 1-pole
lowpass and a 1-pole highpass:

s

(1 + s)2
=

s

1 + s
· 1

1 + s

Thus s/(1 + s)2 is a simple 2-pole bandpass6 and a serial combination of two
of them makes a simple 4-pole bandpass. The frequency response of s/(1 + s)2

at ω = 1 can be easily found and is equal to 1/2, that is there is no phase-
shift. Respectively the frequency response of s2/(1 + s)4 at ω = 1 is 1/4, also
without a phase shift. Therefore we need to use positive rather than negative
feedback (Fig. 4.10). As the lowpass and the highpass ladders, the bandpass
ladder becomes unstable at k = 4.

+ '!&"%#$// LP1
// HP1

// LP1
// HP1

// •//

qqq
MMM oo

OO //x(t) y(t)

k

Figure 4.10: A “true” bandpass ladder filter.

Noticing that the filter structure is invariant relative to the LP to HP trans-
formation, we conclude that its amplitude response must be symmetric (around
ω = 1) in the logarithmic frequency scale.

6A more appropriate and generic way to build a 2-pole bandpass is the multimode 2-pole
state-variable filter discussed later in the book.

70 CHAPTER 4. LADDER FILTER

4.6 Simple nonlinear model

At k ≥ 4 the ladder filter becomes unstable, as the resonance becomes too
strong. We could however prevent the signal level from growing infinitely by
putting a saturator into the feedback path. This will allow the filter to go into
selfoscillation at k > 4. The best place for such saturator is probably at the
feedback point, since then it will process both the input and the feedback signals
simultaneously, applying a nice overdrive-like saturation to the input signal. A
hyperbolic tangent function should provide a nice saturator (Fig. 4.11). It is
transparent at low signal levels, therefore at low signal levels the filter behaves
as a linear one.

+ '!&"%#$// tanh// 4× LP// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.11: Transistor ladder filter with a saturator at the feed-
back point.

Another possibility is to place the saturator before the feedback point, which
makes is somewhat more “transparent”, since the saturation doesn’t affect the
feedforward path (Fig. 4.12). By swapping the positions of the saturator and
the feedback gain k in Fig. 4.12 one can make saturation independent of the
feedback amount setting k.

+ '!&"%#$// 4× LP// •//

qqq
MMM ootanh oo

−
OO //x(t) y(t)

k

Figure 4.12: Transistor ladder filter with a saturator before the
feedback point.

Other saturation curves are of course possible, where a noticeably differ-
ent (smoother) saturation curve is provided by e.g. an inverse hyperbolic sine
function, since this one doesn’t have horizontal asymptotes.

The introduction of the nonlinearity in the feedback path poses no problems
for a naive digital model. In the TPT case however this complicates the things
quite a bit. Consider Fig. 4.3 redrawn to contain the feedback nonlinearity
(Fig. 4.13).

Writing the zero-delay feedback equation we obtain

u = x− k(G tanhu+ s) (4.8)

Apparently, the equation (4.8) is a transcendental one. It can be solved only
using numerical methods. Also, a linear zero-delay feedback equation had only
one solution, but how many solutions does (4.8) have? In order to answer the

4.6. SIMPLE NONLINEAR MODEL 71

+ '!&"%#$// tanh// Gξ + s// •//

qqq
MMM oo

−
OO //x[n] y[n]

k

u[n]

Figure 4.13: Nonlinear TPT ladder filter in the instantaneous re-
sponse form.

latter question, let’s rewrite (4.8) as

(x− ks)− u = kG tanhu (4.9)

If k ≥ 0 and G > 0, then the right-hand side of (4.9) is a nonstrictly increasing
function of u, while the left-hand side of (4.9) is a strictly decreasing function of
u. Thus, (4.9) and respectively (4.8) have a single solution in this case. If k < 0,
(4.8) can have multiple solutions (up to three). One could use the smoother
paradigm introduced in the instantaneously unstable feedback discussion to find
out the applicable one.

It is possible to avoid the need of solving the transcendental equation by us-
ing a saturator function which still allows analytic solution. This is particularly
the case with second-order curves, such as hyperbolas. E.g. y = tanhx can be
replaced by y = x/(1 + |x|), while the inverse of x = sinh y can be replaced
by the inverse of x = x(1 + |x|). Each of these two functions consists of two
second-order segments, which turns (4.9) into a quadratic equation. E.g. for
x/(1 + |x|) we have

(x− ks)− u = kG
u

1 + |u|
(4.10)

In order to solve (4.10) one first has to check whether the solution occurs at
u > 0 or u < 0, which (for kG ≥ 0) can be done by simply evaluating the left-
hand side of (4.10) at u = 0. Then one can replace |u| by u or −u respectively
and solve the resulting quadratic equation.7

Yet another approach (which also works for multiple nonlinearities!) is to
first solve the feedback equation for the linear case, and then apply the nonlin-
earities “on top”. E.g. we use the structure in Fig. 4.3 to obtain the value of
u. However then we pretend that we have found the value of u for Fig. 4.13
(or Fig. 4.11, for that matter) and proceed accordingly, putting u through the
hyperbolic tangent shaper and then further through the 1-pole lowpasses. We

7The same kind of quadratic equation appears for any other second-order curve (hyperbola,
ellipse, parabola, including their rotated versions). In solving the quadratic equation one has
not only to choose the right one of the two roots of the equation. One also has to choose the
right one of the two solution formulas for the quadratic equation Ax2 − 2Bx+ C = 0:

x =
B ±

√
B2 −AC
A

or x =
C

B ∓
√
B2 −AC

The reason to choose between these two different formulas is that each of them can become ill-
conditioned depending on the values of A, B and C. The choice of the formula is determined
by the sign of B and the relative magnitudes of the equation coefficients. More details on
this approach are discussed in the author’s article “Computational optimization of nonlinear
zero-delay feedback by second-order piecewise approximation”.

72 CHAPTER 4. LADDER FILTER

refer to this approach as the “cheap method” of applying the nonlinearities to
the TPT structures. It is intuitively clear, that the cheap method is more likely
to produce “wrong” results at high cutoff values.

No matter, which approach we chose to compute nonlinearities, one shouldn’t
forget that nonlinear shaping introduces overtones (usually an infinite amount of
those) into the signal, which in turn introduces aliasing. Meaning: the stronger
are the nonlinearities in your structure, the more you might need to oversample.
If the oversampling is extreme anyway, there might be little difference in quality
between the naive and the TPT approach.8

4.7 Advanced nonlinear model

The nonlinearity introduced in Fig. 4.11 does a good job and sounds reasonably
close to a hardware analog transistor ladder filter, however this is not how the
nonlinearities in the hardware ladder filter “really” work. In order to describe
a closer to reality nonlinear model of the ladder filter, we need to start by
introducing nonlinearities into the underlying 1-pole lowpass filters (Fig. 4.14).9

tanh// + '!&"%#$//
∫

// •//

tanh oo

−
OO //x(t) y(t)

Figure 4.14: A nonlinear 1-pole lowpass element of the ladder filter.

So the equation (2.1) is transformed into

y = y(t0) +
∫ t

t0

ωc
(
tanhx(τ)− tanh y(τ)

)
dt

Which effect does this have? Apparently, the presence of the tanh function
reduces the absolute value of the difference tanhx − tanh y, if the level of one
or both of the signals is sufficiently high. If both x and y have large values of
the same sign, it’s possible that the difference tanhx − tanh y is close to zero,
even though the difference x − y is very large. This means that the filter will
update its state slower than in (2.1). Intuitively this feels a little bit like “cutoff
reduction” at large signal levels.

We can then connect the 1-pole models from Fig. 4.14 into a series of four
1-poles and put a feedback around them, exactly the same way as in Fig. 4.1.
Notice that when connecting Fig. 4.14 filters in series, one could use a com-
mon tanh module between each of them, thereby optimizing the computation
(Fig. 4.15).10

8Before making a final decision, it might be worth asking a few musicians with an ear for
analog sound to perform a listening test, whether the differences between the naive and TPT
models of a particular filter are inaudible and uncritical.

9A famous piece of work describing this specific nonlinear model is the DAFx’04 paper
Non-linear digital implementation of the Moog ladder filter by Antti Huovilainen. Therefore
this model is sometimes referred to as the “Antti’s model”.

10There is an issue which may appear when using simple tanh approximations having a fully

4.8. DIODE LADDER 73

tanh// + '!&"%#$//
∫

// •//

tanh oo•oo

−
OO

+ '!&"%#$�� ∫
// •//

tanh oo•oo

−
OO

+ '!&"%#$�� ∫
// •//

tanh oo•oo

−
OO

+ '!&"%#$�� ∫
// •//

tanh oo

−
OO

//

//

//

//

x(t) y1(t)

y2(t)

y3(t)

y4(t)

Figure 4.15: Advanced nonlinear transistor ladder (the main feed-
back path of the ladder filter not shown).

One could further enhance the nonlinear behavior of the ladder filter model
by putting another saturator (possibly of a different type, or simply differently
scaled) into the feedback path.

4.8 Diode ladder

In the diode ladder filter the serial connection of four 1-pole lowpass filters (im-
plemented by the transistor ladder) is replaced by a more complicated structure
of 1-pole filters (implemented by the diode ladder). The equations of the diode
ladder itself (without the feedback path) are

ẏ1 = ωc
(
tanhx− tanh(y1 − y2)

)
ẏ2 =

ωc
2
(
tanh(y1 − y2)− tanh(y2 − y3)

)
ẏ3 =

ωc
2
(
tanh(y2 − y3)− tanh(y3 − y4)

)
ẏ4 =

ωc
2
(
tanh(y3 − y4)− tanh y4

)
horizontal saturation curve. If both the input and the output signals of a 1-pole are having
large values of the same sign, the tanh approximations will return two identical values and
the difference tanhx − tanh y will be approximated by zero. This might result in the filter
getting “stuck” (the cutoff effectively reduced to zero).

74 CHAPTER 4. LADDER FILTER

which is implemented by the structure in Fig. 4.16 (compare to Fig. 4.15). The
diode ladder itself is then built by providing the feedback path around the diode
ladder, where the fourth output of the diode ladder is fed back into the diode
ladder’s input (Fig. 4.17).

tanh// + '!&"%#$//
∫

// •

+ '!&"%#$��
tanh oo•oo

−
OO

+ '!&"%#$�� MMMqqq
//

∫
// •

+ '!&"%#$��
tanh oo•oo

−
OO

−
OO

+ '!&"%#$�� MMMqqq
//

∫
// •

+ '!&"%#$��
tanh oo•oo

−
OO

−
OO

+ '!&"%#$�� MMMqqq
//

∫
// •

tanh oo

−
OO

−
OO

//

//

//

//

x(t) y1(t)

y2(t)

y3(t)

y4(t)

1/2

1/2

1/2

Figure 4.16: Diode ladder.

+ '!&"%#$// Diode ladder// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 4.17: Diode ladder filter.

The linearized form of the diode ladder equations is obtained by assuming
tanh ξ ≈ ξ, resulting in

ẏ1 = ωc
(
(x+ y2)− y1

)
ẏ2 = ωc

(
(y1 + y3)/2− y2

)
ẏ3 = ωc

(
(y2 + y4)/2− y2

)
ẏ4 = ωc

(
y3/2− y4

)
which apparently is representable as a serial connection of four identical 1-pole
lowpass filters (all having the same cutoff ωc) with some extra gains and feedback

4.8. DIODE LADDER 75

paths (Fig. 4.18).

+ '!&"%#$// LP1// •// + '!&"%#$// MMqq// LP1// •// + '!&"%#$// MMqq// LP1// •//
MMqq// LP1// •//

�� �� ��

�� �� �� ��
x(t) y1(t) y2(t) y3(t) y4(t)

1/2 1/2 1/2

Figure 4.18: Linearized diode ladder.

These more complicated connections between the lowpasses “destroy” the
frequency response of the ladder in a remarkable form, responsible for the char-
acteristic diode ladder filter sound. Generally, the behavior of the diode ladder
filter is less “straightforward” than the one of the transistor ladder filter.

Transfer function

In order to obtain the transfer function of the structure in Fig. 4.18 let

G(s) =
1

1 + s
(4.11)

be the transfer function of the underlying lowpass filters. Let F (s) = 2G(s), or,
simplifying the notation, F = 2G. Assuming complex exponential signals est,
we obtain from Fig. 4.18

y4 = Fy3

Respectively
y3 = F · (y2 + y4)

Multiplying both sides by F we have

Fy3 = F 2 · (y2 + y4)

from where, recalling that y4 = Fy3:

y4 = F 2 · (y2 + y4)

that is

y4 =
F 2

1− F 2
y2

Further,
y2 = F · (y1 + y3) = Fy1 + y4

Multiplying both sides by F 2/(1− F 2):

y4 =
F 3

1− F 2
y1 +

F 2

1− F 2
y4

76 CHAPTER 4. LADDER FILTER

from where

y4

(
1− F 2

1− F 2

)
=

F 3

1− F 2
y1

and respectively

y4 =
F 3

1− 2F 2
y1

And finally,
y1 = 2F · (x+ y2)

Multiplying both sides by F 3/(1− 2F 2):

y4 =
2F 4

1− 2F 2

(
x+

1− F 2

F 2
· F 2

1− F 2
y2

)
=

2F 4

1− 2F 2

(
x+

1− F 2

F 2
y4

)
=

=
2F 4

1− 2F 2
x+ 2F 2 1− F 2

1− 2F 2
y4

from where

y4

(
1− 2F 2 1− F 2

1− 2F 2

)
=

2F 4

1− 2F 2
x

from where
y4

(
1− 4F 2 + 2F 4

)
= 2F 4x

and

y4 =
2F 4

1− 4F 2 + 2F 4
x =

G4/8
1−G2 +G4/8

x

That is, the transfer function ∆(s) of the diode ladder is

∆(s) =
G4/8

G4/8−G2 + 1
where G(s) =

1
1 + s

from where we obtain the transfer function of the entire diode ladder filter as

H(s) =
∆

1 + k∆

The corresponding amplitude response is plotted in Fig. 4.19.
Let’s find the positions of the poles of the diode ladder filter. Equating the

denominator to zero:
1 + k∆ = 0

we have

1 = −k∆ =
−kG4/8

G4/8−G2 + 1

that is

−kG
4

8
=
G4

8
−G2 + 1

that is
1 + k

8
G4 −G2 + 1 = 0

Solving for G2:

G2 =
1±

√
1− 1+k

2

1+k
4

=
1±

√
1−k

2

1+k
4

(4.12)

4.8. DIODE LADDER 77

ω

|H(jω)|, dB

k = 16

k = 0

ωcωc/8 8ωc

0

-6

-12

-18

-24

Figure 4.19: Amplitude response of the diode ladder filter for var-
ious k.

Equating (4.12) and the squared form of (4.11) we have

1
(1 + s)2

=
1±

√
1−k

2

1+k
4

that is

(s+ 1)2 =
1+k

4

1±
√

1−k
2

=

1+k
4

(
1∓

√
1−k

2

)
1− 1−k

2

=

=

1+k
4

(
1∓

√
1−k

2

)
1+k

2

=
1∓

√
1−k

2

2

that is

(s+ 1)2 =
1
2
± 1

2

√
1− k

2
(4.13)

The equation (4.13) defines the positions of the poles of the diode ladder filter.
Apparently, it’s easily solvable. We would be interested to find out, at which k
does the selfoscillation start.

If the poles are to be on the imaginary axis, then s = jω. Substituting
s = jω into (4.13) we get

(1− ω2) + 2jω =
1
2
∓ j

2

√
k − 1

2
(4.14)

Equating the real parts of (4.14) we obtain 1−ω2 = 1
2 and ω = ± 1√

2
. Equating

the imaginary parts of (4.14) and substituting ω = ± 1√
2

we obtain

± 2√
2

= ±1
2

√
k − 1

2

78 CHAPTER 4. LADDER FILTER

from where
±4 = ±

√
k − 1

and, since k ∈ R, we have k = 17.
That is, given the unit cutoff of the underlying one-pole lowpass filters, the

selfoscillation starts at k = 17, where the resonance peak is located at ω = 1/
√

2.

TPT model

Converting Fig. 4.18 to the instantaneous response form we obtain the structure
in Fig. 4.20. From Fig. 4.20 we wish to obtain the instantaneous response of
the entire diode ladder. Then we could use this response to solve the zero-delay
feedback equation for the main feedback loop of Fig. 4.17.

+ '!&"%#$// 2gξ+s1// •// + '!&"%#$// gξ+s2// •// + '!&"%#$// gξ+s3// •// gξ+s4// •//
�� �� ��

�� �� �� ��
x y1 y2 y3 y4

Figure 4.20: Linearized diode ladder in the instantaneous response
form.

From Fig. 4.20 we have y4 = gy3 + s4. We can rewrite it as

y4 = G4y3 + S4 where G4 = g, S4 = s4

Further, from Fig. 4.20 we also have

y3 = g(y2 + y4) + s3 = g(y2 +G4y3 + S4) + s3

from where

y3 =
gy2 + gS4 + s3

1− gG4
= G3y2 + S3 where G3 =

g

1− gG4
, S3 =

gS4 + s3

1− gG4

Further,
y2 = g(y1 + y3) + s2 = g(y1 +G3y2 + S3) + s2

from where

y2 =
gy1 + gS3 + s2

1− gG3
= G2y1 + S2 where G2 =

g

1− gG3
, S2 =

gS3 + s2

1− gG3

And ultimately

y1 = 2g(x+ y2) + s1 = 2g(x+G2y1 + S2) + s1

from where

y1 =
2gx+ 2gS2 + s1

1− 2gG2
= G1x+ S1 where G1 =

2g
1− 2gG2

, S1 =
2gS2 + s1

1− 2gG2

4.8. DIODE LADDER 79

Thus, we have
yn = Gnyn−1 + Sn (where y0 = x)

from where it’s easy to obtain the instantaneous response of the entire diode
ladder as

y4 = G4y3 + S4 = G4(G3y2 + S3) + S4 = G4G3y2 + (G4S3 + S4) =
= G4G3(G2y1 + S2) + (G4S3 + S4) =

= G4G3G2y1 + (G4G3S2 +G4S3 + S4) =
= G4G3G2(G1x+ S1) + (G4G3S2 +G4S3 + S4) =

= G4G3G2G1x+ (G4G3G2S1 +G4G3S2 +G4S3 + S4) = Gx+ S

Notice, that we should have checked that we don’t have instantaneously unstable
feedback problems within the diode ladder. That is, we need to check that all
denominators in the expressions for Gn and Sn don’t turn to zero or to negative
values. Considering that 0 < g < 1

2 and that G4 = g, we have

0 < G4 <
1
2

and
1− gG4 = 1− g2 >

3
4

Respectively

0 < G3 = g/(1− gG4) <
1/2
3/4

=
2
3

and
1− gG3 > 1− 1

2
· 2

3
= 1− 1

3
=

2
3

Then

0 < G2 = g/(1− gG3) <
1/2
2/3

=
3
4

and
1− 2gG2 > 1− 2

1
2

3
4

= 1− 3
4

=
1
4

and thus all denominators are always positive.
Also

0 < G1 =
2g

1− 2gG2
<

1
1/4

= 4

Thus
0 < G = G4G3G2G1 <

1
2
· 2

3
· 3

4
· 4 = 1

Using the obtained instantaneous response of the entire diode ladder we now
can solve the main feedback equation for Fig. 4.17.

For a nonlinear diode ladder model we could use the structure in Fig. 4.16.
However, it might be too complicated to process. Even the application of the
“cheap” TPT nonlinear processing approach is not fully trivial.

One can therefore use simpler nonlinear structures instead, e.g. the one from
Fig. 4.11. Also, the other ideas discussed for the transistor ladder can be applied.
In regards to the multimode diode ladder filter, notice that the transfer functions
corresponding to the yn(t) outputs are different from the ones of the transistor
ladder, therefore the mixing coefficients which worked for the modes of the
transistor ladder filter, are not going to work the same for the diode ladder.

80 CHAPTER 4. LADDER FILTER

SUMMARY

The transistor ladder filter model is constructed by placing a negative feedback
around a chain of four identical 1-pole lowpass filters. The feedback amount
controls the resonance. A nonlinearity in the feedback path (e.g. at the feedback
point) could be used to contain the signal level, so that selfoscillation becomes
possible.

Chapter 5

2-pole filters

The other classical analog filter model is the 2-pole filter design commonly
referred to in the music DSP field as the state-variable filter (SVF). It can also
serve as a generic analog model for building 2-pole filters, similarly to previously
discussed 1-pole RC filter model.

5.1 Linear analog model

The block diagram of the state-variable filter is shown in Fig. 5.1. The three
outputs are the highpass, bandpass and lowpass signals.1 As usual, one can
apply transposition to obtain a filter with highpass, bandpass and lowpass inputs
(Fig. 5.2).

+ '!&"%#$// •//
∫

// •//
∫

// •//

111
��

+ '!&"%#$�� oo

−
OO //

// //

x(t) yLP(t)

2R

yHP(t) yBP(t)

Figure 5.1: 2-pole multimode state-variable filter.

From Fig. 5.1 one can easily obtain the transfer functions for the respective
signals. Assume complex exponential signals. Then, assuming unit cutoff,

yHP = x− 2RyBP − yLP

1One can notice that the filter in Fig. 5.1 essentially implements an analog-domain canon-
ical form, similar to the one in Fig. 3.20. Indeed let’s substitute in Fig. 3.20 the z−1 elements
by s−1 elements (integrators) and let a1 = −2R, a2 = −1. Then the gains b0, b1 and b2 are
simply picking up the highpass, bandpass and lowpass signals respectively.

81

82 CHAPTER 5. 2-POLE FILTERS

•oo + '!&"%#$oo
∫

oo + '!&"%#$oo
∫

oo + '!&"%#$oo

111

OO

•

OO

OO

MMMqqq
////

oo�� ��
y(t) xLP(t)

2R

−1

xHP(t) xBP(t)

Figure 5.2: Transposed 2-pole multimode state-variable filter.

yBP =
1
s
yHP

yLP =
1
s
yBP

from where

yHP = x− 2R · 1
s
yHP −

1
s2
yHP

from where (
1 +

2R
s

+
1
s2

)
yHP = x

and

HHP(s) =
yHP

x
=

1

1 +
2R
s

+
1
s2

=
s2

s2 + 2Rs+ 1

Thus

HHP(s) =
s2

s2 + 2Rs+ 1
=

s2

s2 + 2Rωcs+ ω2
c

(ωc = 1)

HBP(s) =
s

s2 + 2Rs+ 1
=

ωcs

s2 + 2Rωcs+ ω2
c

(ωc = 1)

HLP(s) =
1

s2 + 2Rs+ 1
=

ω2
c

s2 + 2Rωcs+ ω2
c

(ωc = 1)

The respective amplitude responses are plotted in Figs. 5.3, 5.4 and 5.5. One
could observe that the highpass response is a mirrored version of the lowpass
response, while the bandpass response is symmetric by itself. The slope rolloff
speed is apparently −12dB/oct for the low- and highpass, and −6dB/oct for
the bandpass.

The relative symmetry between the lowpass and the highpass amplitude
responses has a clear algebraic explanation: applying the LP to HP substitution
to a 2-pole lowpass produces a 2-pole highpass and vice versa. The symmetry
of the bandpass amplitude response has the same explanation: applying the LP
to HP substitution to the 2-pole bandpass converts it into itself.

5.1. LINEAR ANALOG MODEL 83

ω

|H(jω)|, dB

R = 1

R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.3: Amplitude response of a 2-pole lowpass filter.

ω

|H(jω)|, dB

R = 1

R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.4: Amplitude response of a 2-pole highpass filter.

Notice that yLP(t)+2RyBP(t)+yHP(t) = x(t), that is, the input signal is split
into lowpass, bandpass and highpass components. The same can be expressed
in the transfer function form:

HLP(s) + 2RHBP(s) +HHP(s) = 1

84 CHAPTER 5. 2-POLE FILTERS

ω

|H(jω)|, dB

R = 1

R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.5: Amplitude response of a 2-pole bandpass filter.

The resonance of the filter is controlled by the R parameter. Contrarily to
the ladder filter, where the resonance increases with the feedback amount, in
the state-variable filter the bandpass signal feedback serves as a damping means
for the resonance. In the absence of the bandpass signal feedback the filter will
get unstable. The R parameter therefore may be referred to as the damping
parameter.

Solving s2 + 2Rs+ 1 = 0 we obtain the poles of the filter at

s = −R±
√
R2 − 1 =

{
−R±

√
R2 − 1 if R ≥ 1

−R± j
√

1−R2 if −1 ≤ R ≤ 1

Without trying to give a precise definition of the resonance concept, we could
say that at R = 1 there is no resonance (there are two real poles at s = −1).
As R starts decreasing from 1 towards 0 there appear two mutually conjugate
complex poles moving along the unit circle towards the imaginary axis, so the
resonance slowly appears. At R = 0 the filter becomes unstable.2

The amplitude response at the cutoff (ω = 1) is 1/2R for all three filter types.
Except for the bandpass, the point ω = 1 is not exactly the peak location but
it’s pretty close (the smaller the value of R, the closer is the true peak to ω = 1).
The phase response at the cutoff is −90◦ for lowpass, 0◦ for bandpass and +90◦

for highpass.

2The “resonance” control for the SVF filter can be introduced in a number of different
ways. One common approach is to use the parameter Q = 1/2R, however this doesn’t allow
to go easily into the selfoscillation range in the nonlinear versions of this filter. Another option
is using r = 1 − R, which differs from the resonance control parameter k of the TSK filters
(discussed in section 5.7) just by a factor of 2, the selfoscillation occuring at r = 1. Other,
more sophisticated mappings, can be used for a “more natural feel” of the resonance control.

5.2. LINEAR DIGITAL MODEL 85

At |R| > 1 the filter has two real poles and thus “falls apart” into a serial
combination of two 1-pole filters:3

HHP(s) =
s2

s2 + 2Rs+ 1
=

s

s− p1
· s

s− p2

HBP(s) =
s

s2 + 2Rs+ 1
=

s

s− p1
· 1
s− p2

HLP(s) =
1

s2 + 2Rs+ 1
=

1
s− p1

· 1
s− p2

where p1p2 = 1. These 1-pole filters become visible in the amplitude responses
at sufficiently large R as two different “cutoff points” (Fig. 5.6).

ω

|H(jω)|, dB

ω
=
ω
c
(R

+
√
R

2
−

1)

ω
=
ω
c
(R
−
√
R

2
−

1)

ωcωc/8 8ωc

0

-12

-24

-36

-48

Figure 5.6: Amplitude response of a non-resonating 2-pole lowpass
filter.

5.2 Linear digital model

Skipping the naive implementation, which the readers should be perfectly capa-
ble of creating and analyzing themselves by now, we proceed with the discussion
of the TPT model.

Assuming gξ+sn instantaneous responses for the two trapezoidal integrators
one can redraw Fig. 5.1 to obtain the discrete-time model in Fig. 5.7.

Picking yHP as the zero-delay feedback equation’s unknown4 we obtain from
Fig. 5.7:

yHP = x− 2R(gyHP + s1)− g(gyHP + s1)− s2

from where (
1 + 2Rg + g2

)
yHP = x− 2Rs1 − gs1 − s2

3Of course the same decomposition is formally possible for complex poles, but a 1-pole
filter with a complex pole cannot be implemented as a real system.

4The state-variable filter has two feedback paths sharing a common path segment. In order
to obtain a single feedback equation rather than an equation system we should pick a signal
on this common path as the unknown variable.

86 CHAPTER 5. 2-POLE FILTERS

+ '!&"%#$// •// gξ + s1
// •// gξ + s2

// •//

111
��

+ '!&"%#$�� oo

−
OO //

// //

x[n] yLP[n]

2R

yHP[n] yBP[n]

Figure 5.7: TPT 2-pole multimode state-variable filter in the in-
stantaneous response form.

from where
yHP =

x− 2Rs1 − gs1 − s2

1 + 2Rg + g2
(5.1)

Using yHP we can proceed defining the remaining signals in the structure.5

5.3 Further filter types

By mixing the lowpass, bandpass and highpass outputs one can obtain further
filter types.

Unity gain (a.k.a. “normalized”) bandpass

HBP1(s) = 2RHBP(s) =
2Rs

s2 + 2Rs+ 1
This version of the bandpass filter has a unity gain at the cutoff (Fig. 5.8).
Notice that the unity gain bandpass signal can be directly picked up at the
output of the 2R gain element in Fig. 5.1.

Band-shelving filter

By adding/subtracting the unity gain bandpass signal to/from the input signal
one obtains the band-shelving filter (Fig. 5.9):

HBS(s) = 1 + 2RKHBP(s) = 1 +
2RKs

s2 + 2Rs+ 1

Similarly to the other shelving filter types we can specify the mid-slope
requirement |HBS(jω)| =

√
1 +K (for some ω), from where we obtain

R =

∣∣ω − ω−1
∣∣

2
√

1 +K
=

∣∣2∆/2 − 2−∆/2
∣∣

2
√

1 +K

where ∆ is the desired mid-slope bandwidth (in octaves) of the peak.
5Apparently, 1 + 2Rg + g2 > 0 ∀g > 0, provided R > −1. Thus, instantaneously unstable

feedback may appear only if R ≤ −1.

5.3. FURTHER FILTER TYPES 87

ω

|H(jω)|, dB
R = 5

R = 1
R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

Figure 5.8: Amplitude response of a 2-pole unity gain bandpass
filter.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.9: Amplitude response of a 2-pole band-shelving filter for
R = 1 and varying K.

Low- and high-shelving filters

Attempting to obtain 2-pole low- and high-shelving filters in a straightforward
fashion:

HLS(s) = 1 +K ·HLP(s) HHS(s) = 1 +K ·HHP(s)

we notice that the amplitude responses of such filters have a strange dip (for
K > 0) or peak (forK < 0) even at a non-resonating setting of R = 1 (Fig. 5.10).
This peak/dip is due to a steeper phase response curve of the 2-pole lowpass

88 CHAPTER 5. 2-POLE FILTERS

and highpass filters compared to 1-poles.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

+6

Figure 5.10: Amplitude response of a naive 2-pole low-shelving
filter for R = 1 and varying K.

Instead, let’s recall that 1-pole shelving filters have a symmetric amplitude
response property. We could try to obtain 2-pole shelving filters from the same
requirement of the amplitude response symmetry in respect to the “LP to HP”
substitution.6 For a low-shelving filter we start off with:

G(s) =
s2 + 2RMs+M2

M2s+ 2RMs+ 1
=

1
M2
· M

2s2 + 2RM3s+M4

M2s+ 2RMs+ 1
=

=
1
M2
· (s/ωc)2 + 2RM2(s/ωc) +M4

(s/ωc)2 + 2R(s/ωc) + 1

where ωc = 1/M (notice that at R = 1 we have a squared response of a 1-pole
shelving filter). Considering the requirements HLS(0) = 1+K and HLS(∞) = 1,
we conclude that the low-shelving response is then

HLS(s) = M2 ·G(s) =
(s/ωc)2 + 2RM2(s/ωc) +M4

(s/ωc)2 + 2R(s/ωc) + 1
=

= M4HLP(s) +M2 · 2RHBP(s) +HHP(s) =

= 1 +KHLP(s) + (
√

1 +K − 1/2R) · 2RHBP(s)

where M = (1 + K)1/4 and ωc = 1/M = (1 + K)−1/4. Respectively, for a
non-unity midpoint frequency:

ωc = ωmid(1 +K)−1/4 (low-shelving)

For a high-shelving filter take a reciprocal G(s):

G(s) =
M2s+ 2RMs+ 1
s2 + 2RMs+M2

=
1
M2
· M

4(s/M)2 + 2RM2(s/M) + 1
(s/M)2 + 2RM2(s/M) + 1

=

6The target low-shelving and high-shelving responses were taken from Robert Bristow–
Johnson’s Audio EQ Cookbook.

5.3. FURTHER FILTER TYPES 89

=
1
M2
· M

4(s/ωc)2 + 2RM2(s/ωc) + 1
(s/ωc)2 + 2R(s/ωc) + 1

Noticing the requirements HHS(0) = 1 and HHS(∞) = 1 +K:

HHS(s) = M2 ·G(s) =
M4(s/ωc)2 + 2RM2(s/ωc) + 1

(s/ωc)2 + 2R(s/ωc) + 1
=

= M4HHP(s) +M2 · 2RHBP(s) +HLP(s) =

= 1 +KHHP(s) + (
√

1 +K − 1/2R) · 2RHBP(s)

where M = (1 + K)1/4 and ωc = (1 + K)1/4. Respectively, for a non-unity
midpoint frequency:

ωc = ωmid(1 +K)1/4 (high-shelving)

The low-shelving 2-pole filter’s amplitude responses are plotted in Fig. 5.11.
Notice that at strong resonance there is a symmetric peak/dip pair, while at
R � 1 the two different cutoff points of the two real 1-pole low-shelving filters
become visible in the response.

ω

|H(jω)|, dB

R = 0.2

R = 1

R = 5

ωcωc/8 8ωc

0

-6

-12

+6

Figure 5.11: Amplitude response of a symmetric 2-pole low-
shelving filter.

The high-shelving amplitude responses are similar.

Notch filter

At K = −1 the band-shelving filter turns into a notch (or bandstop) filter
(Fig. 5.12):

HN(s) = 1− 2RHBP(s) =
s2 + 1

s2 + 2Rs+ 1

90 CHAPTER 5. 2-POLE FILTERS

ω

|H(jω)|

R = 5

R = 0.2

R = 1

ωcωc/8 8ωc

1

0.5

0

Figure 5.12: Amplitude response of a 2-pole notch filter. The
amplitude scale is linear.

Allpass filter

At K = −2 the band-shelving filter turns into an allpass filter (Fig. 5.13):

HAP(s) = 1− 4RHBP(s) =
s2 − 2Rs+ 1
s2 + 2Rs+ 1

Notice how the damping parameter affects the phase response slope.

ω

argH(jω)

R = 5

R = 0.2

R = 1

ωcωc/8 8ωc

0

−π

−2π

Figure 5.13: Phase response of a 2-pole allpass filter.

Peaking filter

By subtracting the highpass signal from the lowpass signal (or also vice versa)
we obtain the peaking filter (Fig. 5.14):

HPK(s) = HLP(s)−HHP(s) =
1− s2

s2 + 2Rs+ 1

5.4. LP TO BP/BS SUBSTITUTIONS 91

ω

|H(jω)|, dB

R = 0.2

R = 5

R = 1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 5.14: Amplitude response of a 2-pole peaking filter.

5.4 LP to BP/BS substitutions

The 2-pole unity gain bandpass response can be obtained from the lowpass
response by a so-called LP to BP (lowpass to bandpass) substitution:

s← 1
2R
·
(
s+

1
s

)
(5.2)

Since s and 1/s are used symmetrically within the right-hand side of (5.2), it
immediately follows that the result of the substitution is invariant relative to
the LP to HP substitution s ← 1/s. Therefore the result of the LP to BP
substitution has an amplitude response which is symmetric in the logarithmic
frequency scale.

Using s = jω, we obtain

jω ← 1
2R
·
(
jω +

1
jω

)
or

ω ← 1
2R
·
(
ω − 1

ω

)
Denoting the new ω as ω′ we write

ω =
1

2R
·
(
ω′ − 1

ω′

)
(5.3)

Instead of trying to understand the mapping of ω to ω′ it is easier to understand
the inverse mapping from ω′ to ω, as explicitly specified by (5.3). Furthermore,
it is more illustrative to express ω′ in the logarithmic scale:

ω =
1

2R
·
(
elnω′ − e− lnω′

)
=

1
R

sinh lnω′ if ω > 0

92 CHAPTER 5. 2-POLE FILTERS

ω = − 1
2R
·
(
eln |ω′| − e− ln |ω′|

)
= − 1

R
sinh ln |ω′| if ω < 0

Thus
ω =

1
R

sinh (sgnω′ · ln |ω′|) (5.4)

Since ln |ω′| takes up the entire real range of values in each of the cases ω > 0
and ω < 0 and respectively so does sinh(sgnω′ · ln |ω′|),

ω′ ∈ (0,+∞) ⇐⇒ ω ∈ (−∞,+∞)
ω′ ∈ (−∞, 0) ⇐⇒ ω ∈ (−∞,+∞)

This means that the entire range ω ∈ (−∞,+∞) is mapped once onto the
positive frequencies ω′ and once onto the negative frequencies ω′. Furthermore,
the mapping and its inverse are strictly increasing on each of the two segments
ω > 0 and ω < 0, since dω/dω′ > 0. The unit frequencies ω′ = ±1 are mapped
from ω = 0.

Since we are often dealing with unity-cutoff transfer functions (ωc = 1), it’s
interesting to see to which frequencies ω′c the unity cutoff is mapped. Recalling
that the entire bipolar range of ω is mapped to the positive range of ω′, we need
to include the negative cutoff point (ωc = −1) into our transformation. On the
other hand, we are interested only in positive ω′c, since the negative-frequency
range of the amplitude response is symmetric to the positive-frequency range
anyway. Under these reservations, from (5.4) we have:

1
R

sinh lnω′c = ±1

from where lnω′c = sinh−1R, or, changing the logarithm base:

log2 ω
′
c = ± sinh−1R

ln 2

The distance in octaves between the two ω′c points can be defined as the
bandwidth of the transformation:

∆ =
2

ln 2
sinh−1R

Respectively, given the bandwidth ∆, the damping is

R = sinh
∆ · ln 2

2
=

2∆/2 − 2−∆/2

2

The transformation of the poles and zeros by the LP to BP transformation
can be obtained from

s =
1

2R
·
(
s′ +

1
s′

)
(5.5)

resulting in
s′ = Rs±

√
R2s2 − 1

Regarding the stability preservation consider that the sum (s′+1/s′) in (5.5)
is located in the same complex semiplane (left or right) as s′. Therefore, as long
as R > 0, the original value s is located in the same semiplane as its images

5.5. NONLINEAR MODEL 93

s′. which implies that the stability is preserved. On the other hand, negative
values of R “flip” the stability.

As for performing the LP to BP substitution in a block diagram, differently
from the LP to HP substitution, here we don’t need differentiators. The substi-
tution can be performed by replacing all (unity-cutoff) integrators in the system
with the structure in Fig. 5.15, thereby substituting 2Rs/(s2 +1) for 1/s, which
is algebraically equivalent to (5.2).7

MMMqqq
// + '!&"%#$//

∫
// •//

∫
oo

−
OO //

2R

Figure 5.15: “LP to BP” integrator.

The LP to BS (lowpass to bandstop) substitution8 is obtained as a series of
LP to HP substitution followed by an LP to BP substitution. Indeed, applying
the LP to BP substitution to a 1-pole highpass, we obtain the 2-pole notch
(“bandstop”) filter. Therefore, applying a series of LP to HP and LP to BP
substitutions to a 1-pole lowpass we also obtain the 2-pole notch filter.

Combining the LP to HP and LP to BP substitutions expressions in the
mentioned order gives an algebraic expression for the LP to BS substitution:

1
s
← 1

2R
·
(
s+

1
s

)
(5.6)

The bandwidth considerations of the LP to BS substitution are pretty much
equivalent to those of LP to BP substitution and can be obtained by considering
the LP to BS substitution as an LP to BP substitution applied to a result of
the LP to HP substitution.

The block-diagram form of the LP to BS substitution can be obtained by
directly implementing the right-hand expression in (5.6) as a replacement for
the integrators. This however requires a differentiator for the implementation
of the s term of the sum.

5.5 Nonlinear model

In the ladder filter the resonance was created as the result of the feedback.
Therefore by limiting the feedback level (by a saturator) we could control the
resonance amount and respectively prevent the filter from becoming unstable.

The feedback in the SVF has a more complicated structure. Particularly,
the bandpass path is responsible for damping the resonance. We could therefore

7For a differentiator, a similar substitution structure (containing an integrator and a dif-
ferentiator) is trivially obtained from the right-hand side of (5.2).

8Notice that BS here stands for “bandstop” and not for “band-shelving”. The alternative
name for the substitution could have been “LP to Notch”, but “LP to bandstop” seems to be
commonly used, so we’ll stick to that one.

94 CHAPTER 5. 2-POLE FILTERS

apply an inverse idea: try boosting the bandpass signal in case the signal level
becomes too strong. This can be achieved e.g. by placing an inverse hyperbolic
tangent nonlinearity into the bandpass feedback path as in Fig. 5.16 (one could
also alternatively consider a function of a similar shape, but without a vertical
asymptote, e.g. a hyperbolic sine, as a softer kind of nonlinearity).9 The idea is
that at low signal levels

tanh−1 yBP′ + (R− 1)yBP′ ≈ RyBP′

whereas at higher signal levels the nonlinearity boosts the bandpass signal.10

Notice that the bandpass signal should be rather picked up at the output of the
nonlinearity than at the yBP′ point to make sure it has a similar level as the
lowpass and highpass.

+ '!&"%#$// •// gξ + s1
// •// gξ + s2

// •// //

��

+ '!&"%#$oooo

−
OO

•��

tanh−1

��

•�� + '!&"%#$//

11
��

oo

11
��

��

��

OO

�������

R− 1

2

yHP

yBP

yLP

x

yBP′

Figure 5.16: 2-pole state-variable filter with a nonlinearity.

The nonlinear feedback equation can be obtained using yHP as the unknown:

yHP = x− 2 tanh−1(gyHP + s1)− 2(R− 1)(gyHP + s1)− g(gyHP + s1)− s2

Instead of using the inverse hyperbolic tangent or the hyperbolic sine function,
one could also use similar shaped functions f(x) = x/(1 − |x|) and f(x) =
x(1+ |x|). These functions turn the nonlinear zero-delay feedback equation into
a quadratic one (with two different segments), thus allowing analytical solution.

A more straightforward possibility is to introduce saturation into the in-
tegrators, or at least into the first of them. In the TPT approach one could

9Since the domain of the inverse hyperbolic tangent is restricted to (−1, 1), the “cheap”
TPT nonlinearity application method doesn’t work in this case, at least not in a straight-
forward manner. It might also not work too well for a hyperbolic sine either, for similar
reasons.

10The boosting of the bandpass signal by the nonlinearity is happening pretty much regard-
less of the damping, due to the parallel connection of the nonlinearity and the R − 1 gain.
Another option could have been to connect the nonlinearity and a 2R gain element in series.
However, in this case, for R = 0 the nonlinearity wouldn’t have had any effect. For R < 0 the
effect of the nonlinearity would have been inverted. Thus, saturating selfoscillation wouldn’t
have been possible due to the infinite growth of the signal within the filter.

5.6. SERIAL DECOMPOSITION 95

use the direct form I-style integrator (Fig. 3.8) resulting in the integrator in
Fig. 5.17. Or one could equivalently use the transposed direct form II-style
integrator (Fig. 3.10) resulting in the integrator in Fig. 5.18.

MMMqqq
// •// + '!&"%#$//

z−1//

OO + '!&"%#$// tanh// •//

z−1 oo

OO //x[n] y[n]

ωcT/2

Figure 5.17: Saturating direct form I trapezoidal integrator.

MMMqqq
// •// + '!&"%#$// tanh// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

ωcT/2

Figure 5.18: Saturating transposed direct form II trapezoidal inte-
grator.

5.6 Serial decomposition

Recall that a 1-pole multimode filter can be used to implement any 1st-order
rational transfer function. Similarly, a multimode SVF can be used to implement
practically any 2nd-order rational transfer function. Indeed, consider

H(s) =
b2s

2 + b1s+ b0
s2 + a1s+ a0

where we assume a0 > 0.11 Then

H(s) =
b2s

2 + b1s+ b0

s2 + 2
a1

2
√
a0

√
a0s+

√
a0

2
=

b2s
2 + b1s+ b0

s2 + 2Rωcs+ ω2
c

=

= b2
s2

s2 + 2Rωcs+ ω2
c

+
b1
ωc
· ωcs

s2 + 2Rωcs+ ω2
c

+
b0
ω2
c

· ω2
c

s2 + 2Rωcs+ ω2
c

=

11If a0 < 0, this means that H(s) has two real poles of different signs. If a0 = 0 then at
least one of the poles is at s = 0. In either case, this filter is already unstable, which means,
if we are practically interested in its implementation, most likely there is a nonlinear analog
prototype, and we simply can apply TPT to this prototype to obtain a digital structure. If
we insist on using the SVF structure (why would we?), we can also extend it to the canonical
form by introducing a gain element into the lowpass feedback path.

96 CHAPTER 5. 2-POLE FILTERS

= b2HHP(s) +
b1
ωc
HBP(s) +

b0
ω2
c

HLP(s)

This further allows to implement practically any given stable transfer func-
tion by a serial connection of a number of 2-pole (and possibly 1-pole) filters.
Indeed, simply factor the numerator and the denominator into 2nd- and pos-
sibly 1st-order factors (where the 2nd-order real factors will necessarily appear
for complex conjugate pairs of roots and optionally for pairs of real roots). Any
pair of 2nd-order factors (one in the numerator, one in the denominator) can be
implemented by a 2-pole multimode SVF. Any pair of 1st-order factors can be
implemented by a 1-pole multimode. If there are not enough 2nd-order factors
in the numerator or denominator, a pair of 1st order factors in the numerator
or denominator can be combined into a 2nd-order factor.

The serial decomposition is not the only way to decompose a transfer func-
tion into transfer functions of lower orders. E.g. one could use partial fraction
expansion to represent a transfer function as a sum of lower-order transfer func-
tions. However partial fraction expansion becomes ill-conditioned if the poles
of the transfer function are getting close together and is therefore generally less
useful than serial decomposition.

Serial decomposition of lowpass ladder filter

As an example demonstrating the serial decomposition technique we will obtain
a serial decomposition of a lowpass ladder filter. A lowpass ladder filter has
no zeros and two pairs of conjugate pole pairs for k > 0. By considering two
coinciding poles on a real axis also as mutually conjugate, we can assume k ≥ 0.

Since there are no zeros, we simply need a 2-pole lowpass SVF for each
conjugate pair of poles. Since

1
(s− p)(s− p∗)

=
1

s2 − 2 Re p · s+ |p|2

a 2-pole lowpass SVF expressed in terms of the complex conjugate poles is

HLP2(s) =
|p|2

(s− p)(s− p∗)
=

|p|2

s2 + 2
−Re p
|p|

|p| · s+ |p|2
=

=
1(

s

|p|

)2

+ 2
−Re p
|p|

· s
|p|

+ 1

=
1(

s

ωc

)2

+ 2R · s
ωc

+ 1

Thus
ωc = |p| R = −Re p

ωc

Let p1, p∗1, p2, p∗2 be the poles of the ladder filter. According to (4.2)

p1,2 = −1 +
±1 + j√

2
k1/4 (5.7)

Therefore the cutoffs of the 2-pole lowpasses are defined by

(ω1,2)2 = |p1,2|2 =
(
−1± k1/4

√
2

)2

+
(
k1/4

√
2

)2

(5.8)

5.6. SERIAL DECOMPOSITION 97

Respectively the transfer function of the ladder filter can be represented as

H(s) = g
1(

s

|p1|

)2

+ 2
−Re p1

|p1|
· s

|p1|
+ 1

· 1(
s

|p2|

)2

+ 2
−Re p2

|p2|
· s

|p2|
+ 1

=

= g
1(

s

ω1

)2

+ 2R1
s

ω1
+ 1

· 1(
s

ω2

)2

+ 2R2
s

ω2
+ 1

(5.9)

The unknown gain coefficient g can be found by evaluating (4.1) at s = 0,
obtaining the condition H(0) = 1/(1 + k). Evaluating (5.9) at s = 0 yields
H(0) = g. Therefore

g =
1

1 + k

Since the pole expressions (4.2) and respectively (5.7) apply only to the unit-
cutoff ladder filter, in order to construct a ladder filter of an arbitrary cutoff
ωc we need to respectively change the cutoffs ω1 and ω2 of the 2-poles in the
decomposition (5.9) according to

ω′1 = ω1ωc

ω′2 = ω2ωc
(5.10)

Notice that the ratio of the cutoffs is invariant relatively to the cutoff changes:

(
ω′1
ω′2

)2

=
(
ω1

ω2

)2

=

(
−1 +

k1/4

√
2

)2

+
(
k1/4

√
2

)2

(
−1− k1/4

√
2

)2

+
(
k1/4

√
2

)2 (5.11)

Prewarping of decomposed filters

Expressing the decomposition (5.9) in the form of a block diagram we obtain
the simple structure in Fig. 5.19 where H1 and H2 are defined by the respective
2-pole factors of (5.9).

MMMqqq
// H1

// H2
// //x(t) y(t)

1
1+k

Figure 5.19: Serial decomposition of a ladder filter.

That seems to be it, but the simplicity of Fig. 5.19 can be somewhat mis-
leading, if a discrete-time implementation of the structure is implied. What
might be not immediately obvious is that the cutoffs of H1 and H2 defined by
(5.10). are the analog rather than digital cutoffs. Normally one doesn’t need
to remember about the distiction between analog and digital cutoffs, because
prewarping takes care of mapping the latter to the former (or back). However,
if the analog cutoffs need to be in a special relationship (like the one in (5.11)),
this relationship may be destroyed by the prewarping.

98 CHAPTER 5. 2-POLE FILTERS

Suppose we simply take two digital lowpass filters H1 and H2, stick them
together and set their digital cutoffs ω1d and ω2d to the values defined by (5.10):

ω1d = ω1ωc

ω2d = ω2ωc

where ω1 and ω2 are defined by (5.8). Each filter will prewarp its cutoff sepa-
rately by applying (3.7), therefore the respective analog cutoffs will be

ω1a =
2
T

tan
ω1ωcT

2

ω2a =
2
T

tan
ω2ωcT

2

Clearly
ω1a

ω2a
6= ω1d

ω2d
=
ω1

ω2

This means that the cutoff property (5.11) is not preserved and respectively the
analog transfer function is not the one that we expect.

How critical is this deviation from the expected transfer function depends on
the specifics of the filter usage case and is also, to a certain degree, subjective.
However, it is important to realize that the usual thinking “bilinear transform
simply warps the frequency axis according to (3.7) and doesn’t change the fre-
quency response of the filter in any other way” doesn’t apply anymore in the
just discussed situation, because each of the 2-pole filters was prewarped inde-
pendently.

The solution is to use a common prewarping for both H1 and H2. The
natural choice for the prewarping point is ωc. Since ωc is naturally chosen as
the prewarping point for the ladder filter, by using the same prewarping point
we can make the digital structure in Fig. 5.19 to have exactly the same transfer
function as the corresponding digital implementation of the ladder filter. Thus
we obtain the analog prewarped cutoff ωca:

ωca =
2
T

tan
ωcT

2

and respectively the analog prewarped cutoffs of the 2-poles:

ω1a = ω1ωca

ω2a = ω2ωca

5.7 Transposed Sallen–Key filters

Attempting to build a 2-pole lowpass ladder filter (Fig. 5.20) we don’t end up
with a useful filter.

Indeed, the transfer function of this filter is

H(s) =
1

k + (1 + s)2

and the poles are respectively

s = −1±
√
−k = −1± j

√
k (k ≥ 0)

5.7. TRANSPOSED SALLEN–KEY FILTERS 99

+ '!&"%#$// LP1
// LP1

// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 5.20: 2-pole ladder filter (not very useful).

Comparing to the transfer function and the placement of the poles of the SVF,
we notice that the corresponding SVF cutoff and damping settings are

ωc =
∣∣∣−1± j

√
k
∣∣∣ =
√

1 + k

R =
−Re

(
−1± j

√
k
)

∣∣∣−1± j
√
k
∣∣∣ =

1√
1 + k

Thus, firstly, there is coupling between the feedback amount and the effective
cutoff of the filter. Secondly, as k grows, R stays strictly positive, thus the
filter never goes into selfoscillation (and, as with the 4-pole ladder filter the
selfoscillation would be quite desired once we introduce a saturator into the
filter). So, all in all, not a very useful structure.

Rather than giving up, let’s try to introduce a second feedback path into the
overall structure (Fig. 5.21) and let’s try to figure some useful settings for the
feedback amounts k1 and k2. We also introduce the multimode pickups at the
same time, to see if we can make any use of them.

+ '!&"%#$// •// LP1
// •// LP1

// •//

111
��

+ '!&"%#$��

111
��

oo

−
OO //

// //

x(t) y2(t)

k1 k2

y0(t) y1(t)

Figure 5.21: 2-pole ladder filter with two feedback paths.

Computing the transfer function we have

y0 = x− k1
y0

s+ 1
− k2

y0

(s+ 1)2

from where
(s+ 1)2y0 = (s+ 1)2x− k1(s+ 1)y0 − k2y0

from where (
(s+ 1)2 + k1(s+ 1) + k2

)
y0 = (s+ 1)2x

100 CHAPTER 5. 2-POLE FILTERS

and

y0 =
(s+ 1)2

(s+ 1)2 + k1(s+ 1) + k2
x

Respectively

y2 =
1

(s+ 1)2
y0 =

1
(s+ 1)2 + k1(s+ 1) + k2

x

Rewriting the denominator we get

(s+ 1)2 + k1(s+ 1) + k2 = s2 + (2 + k1)s+ (k2 + k1 + 1)

We wish our denominator to be of the form s2 + 2Rs + 1, which is ensured if
k2 + k1 = 0. Letting k2 = k and k1 = −k we have

(s+ 1)2 + k1(s+ 1) + k2 = s2 + 2
(

1− k

2

)
s+ 1

(so the selfoscillation occurs at k = 2). The corresponding structure is shown
in Fig. 5.22. This structure happens to be a transpose of the Sallen–Key filter,
therefore we will refer to it as the transposed Sallen–Key (TSK) filter.12

+ '!&"%#$// •// LP1
// •// LP1

// •//

+ '!&"%#$−�� ooqqq
MMM oo

−
OO //

// //

x(t) y2(t)

k

y0(t) y1(t)

Figure 5.22: Transposed Sallen–Key filter (lowpass).

The transfer functions corresponding to y0, y1 and y2 are respectively

H0(s) =
(s+ 1)2

s2 + 2(1− k/2)s+ 1

H1(s) =
s+ 1

s2 + 2(1− k/2)s+ 1

H2(s) =
1

s2 + 2(1− k/2)s+ 1

So y2 is having the familiar 2-pole lowpass filter transfer function of the SVF,
where k = 1 corresponds to the self-oscillation point.

12The author has used the works of Tim Stinchcombe as the information source on the
Sallen–Key filter. The idea to introduce TSK filters as a systematic concept arose from the
discussions with Julian Parker.

5.7. TRANSPOSED SALLEN–KEY FILTERS 101

As for y1, notice that

H1(s) =
s+ 1

s2 + 2s+ 1
=

1
s+ 1

for k = 0

That is, at the zero resonance setting y1 is a 1-pole lowpass. So, yLP1 = y1 can
be considered as a kind of 1-pole lowpass “with resonance”:

HLP1(s) = H1(s)

In order to obtain further useful modes from the filter we need to introduce
two additional pickups, connected to the highpass multimode components of
the underlying 1-pole filters (labelled “LP1” in the diagrams). So, let ȳ1 be the
highpass output of the first “LP1” block and let ȳ2 be the highpass output of
the second “LP1” block. Then

H̄1(s) = sH1(s) =
(s+ 1)s

s2 + 2(1− k/2)s+ 1

H̄2(s) = sH2(s) =
s

s2 + 2(1− k/2)s+ 1

Thus yBP = ȳ2 is a 2-pole bandpass:

HBP(s) = H̄1(s)

Considering that

H̄1(s)− H̄2(s) =
s2

s2 + 2(1− k/2)s+ 1

we have yHP2 = ȳ1 − ȳ2:

HHP2(s) = H̄1(s)− H̄2(s)

Noticing that

H̄1(s) =
(s+ 1)s

s2 + 2s+ 1
=

s

s+ 1
for k = 0

we can define yHP1 = ȳ1 as a kind of 1-pole highpass “with resonance”:

HHP1(s) = H̄1(s)

Nonlinear version

The structure of the feedback in the TSK filter is very much like the one of the
feedback in the ladder filter. The feedback and resonance amount grows with k.
Therefore this filter can successfully accomodate a saturator immediately before
or after the feedback point, e.g. like in Fig. 5.23.

As the transfer functions of both the lowpass TSK filter and the lowpass
SVF are completely identical, the better (and different) accommodation of non-
linearities is probably the main reason to use a TSK filter at all, at least in the
digital domain, where a linear TPT TSK filter is somewhat more computation-
ally expensive than a TPT SVF.

102 CHAPTER 5. 2-POLE FILTERS

+ '!&"%#$// •// LP1
// •// LP1

// •//

+ '!&"%#$−�� ooqqq
MMM ootanh oo

−
OO //

// //

x(t) y2(t)

k

y0(t) y1(t)

Figure 5.23: Lowpass TSK filter with saturator.

Highpass TSK filter

Instead of using 1-pole lowpass filters as the basis for the TSK filter, one could
use 1-pole highpass filters. Effectively this performs an LP to HP substitution
(s ← 1/s), thereby turning y2 into a highpass output. The modal outputs get
transformed respectively.13

Bandpass TSK filter

By using one 1-pole lowpass and one 1-pole highpass (in either order) one can
produce a 2-pole bandpass signal at the y2 output. This however requires letting
k1 = 0 and k2 = −k in Fig. 5.21 (this can be verified by a direct computation or
obtained in the same way as we have obtained the coefficients for the lowpass
TSK), resulting in the structure in Fig. 5.24.14

+ '!&"%#$// LP1
// HP1

// •//

qqq
MMM oo

OO //x(t) y(t)

k

Figure 5.24: Bandpass TSK filter.

The transfer function is

H(s) =
s

s2 + 2(1− k/2) + 1

Allpass TSK filter

By using two allpass filters one can produce an allpass TSK filter. This requires
different values of k1 and k2 and the usage of the modal mixture. Considering

13A saturator could be less appropriate in the highpass TSK filter (especially in a digital
model), since the overtones created by the nonlinearity will not be dampened back by the
lowpass filtering.

14Of course, one could argue that calling the filter in Fig. 5.24 a TSK filter is a little
bit far-fetched. However, considering the procedure of obtaining this filter, the name seems
reasonable enough.

5.7. TRANSPOSED SALLEN–KEY FILTERS 103

Fig. 5.21 with two 1-pole allpass filters with (1− s)/(1 + s) transfer functions,
we obtain

y0 = x− k1
1− s
1 + s

y0 − k2
(1− s)2

(1 + s)2
y0

from where

y0

(
(1 + s)2 + k1(1− s)(1 + s) + k2(1− s)2

)
= (1 + s)2x

and

y0 =
(1 + s)2

(1 + s)2 + k1(1− s)(1 + s) + k2(1− s)2
x

Considering the denominator alone:

(1+s)2 +k1(1−s)(1+s)+k2(1−s)2 = (1−k1 +k2)s2 +2(1−k2)s+(1+k1 +k2)

Apparently the denominator can be turned into the form s2 + 2Rs + 1 only
by letting k1 = k2 = 0, but this immediately restricts it to R = 1. However,
instead we can require that the coefficient at s2 and the free term’s coefficient
are equal. This requires k1 = 0. Letting k2 = k we obtain

y0 =
(1 + s)2

(1 + k)s2 + 2(1− k)s+ (1 + k)
x

and

y2 =
(1− s)2

(1 + k)s2 + 2(1− k)s+ (1 + k)
x

Let y = b0y0 + b2y2 be a mixture of y0 and y2 with unknown coefficients b0 and
b2. We wish

y = b0y0 + b2y2 =
(1 + k)s2 − 2(1− k)s+ (1 + k)
(1 + k)s2 + 2(1− k)s+ (1 + k)

x =
s2 − 2

1− k
1 + k

s+ 1

s2 + 2
1− k
1 + k

s+ 1
x

from where

b0(1 + s)2 + b2(1− s)2 = (1 + k)s2 − 2(1− k)s+ (1 + k)

or

(b0 + b2)s2 + 2(b0 − b2)s+ (b0 + b2) = (1 + k)s2 − 2(1− k)s+ (1 + k)

from where b0 = 1 and b2 = k, which corresponds to the structure in Fig. 5.25.
It is easy to notice that this structure is very similar to the one of a phaser with
some specific dry/wet mixing ratio.15

The damping parameterR is equal to (1−k)/(1+k) so that for k = −1 . . .+∞
the damping varies from +∞ to −1. The stable range R = +∞ . . . 0 corresponds
to k = −1 . . . 1.

15The same structure can be obtained from a direct form II 1-pole allpass filter by the
allpass substitution z−1 ← (1 − s)2/(1 + s)2. It is also interesting to notice that, applying
the allpass substitution principle to the structure in Fig. 5.25, we can replace the series of the
two 1-pole allpass filters in Fig. 5.25 by any other allpass filter, and the modified structure
will still be an allpass filter.

104 CHAPTER 5. 2-POLE FILTERS

+ '!&"%#$// •// AP1
// AP1

// •//

qqq
MMM oo

−
OO

MMMqqq
//

+ '!&"%#$��// //x(t) y(t)

k

k

Figure 5.25: Allpass TSK filter.

Sallen–Key filter

By transposing the lowpass TSK filter structure, one obtains the Sallen–Key
filter (Fig. 5.26). Further modal inputs for BP, HP2 and HP1 signals can be
obtained by using the highpass inputs of the transposed “LP1” filters, corre-
sponding to the signals x̄1 and x̄2.

•oo + '!&"%#$oo LP1
oo + '!&"%#$oo LP1

oo + '!&"%#$oo

•

OO OO
−

MMMqqq
//tanh ////

oo�� ��
y(t) x2(t)

k

x0(t) x1(t)

Figure 5.26: Sallen–Key filter with saturator.

Of course, the transposition can be applied to the other TSK filters, where
some of the filters will transpose into themselves.

SUMMARY

The state-variable filter has the structure shown in Fig. 5.1. Contrarily to the
ladder filter, the resonance strength in the SVF is controlled by controlling the
damping signal. The multimode outputs have the transfer functions

HHP(s) =
s2

s2 + 2Rs+ 1

HBP(s) =
s

s2 + 2Rs+ 1

HLP(s) =
1

s2 + 2Rs+ 1

and can be combined to build further filter types.

SUMMARY 105

The transposed Sallen–Key (TSK) filter is a kind of “2-pole ladder filter
with two feedback signals”. This structure can nicely accommodate saturating
nonlinearities and can output multiple filter modes. Similar structures can be
built based on highpass filters, a mixture of a highpass and a lowpass and based
on allpass filters.

106 CHAPTER 5. 2-POLE FILTERS

Chapter 6

Allpass-based effects

Phasers are essentially LFO-modulated ladder filters built around allpass filters
instead of lowpass filters. Flangers can be obtained from phasers by an allpass
substitution. For these reasons both types belong to the VA filter discussion.

6.1 Phasers

The simplest phaser is built by mixing the unmodified (dry) input signal with
an allpass-filtered (wet) signal as in Fig. 6.1, where the allpass filter’s cutoff
is typically modulated by an LFO.1 The allpass filter can be rather arbitrary,
except than it has to be a differential filter.2

•// + '!&"%#$��
AP// //

MMMqqq
// //x(t) y(t)

ydry(t)

ywet(t)

1/2

Figure 6.1: The simplest phaser.

At the points where the allpass filter’s phase response is 180◦, the wet and
the dry signals will cancel each other, producing a notch. At the points where
the allpass filter’s phase response is 0◦ the wet and the dry signals will boost
each other, producing a peak (Fig. 6.2).

The phaser structure in Fig. 6.1 contains no feedback, therefore there is
no difference between naive and TPT digital implementations (except that the
underlying allpass filters should be better constructed in a TPT way).

1In the absence of LFO modulation the structure should be rather referred to as a (multi-)
notch filter.

2Phasers typically use differential allpass filters or their digital counterparts. If e.g. a delay
(which is not a differential filter, but is an allpass) is used as the allpass, the structure should
be rather referred to as a flanger.

107

108 CHAPTER 6. ALLPASS-BASED EFFECTS

ω

|H(jω)|

ωcωc/8 8ωc

1

0.5

0

Figure 6.2: Amplitude response of the simplest phaser from Fig. 6.1
(using four identical 1-pole allpass filters with the same cutoff as
the allpass core of the phaser).

Mixing at arbitrary ratios

Instead of mixing at the 50/50 ratio we can mix at any other ratio, where the
sum of the dry and wet mixing gains should amount to unity. This will affect
the depth of the notches and the height of the peaks. For the phaser in Fig. 6.1
the mixing ratio higher than 50/50 (where the wet signal amount is more than
50%) hardly makes sense.

Instead of mixing ydry and ywet at different ratios we could simply crossfade
the output signal between x(t) and y(t), where the latter are defined as in
Fig. 6.1. This second approach will also become much handier than the first
one once we introduce the feedback as in Fig. 6.4.

Wet signal inversion

By inverting the wet signal, one swaps the peaks and the notches. Notice that
the phase response of differential allpasses at ω = 0 can be either 0◦ or 180◦, the
same holds for the phase response at ω = +∞. For that reason the possibility
to swap the peaks and the notches might be handy.

Notch spacing

In the simplest case one uses a series of identical 1-pole allpasses inside a phaser.
In order to control the notch spacing in an easy and nice way, one should rather
use a series of identical 2-pole allpasses. As mentioned earlier, by changing the
resonance amount of the 2-pole allpasses one controls the phase slope of the
filters. This affects the spacing of the notches (Fig. 6.3).

Feedback

We can also introduce feedback into the phaser. Similarly to the case of the
ladder filter modes, the dry signal is better picked up after the feedback point
(Fig. 6.4) The feedback changes the shape of the peaks and notches (Fig. 6.5).

6.1. PHASERS 109

ω

|H(jω)|
R = 5R = 0.3

R = 1

ωcωc/8 8ωc

1

0.5

0

Figure 6.3: Effect of the allpass resonance on the notch spacing
(using two 2-pole allpass filters as the allpass core of the phaser).

+ '!&"%#$// •// + '!&"%#$��
AP// •// //

MMMqqq
// //

qqq
MMM oo

OOx(t) y(t)

1/2

k

Figure 6.4: Phaser with feedback.

ω

|H(jω)|
k = 0.3

k = −0.5

k = 0

ωcωc/8 8ωc

1

0.5

0

Figure 6.5: Effect of the feedback amount in Fig. 6.4 on the notch
and peak shapes.

110 CHAPTER 6. ALLPASS-BASED EFFECTS

With the introduction of feedback we have a zero-delay feedback loop in the
phaser structure. It can be solved using typical TPT means.3

6.2 Flangers

Flangers can be obtained from phasers by an allpass substitution.
A delay is a linear time-invariant allpass. It even has a transfer function

H(s) = e−sT where T is the delay time. Obviously |H(s)| = |e−sT | = 1.
However it is not a differential filter, for that reason the transfer function is
not a rational function of s. Digital delay models are typically built using
interpolation techniques, the details of which fall outside the scope of this book.

Using the allpass substitution principle we can replace the allpass filter chain
in a phaser by a delay. This produces a flanger.4 The discussion of the phasers
mostly didn’t assume any details about the underlying allpass, therefore most
of it is applicable to flangers.

The main difference with using a delay is that the 0◦ and 180◦ phase re-
sponse points are evenly spaced in the linear frequency scale (Fig. 6.6), whereas
the spacing of the same points in responses of differential allpasses is not that
regular. Also, a delay’s phase response can easily have lots of 0◦ and 180◦ points
(the larger the delay time is, the more of those points it has within the audi-
ble frequency range), while the number of those points in a differential allpass
filter’s phase response is limited by the filter’s order.

ω

|H(jω)|

1
2T

3
2T

5
2T

7
2T

9
2T

1

0.5

0

Figure 6.6: Amplitude response of the simplest flanger using the
structure from Fig. 6.1.

Rather than modulating the delay time linearly by an LFO, one should
consider that a filter’s cutoff should be typically modulated in the logarithmic
frequency scale (a.k.a. the pitch scale), therefore one in principle should do the
same for the delay in a flanger. The delay’s cutoff for that purpose can be simply
defined as ωc = 2π/T , where T is the delay time.

3Inserting a unit delay in the feedback produces subtle but rather unpleasant artifacts in
the phasing response, one should better use the TPT approach here.

4In the absence of an LFO the structure is referred to as a comb filter.

SUMMARY 111

SUMMARY

A phaser is made of an allpass differential filter connected in parallel with the
dry signal path. This creates notches at the points of 180◦ phase difference and
peaks at 0◦ points. The allpass cutoff should be modulated by an LFO. Using
a delay instead of a differential allpass creates a flanger. Feedback can be used
to change the shape of the peaks and notches in the amplitude response.

112 CHAPTER 6. ALLPASS-BASED EFFECTS

Chapter 7

Frequency shifters

Frequency shifters are a musical application of the radio transmission technique
known as single-sideband modulation. Despite sounding simple from the name,
the construction of frequency shifters (or more specifically, the computation
of the coefficients of filters used therein) is somewhat complicated. Therefore a
somewhat higher math skill level is generally required by the materials discussed
in this chapter compared to the other chapters in this book.

The text also refers in a few places to Butterworth and elliptic filters as well
as to elliptic rational functions, whose introduction is beyond the scope of this
book. A few reading suggestions regarding elliptic filters and elliptic rational
functions are made at the end of the chapter.

7.1 General ideas

According to Fourier transform properties, the shifting of the signal in the time
domain corresponds to modulation by a complex sinusoid in the frequency do-
main. The dual of that property is that the shifting of the signal in the frequency
domain corresponds to modulation by a complex sinusoid in the time domain.
More specifically, let

x(t) =
∫ ∞
−∞

X(ω)ejωt
dω
2π

(7.1)

Then, a frequency-shifted version of x(t) is∫ ∞
−∞

X(ω)ej(ω+∆ω)t dω
2π

=
∫ ∞
−∞

X(ω)ejωtej∆ωt
dω
2π

= ej∆ωt
∫ ∞
−∞

X(ω)ejωt
dω
2π

Thus in order to shift the frequencies of all partials of the signal by ∆ω we need
to simply multiply the signal by ej∆ωt. The problem is, however, that if x(t)
was originally a real signal (that is X(ω) was Hermitian), then after the multi-
plication by a complex sinusoid ej∆ωt it won’t be real anymore (corresponding
to the fact that a shifted Hermitian spectrum is not Hermitian anymore).

So, how do we frequency-shift a real signal, so that the resulting signal is
real as well? Let

x(t) =
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π

113

114 CHAPTER 7. FREQUENCY SHIFTERS

We wish to obtain

y(t) =
∫ ∞

0

a(ω) cos
(
(ω + ∆ω)t+ ϕ(ω)

) dω
2π

(7.2)

Notably, if ∆ω < 0, then some of the frequencies ω+∆ω in (7.2) will be negative
and will alias with the positive frequencies of the same absolute magnitude.
This can be either ignored, or x(t) can be prefiltered to make sure it doesn’t
contain frequencies below −∆ω. So, except for the just mentioned highpass
prefiltering option, the possible aliasing of the negative frequencies doesn’t affect
the subsequent discussion.

We can rewrite (7.2) as

y(t) =
∫ ∞

0

a(ω) cos
(
(ω + ∆ω)t+ ϕ(ω)

) dω
2π

=

=
∫ ∞

0

a(ω) cos
(
(ω + ∆ω)t+ ϕ(ω)

) dω
2π

=

=
∫ ∞

0

a(ω) cos
(
∆ωt+ ωt+ ϕ(ω)

) dω
2π

=

=
∫ ∞

0

a(ω)
(

cos ∆ωt cos
(
ωt+ ϕ(ω)

)
− sin ∆ωt sin

(
ωt+ ϕ(ω)

)) dω
2π

=

= cos ∆ωt ·
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π
−

− sin ∆ωt ·
∫ ∞

0

a(ω) sin
(
ωt+ ϕ(ω)

) dω
2π

=

= cos ∆ωt ·
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π
−

− sin ∆ωt ·
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)− π

2

) dω
2π

=

= x(t) cos ∆ωt− x−90(t) sin ∆ωt (7.3)

where
x−90(t) =

∫ ∞
0

a(ω) cos
(
ωt+ ϕ(ω)− π

2

) dω
2π

is a signal obtained from x(t) by phase-shifting all partials by −90◦.
If (7.1) is a complex spectrum of a real x(t) then the complex spectrum of

x−90(t) must be

x−90(t) =
∫ ∞

0

j−1X(ω)ejωt
dω
2π

+
∫ 0

−∞
jX(ω)ejωt

dω
2π

that is all positive frequency partials need to be shifted by −90◦ and all negative
frequency partials need to be shifted by +90◦. That is

X−90(ω) = X(ω) · j sgnω

or, in the Laplace transform notation

X−90(jω) = X(jω) · j sgnω

We wonder whether we could construct a filter, whose frequency response is
H(jω) = j sgnω. If we succeed, it would be trivial to use thie filter to build a
frequency shifter.

7.2. ANALYTIC SIGNALS 115

7.2 Analytic signals

There is an alternative way to look at the same topic. Consider a complex signal

v(t) = x(t) + jx−90(t) =

=
∫ ∞
−∞

X(ω)ejωt
dω
2π

+ j

∫ ∞
0

j−1X(ω)ejωt
dω
2π

+ j

∫ 0

−∞
jX(ω)ejωt

dω
2π

=

=
∫ ∞

0

2X(ω)ejωt
dω
2π

+ 0 (7.4)

So, v(t) doesn’t contain any negative frequency partials. A signal which contains
only positive frequency partials is called analytic. Clearly, the spectrum of an
analytic signal is not Hermitian, thus an analytic signal cannot be purely real.

The transformation that converts a real part of an analytic signal to the
imaginary one is called Hilbert transform. Two real signals are said to form a
Hilbert transform pair if they are a real and an imaginary part of some analytic
signal. So x(t) and x−90(t) form a Hilbert transform pair.

A signal processing algorithm which performs Hilbert transform is referred to
as a Hilbert transformer. Common usages of Hilbert transforms are in envelope
followers to estimate the signal’s amplitude and in frequency shifters. A number
of discrete-time Hilbert transform algorithms are available. However, since this
book concentrates on the VA filters, it is appropriate to consider a method of
designing a Hilbert transformer in continuous time.

According to our previous discussion there are two equivalent approaches to
build a Hilbert transformer:

- build a complex filter defined by

V (jω) = X(jω) · 2H>0(jω) where H>0(jω) =

{
1 for ω > 0
0 for ω < 0

(7.5)

and take the imaginary part of the output1

- build a ±90◦ phase shifter, thereby immediately obtaining the imaginary
part of the analytic signal:

X−90(jω) = X(jω)H−90(jω) where H−90(jω) = −j sgnω (7.6)

Apparently the two approaches are related by the decomposition of H>0(s) into
its real and imaginary parts:

2H>0(s) = 1 + jH−90(s) (7.7)

7.3 Phase splitter

So far we have obtained the two expressions (7.5) and (7.6) for an ideal Hilbert
transformer. Such implementations are however not possible in pactice. The

1This idea was taken by the author from Design of multiplierless elliptic IIR halfband
filters and Hilbert transformers by M.D.Lutovac and L.D.Milic (proc. Eusipco-98), where it
is further attributed to Special Filter Design by P.A.Regalia.

116 CHAPTER 7. FREQUENCY SHIFTERS

problem is that neither (7.5) nor (7.6) can be implemented by a finite-order
filter, since there are no rational transfer functions satisfying (7.5) or (7.6). So,
practical implementations of Hilbert transformers are always approximations
thereof.

Furthermore, considering (7.5), we can notice that it cannot be implemented
by a stable differential system, since stable rational transfer functions cannot
have zero phase response. Indeed, a zero phase response implies that H>0(jω) is
a real rational function of ω and therefore its complex poles should be mutually
conjugate in the complex ω-plane. Since s = jω, each such conjugate pole pair
in the ω-plane corresponds to a pair consisting of a stable and an unstable pole
in the s-plane.

A counterpart to that issue is that the phase response (7.6) doesn’t corre-
spond (even approximately) to a stable allpass. Indeed, any stable allpass can
be represented as a serial combination of stable 1- and 2-pole allpasses (or even
just 1-poles, if we allow complex 1-pole allpasses). Recall the phase response of
a stable 1-pole allpass (Fig. 7.1). In the vicinity of −90◦ this phase response has
the steepest slope. Connecting more 1-pole allpasses in series can only make the
situation worse. Using 2-poles is even further worse, since their phase responses
(Fig. 7.2) are even steeper than those of 1-poles.

ω

argH(jω)

ωcωc/8 8ωc

0

−π

−π/2

−2π

Figure 7.1: Phase response of a 1-pole allpass filter.

Thus stable approximations of (7.5) and (7.6) are not possible. A nonstable
approximation of (7.5) can be however converted into a stable one by introduc-
ing an additional allpass transformation of the signal. Indeed, let pn+ be the
unstable poles of H>0(s). Consider an unstable allpass H+(s) whose poles are
pn+:

H+(s) =
∏
n

−p∗n+ − s
pn+ − s

Respectively H−1
+ (s) is a stable allpass. Considering the product H−1

+ (s)H>0(s)
we notice that it defines a stable filter, since the unstable poles of H>0(s) are
cancelled by the zeros of H−1

+ (s). So, while H>0 is not a stable filter, we could
build the stable filter H−1

+ H>0 differing from H>0 only by shifted phases in the
output signal.

7.4. IMPLEMENTATION STRUCTURE 117

ω

argH(jω)

ωcωc/8 8ωc

0

−π

−2π

Figure 7.2: Phase response of a 2-pole allpass filter.

Multiplying both sides of (7.7) by H−1
+ (s) we obtain

2H>0(s)H−1
+ (s) = H−1

+ (s) + jH−1
+ (s)H−90(s) (7.8)

Noticing that (7.7) implies that H>0(s) and H−90(s) have identical poles, we
conclude that an unstable allpass H−90(s) is thereby converted into a sta-
ble allpass H−1

+ (s)H−90(s). That is a pair of stable allpasses H−1
+ (s) and

H−1
+ (s)H−90(s) produces the real and imaginary parts of an analytical signal,

where the latter differs from the analytical signal in (7.6) just by phase shifting.
Practically this means the following. Given an unstable allpass H−90(s) we

decompose it into a product of stable and unstable parts:

H−90(s) = H−(s)H+(s) =
H−(s)
H−1

+ (s)
(7.9)

The inverted unstable part H−1
+ then produces the real part of the analytic

signal and the stable part H− produces the imaginary part of the analytic
signal (Fig. 7.3). The structure is Fig. 7.3 is referred to as the phase splitter.

•// H−1
+

// //

H−// //

x(t) y1(t) = Re v(t)

y2(t) = Im v(t)

Figure 7.3: Phase splitter.

7.4 Implementation structure

Using (7.3) we can turn the phase splitter in Fig. 7.3 into a frequency shifter.
By using y1(t) and y2(t) instead of x(t) and x−90(t) the equation (7.3) is turned

118 CHAPTER 7. FREQUENCY SHIFTERS

into
y(t) = y1(t) cos ∆ωt− y2(t) sin ∆ωt

corresponding to the structure in Fig. 7.4

•// H−1
+

//
MMMqqq
// + '!&"%#$//

H−//
MMMqqq
//

−
OO //x(t) y(t)

cos ∆ωt

sin ∆ωt

Figure 7.4: Frequency shifter.

Notably, replacing ∆ω by −∆ω in (7.3) we obtain∫ ∞
0

a(ω) cos
(
(ω −∆ω)t+ ϕ(ω)

) dω
2π

= x(t) cos ∆ωt+ x−90(t) sin ∆ωt (7.10)

This means that we can extend the frequency shifter in Fig. 7.4 to a one that
shifts simultaneously in both directions, obtaining the diagram in Fig. 7.5.

•// H−1
+

//
MMMqqq
// •// + '!&"%#$//

H−//
MMMqqq
// •

−
??����������

//

+ '!&"%#$// ��
??????????

//

x(t) y(t)

y′(t)

cos ∆ωt

sin ∆ωt

Figure 7.5: A bidirectional frequency shifter.

Adding together the frequency-shifted signals from (7.3) and (7.10) we notice
that∫ ∞

0

a(ω) cos
(
(ω + ∆ω)t+ ϕ(ω)

) dω
2π

+
∫ ∞

0

a(ω) cos
(
(ω −∆ω)t+ ϕ(ω)

) dω
2π

=

= x(t) cos ∆ωt− x−90(t) sin ∆ωt+ x(t) cos ∆ωt+ x−90(t) sin ∆ωt =
= 2x(t) cos ∆ωt

That is, the sum of y and y′ in Fig. 7.5 produces a ring modulation between y1(t)
(which is a phase-shifted version of x(t)) and cos(∆ωt). So frequency-shifting
and ring-modulation by a sinusoid seem are very closely related. The same can
be analyzed in the complex spectral domain:

cos ∆ωt · x(t) =
ej∆ωt + e−j∆ωt

2

∫ ∞
−∞

X(ω)ejωt
dω
2π

=

=
1
2

∫ ∞
−∞

X(ω)ejωtej∆ωt
dω
2π

+
1
2

∫ ∞
−∞

X(ω)ejωte−j∆ωt
dω
2π

=

=
1
2

∫ ∞
−∞

X(ω)ej(ω+∆ω)t dω
2π

+
1
2

∫ ∞
−∞

X(ω)ej(ω−∆ω)t dω
2π

7.5. REMEZ ALGORITHM 119

Thus in the case of the ring modulation by a sinusoid, the partials are frequency-
shifted in both directions.

So now we know how to construct a frequency shifter, except that we still
do not know how to obtain H>0(s) or H−90(s), so that we can obtain from
them the allpasses H+ and H−, and this is exactly what we shall discuss next.
Analytical expressions for obtainingH−90(s) involve the usage of elliptic rational
functions which are a relatively esoteric subject. This was more or less the
only reasonable approach when the computational powers of modern personal
computers were not available. However, nowadays a straightforward minimax
optimization approach can be taken instead, as long as runtime recomputation
of the coefficients is not required. We will discuss both methods.

7.5 Remez algorithm

Suppose we are given a function f(x) and its approximation f̃(x). There are
different ways to measure the quality of the approximation. One way to measure
this quality is the maximum error of the approximation on the given interval of
interest x ∈ [a, b]:

E = max
[a,b]

∣∣∣f̃(x)− f(x)
∣∣∣ (7.11)

We therefore wish to minimize the value of E. That is we want to minimize the
maximum error of the approximation. Such approximations are hence called
minimax approximations.2

Gradient search methods do not work well for minimax optimizations. There-
fore a different method, called Remez algorithm,3 needs to be used. As of today,
internet resources concerning the Remez algorithm are quite scarce, nor does
this method seem to be a subject of common math textbooks. This might
suggest that Remez algorithm belongs to a rather esoteric math area. The al-
gorithm itself, however, is very simple. We will therefore cover the essentials of
that algorithm in this book.4

Suppose f̃(x) is a polynomial:

f̃(x) =
N∑
n=0

anx
n (7.12)

Apparently, there are N+1 degrees of freedom in the choice of f̃(x), each degree
corresponding to one of the coefficients an. Therefore we can force the function
f̃(x) to take arbitrarily specified values at N + 1 arbitrarily chosen points x̄n.
Particularly, we can require

f̃(x̄n) = f(x̄n) n = 0, . . . , N
2The maximum of the absolute value of a function is also the L∞ norm of the function.

Therefore minimax approximations are optimizations of the L∞ norm.
3The Remez algorithm should not be confused with the Parks–McClellan algorithm. The

latter is a specific restricted version of the former. For whatever reason, the Parks–McClellan
algorithm is often referred to as the Remez algorithm in the signal processing literature.

4The author’s primary resource for the information about the Remez algorithm was the
documentation for the math toolkit of the boost library by J.Maddock, P.A.Bristow, H.Holin
and X.Zhang.

120 CHAPTER 7. FREQUENCY SHIFTERS

or equivalently require the error to be zero at x̄n:

f̃(x̄n)− f(x̄n) = 0 n = 0, . . . , N (7.13)

(notice that the equations (7.13) are linear in respect to the unknowns an and
therefore are easily solvable). If the points x̄n are approximately uniformly
spread over the interval of interest [a, b] then intuitively we can expect f̃(x) to
be a reasonably good approximation of f(x) (Fig. 7.6).

x

f̃(x)− f(x)

5× 10−4

π

2
0

Figure 7.6: The error of the 4-th order polynomial approximations
of sinx on [0, π/2]. The approximation with uniformly spaced zeros
at 9◦, 27◦, 45◦, 63◦, 91◦ (solid line) and the one with Chebyshev
zeros (dashed line). The empty square-shaped dots at the extrema
of the error are the control points of the Remez algorithm.

This based on the uniform zero spacing approximation is however not the
best one. Indeed, instead let x̄n equal the (properly scaled) zeros of the Cheby-
shev polynomial of order N + 1:

x̄n =
a+ b

2
+
b− a

2
zn x̄n ∈ (a, b) zn ∈ (−1, 1)

TN+1(zn) = cos
(
(N + 1) arccos zn

)
= 0

zn = − cos
(

1
2

+ n

)
π

N + 1
n = 0, . . . , N

where TN (x) = cos(N arccosx) is the Chebyshev polynomial of order N and
where the minus sign in front of the cosine ensures that zn are in ascending
order. Comparing Chebyshev zeros approximation (the dashed line in Fig. 7.6)
to the uniform zeros approximation, we can see that the former is much better
than the latter, at least in the minimax sense.

A noticeable property of the Chebyshev zeros approximation clearly observ-
able in in Fig. 7.6 is that the extrema of the approximation error (counting the
extrema at the boundaries of the interval [a, b]!) are approximately equal in
absolute magnitude and have alternating signs. This is a characteristic trait of

7.5. REMEZ ALGORITHM 121

minimax approximations: the error extrema are equal in magnitude and alter-
nating in sign.

So, we might attempt to build a minimax approximation by trying to sat-
isfy the equiripple error oscillation requirement. That is, instead of seeking
to minimize the maximum error, we simply seek an error which oscillates be-
tween the two boundaries of opposite sign and equal absolute value. Somewhat
surprisingly, this is a much simpler task.

Intuitive description of Remez algorithm

Consider the solid line graph in Fig. 7.6. Intuitively, imagine a “control point”
at each of the extrema. Now we “take” the control point which has the largest
error (the one at x = 0) and attempt to move it towards the x axis, reducing
the error value at x = 0. Since there are 6 control points (4 at local extrema
plus 2 at the boundaries), but only 5 degrees of freedom (corresponding to
the coefficients an), at least one of the other control points needs to move (or
several or all of them can move). Intuitively it’s clear that if we lower the error
at x = 0, then it will grow at some other points of [a, b]. However, since we have
the largest error at x = 0 anyway, we can afford the error growing elsewhere
on [a, b], at least for a while. Notice that during such change the x positions of
control points will also change, since the extrema of the error do not have to
stay at the same x coordinates.

As the error elsewhere at [a, b] becomes equal in absolute magnitude to the
one at x = 0, we have two largest-error control points which need to be moved
simultaneously from now on. This can be continued until only one “free” control
point remains. Simultaneously reducing the error at 5 of 6 control points we
thereby increase the error at the remaining control point. At some moment both
errors will become equal in absolute magnitude, which means that the error at
all control points is equal in absolute magnitude. Since the control points are
located at the error extrema, we have thereby an equiripple oscillating error.

Remez algorithm for polynomial approximation

Given f̃(x) which is a polynomial (7.12), the process of “pushing the control
points towards zero” has a simple algorithmic expression. Indeed, we seek f̃(x)
which satisfies

f̃(x̂n) + (−1)nε = f(x̂n) n = 0, . . . , N + 1 (7.14)

where x̂n are the (unknown) control points (including x̂0 = a and x̂N+1 = b)
and ε is the (unknown) signed maximum error. Thus, the unknowns in (7.14)
are an (the polynomial coefficients), x̂n (the control points at the extrema) and
ε (the signed maximum error). Notice that the equations (7.14) are linear in
respect to an and ε, which leads us to the following idea.

Suppose we already have some initial guess for f̃(x), like the uniform zero
polynomial in Fig. 7.6 (or the Chebyshev zero polynomial, which is even better).
Identifying the extrema of f̃(x) − f(x) we obtain a set of control points x̂n.
Now, given these x̂n, we simply solve (7.14) for an and ε (where we have N +
2 equations and N + 2 unknowns in total), thereby obtaining a new set of
an. In a way this is cheating, because x̂n are not the control points anymore,
since they are not anymore the extrema of the error (and if they were, we

122 CHAPTER 7. FREQUENCY SHIFTERS

would already have obtained a minimax approximation by simply finding these
new an). However, the polynomial defined by the new an has a much better
maximum error (Fig. 7.7)!

x

f̃(x)− f(x)

5× 10−4

π

2
0

Figure 7.7: The approximation error before (dashed line) and after
(solid line) a single step of the Remez polynomial approximation
algorithm. The empty square-shaped dots are the control points.

So we simply update the control points x̂n to the new positions of the ex-
trema and solve (7.14) again. Then again update the control points and solve
(7.14) and so on. This is the Remez algorithm for polynomial approximation.
We still need to refine some details about the algorithm though.

- The function f(x) should be reasonably well-behaved (whatever that could
mean) in order for Remez algorithm to work.

- As a termination condition for the iteration we can simply check the
equiripple property of the error at the control points. That is, having
obtained the new an, we find the new control points x̂n and then compute
the errors εn = f̃(x̂n)−f(x̂n). If the absolute values of εn are equal up to
the specified precision, this means that we have an approximation which
is minimax up to the specified error, and the algorithm may be stopped.

- The initial approximation f̃(x) needs to have the alternating sign prop-
erty. This is more or less ensured by using (7.13) to construct the initial
approximation. A good choice for x̄n (as demonstrated by Fig. 7.6) are
the roots of the Chebyshev polynomial of order one higher than the order
of the approximating polynomial f̃(x).5

- The control points x̂n are the zeros of the error derivative (f̃ −f)′ (except
for x̂0 = a and x̂N+1 = b). There is exactly one local extremum on each
interval (x̄n, x̄n+1) between the zeros of the error. Therefore, x̂n+1 can

5This becomes kind of intuitive after considering Chebyshev polynomials as some kind of
minimax approximations of the zero constant function f(x) ≡ 0 on the interval [−1, 1].

7.5. REMEZ ALGORITHM 123

be simply found as the zeros of the error derivative by bisection of the
intervals (x̄n, x̄n+1).

- After having obtained new an, the old control points x̂n are not the ex-
trema anymore, however the errors at x̂n are still alternating in sign.
Therefore the new zeros x̄n (needed to find the new control points by
bisection) can be found by bisection of the intervals (x̂n, x̂n+1).

Restrictions and variations

Often it is desired to obtain a function which is odd or even, or has some
other restrictions. This can be done by simply fixing the respective an, thereby
reducing the number of control variables an and reducing the number of control
points x̂n and zero crossings x̄n accordingly.

Remez algorithm can also be easily modified to accommodate a weight func-
tion in the minimax norm (7.11):

E = max
[a,b]

(
W (x) ·

∣∣∣f̃(x)− f(x)
∣∣∣) W (x) > 0

The error function therefore turns into W (x)(f̃(x)− f(x)), while the minimax
equations (7.14) turn into

f̃(x̂n) + (−1)nW−1(x̂n)ε = f(x̂n) n = 0, . . . , N + 1

(where W−1(x) is the reciprocal of W (x)).

Remez algorithm for rational approximation

Instead of using a polynomial f̃(x), better approximations can be often achieved
by rational f̃(x):

f̃(x) =

N∑
n=0

anx
n

1 +
M∑
n=1

bnx
n

(7.15)

Besides being able to deliver better approximations in certain cases, rational
functions can be often useful for obtaining approximations on infinite intervals
such as [a,+∞), because by varying the degrees of the numerator and denomi-
nator the asymptotic behavior of f̃(x) at x→∞ can be controlled.

For a rational f̃(x) defined by (7.15) the minimax equations (7.14) become
nonlinear in respect to the unknowns ε and bn, although they are still linear in
respect to the unknowns an:

N∑
i=0

aix̂
i
n + (−1)n

(
1 +

M∑
i=1

bix̂
i
n

)
ε =

(
1 +

M∑
i=1

bix̂
i
n

)
f(x̂n)

n = 0, . . . , N +M + 1

(7.16)

Notice that the number of degrees of freedom is now N +M + 1. The equations
(7.16) can be solved using different numeric methods for nonlinear equation

124 CHAPTER 7. FREQUENCY SHIFTERS

solution, however there is one simple trick.6 Rewrite (7.16) as

N∑
i=0

aix̂
i
n + (−1)nε

M∑
i=1

bix̂
i
n + (−1)nε =

(
1 +

M∑
i=1

bix̂
i
n

)
f(x̂n)

Now we pretend we don’t know the free term ε, but we do know the value of ε
before the sum of bix̂in:

N∑
i=0

aix̂
i
n + (−1)nε0

M∑
i=1

bix̂
i
n + (−1)nε =

(
1 +

M∑
i=1

bix̂
i
n

)
f(x̂n) (7.17)

where ε0 is this “known” value of ε. The value of ε0 can be estimated e.g. as the
average absolute error at the control points x̂n. Then (7.17) are linear equations
in respect to an, bn and ε and can be easily solved. Having obtained the new
an and bn, we can obtain a new estimation for ε0 and solve (7.17) again. We
repeat until the errors f̃(x̂n)− f(x̂n) at the control points x̂n become equal in
absolute vlaue up to a necessary precision. At this point we can consider the
solution of (7.16) as being obtained to a sufficient precision and proceed with
the usual Remez algorithm routine (find the new x̄n, new x̂n etc.)

Here are some further notes.

- In principle the solution of (7.16) doesn’t need to be obtained to a very
high precision, except in the final step of the Remez algorithm. However,
in order to know whether the current step is the final one or not, we
need to know the true control points, so that we can estimate how well
the equiripple condition is satisfied. Ultimately, this is a question of the
computational expense of finding the new control points vs. computing
another iteration of (7.17).

- Sometimes, if the equations are strongly nonlinear, the trick (7.17) may
fail to converge. In this case one could attempt to use the discussed
below more general Newton–Raphson approach (7.23), where the damping
parameter may be used to mitigate the convergence problems.

- In regards to the problem of choice of the initial f̃(x) for the rational
Remez approximation, notice that the zero error equations (7.13) take the
form

N∑
n=0

anx̄
n = f(x̄n)

(
1 +

M∑
n=1

bnx̄
n

)
which is fully linear in respect to an and bn, and can be easily solved.

Other kinds of approximating functions

In certain cases one could use even more complicated forms of f̃(x), which
are neither polynomial nor rational. In the general case such function f̃(x) is
controlled by a number of parameters an:

f̃(x) = f̃(x, a1, a2, . . . , aN)

6This trick is adapted from the boost library documentation and sources.

7.5. REMEZ ALGORITHM 125

(notice that this time the numbering of an is starting at one, so that there are
N parameters in total, giving N degrees of freedom). The minimax equations
(7.14) become

f̃(x̂n, a1, a2, . . . , aN) + (−1)nε = f(x̂n) n = 0, . . . , N (7.18)

Introducing functions

φn(a1, a2, . . . , aN , ε) = f̃(x̂n, a1, a2, . . . , aN) + (−1)nε− f(x̂n)

we rewrite the equations (7.18) as

φn(a1, a2, . . . , aN , ε) = 0 n = 0, . . . , N (7.19)

Introducing vector notation

Φ =
(
φ0 φ1 . . . φN

)T
a =

(
a1 a2 . . . aN ε

)T
we rewrite (7.19) as

Φ(a) = 0 (7.20)

Apparently, (7.20) is a vector form of (7.14), except that now we consider it
as a generally nonlinear equation. Both the function’s argument a and the
function’s value Φ(a) have the dimension N + 1, therefore the equation (7.20)
is fully defined.

Different numeric methods can be applied to solving (7.20). We will be
particularly interested in the application of multidimensional Newton–Raphson
method. Expanding Φ(a) into Taylor series at some fixed point a0 we transform
(7.20) into:

Φ(a0) +
∂Φ
∂a

(a0) ·∆a + o(∆a) = 0 (7.21)

where ∂Φ/∂a is the Jacobian matrix and a = a0 +∆a. By discarding the higher
order terms o(∆a), the equation (7.21) is turned into

∆a = −
(
∂Φ
∂a

(a0)
)−1

·Φ(a0) (7.22)

The equation (7.22) implies the Newton–Raphson iteration scheme

an+1 = an − α ·
(
∂Φ
∂a

(a0)
)−1

·Φ(a0) (7.23)

where the damping factor α is either set to unity, or to a lower value, if the
nonlinearity of Φ(a) is too strong and prevents the iterations from convergening.
The initial value a0 is obtained from the initial settings of the parameters an
and the estimated initial value of ε. As for the rational f̃(x), the initial value
of ε can be estimated e.g. as the average error at the control points.

Similarly to the rational approximation case, the solution of (7.20) doesn’t
need to be obtained to a very high precision during the intermediate steps of the
Remez algorithm. However the same tradeoff between computing the iteration
step (7.23) and finding the new control points applies.

126 CHAPTER 7. FREQUENCY SHIFTERS

The choice of the initial f̃(x) can be done based on the same principles. The
zero error equations (7.13) turn into

φn(a1, a2, . . . , aN , 0) = 0 n = 1, . . . , N

(notice that compared to (7.19) we have set ε to zero and we have N rather
than N + 1 equations). Letting

Φ̄ =
(
φ1 φ2 . . . φN

)T
ā =

(
a1 a2 . . . aN

)T
we have an N -dimensional nonlinear equation

Φ̄(ā) = 0

which can be solved by the same Newton–Raphson method:

ān+1 = ān − α ·
(
∂Φ̄
∂ā

(ā0)
)−1

· Φ̄(ā0) (7.24)

7.6 Cutoff optimization

We are now going to use Remez algorithm to build an approximation of the phase
shifter defined by (7.6). Apparently H−90(s) defined by (7.6) is an allpass. We
will retain the mentioned allpass property in the approximation. Using serial
decomposition the allpass H(s) can be decomposed into series of 2- and 1-pole
allpasses. Since we aim to have H(s) with as flat (actually, constant in the
range of interest) phase response as possible, 2-poles seem to be less useful than
1-poles, due to the steeper phase responses of the former (Figs. 7.1 and 7.2).

Restricting ourselves to using just 1-poles we have:

H(s) =
N∏
n=1

An(s) =
N∏
n=1

ωn − s
ωn + s

(7.25)

where ωn are the cutoffs of the 1-pole allpasses An(s). Notice that the specific
form of specifying H(s) in (7.25) ensures H(0) = 1 ∀N , that is we wish to have
a 0◦ rather than −180◦ phase response at ω = 0.

Now the idea is the following. Suppose N = 0 in (7.25) (that is we have
no 1-pole allpasses in the serial decomposition yet). Adding the first allpass
A1 at the cutoff ω1 we make the phase response of (7.25) equal to the one of
a 1-pole allpass (Fig. 7.1). From ω = 0 to ω = ωn the phase response is kind
of what we expect it to be: it starts at argH(0) = 0 and then decreases to
argH(jωn) = −π/2. However, after ω = ωn it continues to decrease, which is
not what we want. Therefore we insert another allpass A2 with a negative cutoff
−ω2:

H(s) =
ω1 − s
ω1 + s

· −ω2 − s
−ω2 + s

0 < ω1 < ω2

Clearly, A2 is unstable. However, we already know that unstable components
of H(s) are not a problem, since they simply go into the H−1

+ part of the phase
splitter.

7.6. CUTOFF OPTIMIZATION 127

The phase response of a negative-cutoff allpass (Fig. 7.8) is the inversion
of Fig. 7.1. Therefore, given sufficient distance between ω1 and ω2, the phase
response of H will first drop below −π/2 (shortly after ω = ω1) and then at
some point turn around and grow back again (Fig. 7.9). Then we insert another
positive-cutoff allpass A3, then a negative-cutoff allpass A4 etc., obtaining if not
an equiripple approximation of −90◦ phase response, then something of a very
similar nature (Fig. 7.10).

ω

argH(jω)

ωcωc/8 8ωc

π

π/2

0

Figure 7.8: Phase response of a negative-cutoff 1-pole allpass filter.

ω

argH(jω)

ω1 ω2

0

−π/2

−π

Figure 7.9: Phase response of a pair of a positive-cutoff and a
negative-cutoff 1-pole allpass filters. Frequency scale is logarith-
mic.

The curve in Fig. 7.10 has two obvious problems. The ripple amplitude is way
too large. Furthermore, in order to obtain this kind of curve, we need to position
the cutoffs ωn pretty wide apart (4 octaves between the neighboring cutoffs is a
safe bet). We would like to position the cutoffs closer together, thereby reducing
the ripple amplitude, however the uniform spacing of the cutoffs doesn’t work
very well for denser spacings of the cutoffs. We need to find a way to identify

128 CHAPTER 7. FREQUENCY SHIFTERS

ω

argH(jω)

0

−π/2

−π

Figure 7.10: Phase response of a series of alternating positive-
cutoff and negative-cutoff 1-pole allpass filters. Frequency scale is
logarithmic.

the optimum cutoff positions.
Using cutoffs of alternating signs, we rewrite the transfer function expression

(7.25) as

H(s) =
N∏
n=1

An(s) =
N∏
n=1

(−1)n+1ωn − s
(−1)n+1ωn + s

0 < ω1 < ω2 < . . . < ωN (7.26)

(the cutoff of A1 needs to be positive in order for the phase response of H to
have a negative derivative at ω = 0). Considering that the phase response of a
1-pole allpass with cutoff ωc is

H(jω) = −2 arctan
ω

ωc

the phase response of the serial decomposition (7.26) is

ϕ(x) = argH(jω) = 2
N∑
n=1

(−1)n arctan
ω

ωn
= 2

N∑
n=1

(−1)n arctan ex−an (7.27)

ω = ex

ωn = ean

where x and an are the logarithmic scale counterparts of ω and ωn (essentially
these are the pitch-scale values, we have just used e rather than 2 as the base
to simplify the expressions of the derivatives of ϕ). The reason to use the
logarithmic scale in (7.27) is that the phase responses of 1-pole allpasses are
symmetric in the logarithmic scale, therefore the entire problem gets certain
symmetry and uniformity.

Now we are in a position to specify the minimax approximation problem of
construction of the phase shifter H−90. We wish to find the minimax approx-
imation of f(x) ≡ −π/2 on the specified interval x ∈ [xmin, xmax], where the
approximating function ϕ(x) needs to be of the form (7.27).

7.6. CUTOFF OPTIMIZATION 129

The approximating function ϕ(x) has N parameters:

ϕ(x) = ϕ(x, a1, a2, . . . , aN)

which can be found by using the Remez algorithm for approximations of general
form. Notably, for larger N and smaller intervals [xmin, xmax] the problem
becomes more and more nonlinear, requiring smaller damping factors α in (7.23)
and (7.24). The damping factors may be chosen by restricting the lengths
|an+1 − an| and |ān+1 − ān| in (7.23) and (7.24).

In order to further employ the logarithmic symmetry of the problem (al-
though this is not a must), we may require xmin + xmax = 0 corresponding to
ωminωmax = 1. Then the following applies.

- Due to the symmetry ωminωmax = 1 the obtained cutoffs ωn will also be
symmetric: ωnωN+1−n = 1. (Actually they will be symmetric relatively
to
√
ωminωmax no matter what the ωmin and ωmax are, but it’s convenient

to have this symmetry more explicitly visible.)

- Using this symmetry the number of cutoff parameters can be halved (for
odd N the middle cutoff ω(N+1)/2 is always at unity and therefore can be
also excluded from the set of varying parameters). Essentially we simply
restrict ϕ(x) to be an odd (for odd N) or even (for even N) function of x.

- The obtained symmetric range [ωmin, ωmax] can be scaled by an arbitrary
constant A by scaling the allpass cutoffs by the same constant:

[ωmin, ωmax]← [Aωmin, Aωmax]
ωn ← Aωn

Figs. 7.11 and 7.12 contain example approximations of H−90(s) obtained by
cutoff optimization (for the demonstration purposes, the approximation orders
have been chosen relatively low, giving the phase ripple amplitude of an order
of magnitude of 1◦).

ω

argH(jω)

11/16 16

−80◦

−85◦

−90◦

−95◦

Figure 7.11: 8th-order minimax approximation of the ideal
H−90(s).

130 CHAPTER 7. FREQUENCY SHIFTERS

ω

argH(jω)

11/16 16

−80◦

−85◦

−90◦

−95◦

Figure 7.12: 7th-order minimax approximation of the ideal
H−90(s).

Instead of solving the initial approximation equation (7.24) there is a differ-
ent approach, which generally results in the nonlinearity of Φ(a) not so strongly
affecting the algorithm convergence. We could take the manually constructed
(7.26) with 4-octave spaced cutoffs ωn+1 = 16ωn as our initial approximation.
The formal range of interest could contain two additional octaves on each side:
ωmin = ω1/4, ωmax = 4ωN . Employing the logarithmic symmetry, we center the
whole range around ω = 1, so that ωminωmax = 1.

Using (7.23) (in the logarithmic scale x) we refine the initial approximation
to the ripples of equal amplitude. Then we simply shrink the range a little bit.
An efficient shrinking substitution is using the geometric averages:

ωmin ←
√
ωminω1

ωmax ←
√
ωmaxωN

(7.28)

The substitution (7.28) doesn’t affect the control points x̂n or the zeros x̄n of
the Remez algorithm. Therefore after the substitution the Remez algorithm can
be simply run again. Then the substitution is performed again, and so on, until
we shrink the interval [ωmin, ωmax] to the exact desired range.7

Notice that the approximations on the intermediate ranges [ωmin, ωmax] do
not need to be obtained with a very high precision, since their only purpose is
to provide a starting point for the next application of the Remez algorithm on a
smaller range. It is only the Remez algorithm on the exact desired range, which
needs to be run to a high precision. This can noticeably improve the algorithm’s
running time.

7.7 Analytical construction of phase response

The cutoff optimization by Remez algorithm is a useful option if the filter co-
efficients are fixed and need to be obtained only once during the filter design

7Of course at the last step we simply set ωmin and ωmax to the desired values, rather than
perform the substitution (7.28).

7.7. ANALYTICAL CONSTRUCTION OF PHASE RESPONSE 131

process. Should Remez algorithm fail to converge, it is possible to reduce the
magnitude of the damping coefficient in the Newton–Raphson step, or make
some other attempts to address the problem. However, if the coefficients need
to be computed at runtime, it would be much more reliable if we had analytical
expressions for the filter coefficients. This is what we are going to obtain next.

Since H−90(s) is an allpass, it can be written as

H−90(jω) = ejϕ

where ϕ = ϕ(ω) is some (yet) unknown function of ω. Consider

ejϕ =
1 + j tan

ϕ

2

1− j tan
ϕ

2

We could attempt to approximate the desired tan(ϕ/2) by some rational func-
tion F (ω):

H−90(jω) = ejϕ =
1 + jF (ω)
1− jF (ω)

=
j − F (ω)
j + F (ω)

(7.29)

Since phase responses of real filters must be real odd functions, so must be F (ω):

F (−ω) = −F (ω) (7.30)

Given a real odd F (ω), the equation (7.29) will deliver a real H−90(s). Indeed,
compare

H−90(s) =
j − F (−js)
j + F (−js)

=
j + F (js)
j − F (js)

(7.31)

(where the odd property of F (ω) has been used) and

H−90(s∗) =
j + F (js∗)
j − F (js∗)

=
j + F (−j∗s∗)
j − F (−j∗s∗)

=
j − F ((js)∗)
j + F ((js)∗)

=

=
−j∗ − F ∗(js)
−j∗ + F ∗(js)

=
(
j + F (js)
j − F (js)

)∗
= H∗−90(s)

From (7.6) we obtain the equirement for an ideal F (ω):

F (ω) ≈

{
−1 if ω > 0
1 if ω < 0

(7.32)

Arctangent scale

When dealing with rational functions of real variable it is sometimes convenient
and intuitive to plot (or at least imagine) the function graphs in the arctangent
scale. That is, given the function y = f(x), we use the variables

x′ = arctanx
y′ = arctan y

to define the geometrical coordinates of the points on the graph image (in exactly
the same way as we use x′ = log x and y′ = log y to create logarithmic scale
plots).

132 CHAPTER 7. FREQUENCY SHIFTERS

Essentially, the arctangent scale is a visual representation of the “Riemann
circle”, where the latter is the real counterpart of the complex Riemann sphere:
in the same way as Riemann sphere represents the extended complex plane
C∪ {∞}, the “Riemann circle” represents the extended real line R∪ {∞}. The
arctangent scale is therefore “periodic”. The usage of the arctangent scale is
illustrated by Figs. 7.13 and 7.14.

x

x9

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.13: Power function x9 in the arctangent scale.

x

x10

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.14: Power function x10 in the arctangent scale.

First-order rational transformations of the real line, when considered in the
arctangent scale, look like (non-uniform) contractions/dilations, cyclic shifts and
reflections of the line as well as combinations thereof. Particularly the following
transformations have simple visual representations in the arctangent scale.

7.7. ANALYTICAL CONSTRUCTION OF PHASE RESPONSE 133

- Since

tan
(
x′ ± π

4

)
=

tanx′ ± tan
π

4

1∓ tanx′ tan
π

4

=
tanx′ ± 1
1∓ tanx′

the transformations of the form

x← x± 1
1∓ x

are essentially just 45◦ cyclic shifts in the arctangent scale.

- Since
tan

(π
2
− x
)

= 1/ tanx

the reciprocation of the real line

x← 1/x

is a reflection relatively the x′ = π/4 in the arctangent scale. Respectively,
a pair of reciprocally symmetric values x1x2 = 1 turns into a pair of values
x′1, x′2, which are symmetric relatively to π/4 (or −π/4, or any value of
the form π/4 + πn). This explains the symmetry of the graphs of the
power function in Figs. 7.13 and 7.18.

The benefit of this scale is that it treats the infinity as any other point on
the line, and one can speak of points “before” or “after” the infinity. This is
a convenient visual representation when dealing with rational function. E.g.
one can visually observe the oscillations of elliptic rational functions not only
around zero, but also around the infinity (Figs. 7.15, 7.18, 7.19 and 7.20).

x

R4(ξ, x)

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.15: Elliptic rational function of the 4th order in the arc-
tangent scale.

134 CHAPTER 7. FREQUENCY SHIFTERS

Phase responses based on power function xN

Plotting the ideal F (ω) defined by (7.32) in the arctangent scale we obtain the
graph in Fig. 7.16. The continuous graphs at the points of discontinuity (ω = 0
and ω =∞) reflect the understanding of (7.32) as the limiting case of non-ideal
F (ω). This is not the only possible way to draw a continuous graph of (7.32),
but it will do for now. Notice that F (0) = 0 in Fig. 7.16, that is we wish the
approximations of (7.32) to have zero phase response at ω = 0.

x

F (ω)

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.16: The ideal F (ω) in the arctangent scale.

Comparing the graphs in Fig. 7.16 and 7.14 we notice that they differ solely
by 45◦ arctangent scaled shifts in both axes:

F =
F ′ − 1
F ′ + 1

(7.33a)

ω′ =
ω − 1
ω + 1

(7.33b)

where F ′(ω′) = ω′N , where N is even. Notice that the requirements (7.32)
therefore become

F ′(ω′) ≈

{
0 if |ω′| < 1
∞ if |ω′| > 1

(7.34)

which are fully satisfied by F ′(ω′) = ω′N .
Being a 45◦ cyclic shift of the arctangent scale, the transformation (7.33)

converts the odd symmetry requirement (7.30) into the reciprocal symmetry
requirement

F ′(1/ω′)F ′(ω′) = 1 (7.35)

since the latter in the arctangent scale is simply describing the reflection symme-
try relative to ω′ = 1 and F ′ = 1. Apparently this requirement is also satisfied
by F ′(ω′) = ω′N . Thus, given F ′(ω′) = ω′N (where N is even) one could use
(7.33) to directly construct F (ω), which in turn can be converted to H−90(s)
by using (7.31).

7.7. ANALYTICAL CONSTRUCTION OF PHASE RESPONSE 135

The expression for H−90(s) is however not exactly what we want. What
we want are the poles and zeros of H−90(s), so that we can represent it as a
series of allpasses. According (7.29) the poles of H−90(s) are given by solving
the equation

F (ω) = −j (7.36)

Using (7.33a), the equation (7.36) can be converted into the equivalent equation

F ′(ω′) = −j (7.37)

which (for F ′(ω′) = ω′N) can be easily solved in terms of complex ω′. Having
obtained the solutions of (7.37) in terms of ω′, we apply (7.33b) to convert ω′

to ω, thereby obtaining the poles of H−90(s) in terms of the complex ω, which
can be converted to the s-plane poles by s = jω.

The zeros of H−90(s) are respectively given by the equations

F (ω) = j

F ′(ω′) = j
(7.38)

Since F (ω) is real, one doesn’t need to solve (7.38), because the solutions of
(7.38) and (7.36) must be mutually conjugate in the complex ω-plane. Respec-
tively the poles and zeros of H−90(s) in the s-plane will be symmetric rela-
tively to the imaginary axis, which is in agreement with the allpass property of
H−90(s).

Half of the poles will be unstable, those will need to go into H−1
+ according

to (7.9). A more interesting observation is that all poles will be real. Indeed,
for F ′(ω′) = ω′N the equation (7.37) takes the form ω′N = −j. Its solutions ω′

are lying on the unit circle in the complex ω′-plane. It’s not difficult to see that
(7.33b) transforms |ω′| = 1 to Reω = 0 and respectively Im s = 0. This means
that H−90(s) can be decomposed into a series of purely real 1-pole allpasses.

Odd-order power functions ω′N also can be used. Instead of (7.16) consider
the other way to continuously express (7.32) (while still retaining the property
F (0) = 0), as shown in Fig. 7.17. Comparing Fig. 7.17 to Fig. 7.13 we realize
that odd-order power function need to be simply negated before being subject
to the 45◦ shifting (7.33). That is we let F ′(ω′) = −ω′N for N odd.

Phase responses based on elliptic rational functions

One could easily notice that the phase responses constructed using power func-
tions are inferior (in the sense of larger deviation from the ideal phase response)
to those obtained by the minimax optimization of allpass cutoffs.

In order to improve the phase response we could in principle perform a min-
imax approximation of (7.32). However, besides the mentioned earlier potential
convergence issues which could be critical for the runtime application, there are
two further problems associated with this approach.

- F (ω) is not the phase response ϕ(ω) itself, but its half-angle tangent
tan(ϕ/2). Since the values of interest are ϕ/2 ≈ ±π/4, due to asymmetric
nonlinearity of tangent in this range, the equiripple behavior of tan(ϕ/2)
is not exactly the same as the equiripple behavior of ϕ. Although, for
small ripple amplitudes this asymmetry could in principle be ignored.

136 CHAPTER 7. FREQUENCY SHIFTERS

x

F (ω)

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.17: The ideal F (ω) in the arctangent scale (the other
possibility).

Alternatively, one could rewrite the minimax equations (7.14) taking into
the account the asymmetry of the tangent around ϕ/2 = ±π/4:

f̃(x̂n) · (1 + ε)(−1)n = f(x̂n)

- After performing the minimax optimization in terms of the coefficients of
the rational function F (ω), we will need to numerically obtain the solutions
of the pole and zero equations (7.36) and (7.38). While this is in principle
doable,8 wouldn’t it be simpler just to run the minimax optimization of
the cutoffs instead?

Fortunately, the minimax approximations of (7.32) do have analytical ex-
pressions via elliptic rational functions. Elliptic rational functions have the
reciprocal symmetry

RN (ξ, ξ/x)RN (ξ, x) = LN (ξ) (7.39)

By scaling the elliptic rational function RN (ξ, x) by the square root of the selec-
tivity factor ξ in the argument scale and by the square root of the discrimination
factor LN (ξ) in the function’s value scale:

F ′(ω′) = L
−1/2
N (ξ)RN (ξ, ξ1/2ω′) (7.40)

the reciprocal symmetry (7.39) is normalized into the symmetry (7.35). The
functions (7.40) are analytical solutions of the minimax optimization of the
norm

E = max
{

max
|ω′|≤1/

√
ξ
|F ′(ω′)| , max

|ω′|≥
√
ξ
|1/F ′(ω′)|

}
Respectively, the arctangent scale graphs of (7.40) look like the ones in Figs. 7.18,
7.19 and 7.20.

8The numerical search for the solutions of the equations (7.36) and (7.38) can be replaced
by the numerical search of the poles and zeros of H−90(s), which in fact will be lying on the
real axis. H−90(s) can be obtained from F (ω) by an explicit transformation of the coefficients.

7.7. ANALYTICAL CONSTRUCTION OF PHASE RESPONSE 137

x

L
−1/2
4 (ξ)R4(ξ, ξ1/2x)

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.18: Elliptic rational function of the 4th order, scaled by√
ξ and

√
LN (ξ), in the arctangent scale.

x

L
−1/2
8 (ξ)R8(ξ, ξ1/2x)

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.19: Elliptic rational function of the 8th order, scaled by√
ξ and

√
LN (ξ), in the arctangent scale.

Thus the functions (7.40) can be used with (7.33) in exactly the same way
as the power functions ω′N , where we have to remember to invert the function’s
value sign for odd N :

F ′(ω′) = (−1)NL−1/2
N (ξ)RN (ξ, ξ1/2ω′) (7.41)

The equations (7.36) and (7.38) can also be solved analytically in this case. The
solutions of (7.36) are given by

ω′ =
cdx+ j snx

1 + jk snx cdx
(7.42)

138 CHAPTER 7. FREQUENCY SHIFTERS

x

L
−1/2
7 (ξ)R7(ξ, ξ1/2x)

∞∞ 1-1

∞

∞

1

-1

-1

0

Figure 7.20: Elliptic rational function of the 7th order, scaled by√
ξ and

√
LN (ξ), in the arctangent scale.

where the elliptic modulus k is the reciprocal of the selectivity factor

k = 1/ξ

and

x =
4n+ 2 + (−1)N

N
K(k) n = 0, 1, 2, . . . , N − 1

The solutions of (7.38) are the complex conjugates of (7.42). The formula (7.42)
implies |ω′| = 1, that is the solutions ω′ of the pole equation are lying on the
unit circle and respectively the poles of H−90(s) are real and are given by

s =

(
1− k cd2 x

)
snx

(1 + k sn2 x) cdx−
(
1 + k2 sn2 x cd2 x

) (7.43)

where k and x are the same as in (7.42) and where the stable poles are given
by n < N/2 for even N and n < (N + 1)/2 for odd N . The allpass transfer
functions H−90(s) obtained from (7.43) are identical to the ones obtained by
the cutoff optimization method (Figs. 7.11 and 7.12).

Bandwidth control

When using the power functions (−ω′)N as F ′(ω′), there are no parameters to
play with, except the order N of the function. However with the elliptic rational
function (7.41) there is the selectivity factor ξ, which can be freely chosen. The
selectivity factor affects the width of the transition regions of the elliptic ratio-
nal function. These transition regions will be mapped to the transition bands
of the allpass H−90(s), where the phase response ϕ(ω) is changing from +90◦

to −90◦ (around ω = 0) or from −90◦ to +90◦ (around ω = ∞). Therefore,
the selectivity factor controls the width of the transition bands of H−90(s). Ap-
parently, the widths of the transition bands and the widths of the “passbands”

7.7. ANALYTICAL CONSTRUCTION OF PHASE RESPONSE 139

(the bands where the phase response is ±90◦) are complementary, therefore the
selectivity factor also controls the passband width of H−90(s).

Noticing that

ϕ = −π
2
⇐⇒ F ′ = 0

ϕ =
π

2
⇐⇒ F ′ =∞

we identify the equiripple “regions of interest” of F ′(ω′):

ϕ ≈ −π
2
⇐⇒ F ′ ≈ 0 ⇐⇒ |ω′| ≤ ξ−1/2 ⇐⇒ |F ′| ≤ L−1/2

N (ξ) (7.44a)

ϕ ≈ π

2
⇐⇒ F ′ ≈ ∞ ⇐⇒ |ω′| ≥ ξ1/2 ⇐⇒ |F ′| ≥ L1/2

N (ξ) (7.44b)

Concentrating on the range where ϕ ≈ −π/2 (the other range is fully symmetric
to the first one anyway) and using (7.33b), we have

|ω′| ≤ ξ−1/2 ⇐⇒ 1− ξ−1/2

1 + ξ−1/2
≤ ω ≤ 1 + ξ−1/2

1− ξ−1/2

Taking the natural logarithm, we have

| lnω| < ln
1 + ξ−1/2

1− ξ−1/2
= 2 tanh−1

(
ξ−1/2

)
or

| log2 ω| ≤ 2
tanh−1

(
ξ−1/2

)
ln 2

=
∆
2

where tanh−1 is the inverse hyperbolic tangent and ∆ is the octave bandwidth
of the allpass H−90(s). Therefore, given the bandwidth ∆, the selectivity factor
is defined by

ξ =
1

tanh2

(
∆
4

ln 2
) (7.45)

The ripple amplitude is obtained by applying (7.33a) to (7.44a). Apparently,
(7.33a) implies

F ′ = tan
(ϕ

2
+
π

4

)
= tan

(
ϕ+ π/2

2

)
(which is in agreement with the fact that (7.33a) is a cyclic shift by 45◦ in the
arctangent scale). Then, from (7.44a),

|F ′| ≤ L−1/2
N (ξ) ⇐⇒

∣∣∣∣tan
(
ϕ+ π/2

2

)∣∣∣∣ ≤ L−1/2
N (ξ) ⇐⇒

⇐⇒
∣∣∣ϕ+

π

2

∣∣∣ ≤ arctanL−1/2
N (ξ)

Thus the ripple amplitude is

|∆ϕ|max = arctanL−1/2
N (ξ)

140 CHAPTER 7. FREQUENCY SHIFTERS

7.8 “LP to analytic” substitution

For the sake of a theoretical exercise (which is going to have practical impli-
cations) let’s convert H−90(s) obtained from (7.29) into the respective analytic
filter H>0(s). Substituting (7.33a) into (7.29) we obtain

H−90(s) =
j − F
j + F

=
j − F ′ − 1

F ′ + 1

j +
F ′ − 1
F ′ + 1

= j
F ′ − j
F ′ + j

Substituting this into (7.7) yields

2H>0(s) = 1 + jH−90(s) = 1− F ′ − j
F ′ + j

= 2
j

F ′ + j

Or, using the stable version (7.8) of (7.7),

2H>0(s)H−1
+ (s) = H−1

+ (s) + jH−1
+ (s)H−90(s) =

= H−1
+ (s) + jH−(s) = 2H−1

+ (s)
j

F ′ + j
(7.46)

where H+(s) can be obtained as the unstable allpass component of H>0(s). The
unstable poles arising out of the right-semiplane solutions of F ′ + j = 0 will be
therefore cancelled by the zeros of H−1

+ (s).
Explicitly writing the argument ω′ of F ′ in (7.46) we have

2H>0(jω)H−1
+ (jω) = 2H−1

+ (jω)
j

F ′(ω′) + j

Further rewriting the entire expression in terms of ω′ we have

2H ′>0(jω′)H ′−1
+ (jω′) = 2H ′−1

+ (jω′)
j

F ′(ω′) + j

where H ′>0(s) and H ′+(s) are obtained from H>0(s) and H+(s) according to
(7.33b). Computing the squared amplitude response of H ′>0H

′−1
+ :

∣∣H ′>0(jω′)H ′−1
+ (jω′)

∣∣2 =
∣∣H ′−1

+ (jω′)
∣∣ · ∣∣∣∣ j

F ′(ω′) + j

∣∣∣∣2 =
1

1 + F ′2(ω′)
(7.47)

we notice the following.

- For F ′(ω′) = (−ω′)N the equation (7.47) defines the amplitude response
of a unit-cutoff Butterworth filter.The poles of such filter are lying on the
unit circle in the s-plane.

- For the elliptic rational function (7.41) the equation (7.47) defines the
amplitude response of an elliptic minimum Q-factor (EMQF) filter. The
poles of such filter are also lying on the unit circle in the s-plane.9

9EMQF filter is simply an elliptic filter where the gain of the elliptic rational function
has been set to the reciprocal of the square root of the discrimination factor. Depending on
the definition of the EMQF filter’s cutoff, its poles may be lying on a circle of some other
radius. In this case the absolute magnitudes of the poles can be simply normalized, obtaining
a EMQF filter with poles on the unit circle.

7.8. “LP TO ANALYTIC” SUBSTITUTION 141

Actually, it’s not just that the amplitude response of H ′>0H
′−1
+ is the one

of a Butterworth or an EMQF filter. In fact, H ′>0H
′−1
+ is a Butterworth or an

EMQF filter. Indeed, the poles of F ′(ω′) (if any) are corresponding to the zeros
of H ′>0H

′−1
+ . The poles of H ′>0H

′−1
+ are the poles of H ′>0 and H ′−1

+ , where the
unstable poles of H ′>0 are cancelled by the zeros of H ′−1

+ . The poles of H ′>0 are
obtained from the equation

F ′(ω′) + j = 0 (7.48a)

(which is a rewritten (7.37)). Since the zeros of H ′−1
+ coincide with the unstable

poles of H ′> 0, they must be obtained from the same equation. Now, since H ′−1
+

is an allpass, its zeros are symmetric to its poles relatively to the imaginary axis
in the s′-plane (where s′ = jω′). Respectively, in the complex ω′ plane they are
conjugate-symmetric and thus the poles of H ′−1

+ are obtained from the equation

F ′(ω′)− j = 0 (7.48b)

Thus, the stable poles of H ′>0H
′−1
+ are combined from the stable poles of H ′>0,

which are the stable solutions of the equation (7.48a) and the stable poles of
H ′−1

+ , which are the stable solutions of the equation (7.48b). That is they are
simply the odd and even poles of the Butterworth or the EMQF filter.10

So, the zeros and the stable poles of H ′>0H
′−1
+ are exactly those of a Butter-

worth or EMQF filter. According to (7.47) their squared amplitude responses
are also equal. Any potential remaining difference between their transfer func-
tions can be only by a constant allpass gain factor |g| = 1, which doesn’t matter,
since our phase splitter anyway performs an allpass transformation of the input
signal by H+.

The relationship between H>0(s)H−1
+ (s) and a Butterworth or EMQF filter

creates yet another possibility to construct a phase splitter.11 We could start
off with a Butterworth or EMQF filter H ′>0H

′−1
+ (with a properly normalized

cutoff, so that the poles are lying on the unit circle) and apply the relationship
(7.33b) to convert it into an analytic filter 2H>0H

−1
+ . Using the relationship

2H>0(s)H−1
+ (s) = H−1

+ (s) + jH−(s)

the analytic filter is then decomposed into the real and imaginary allpass filters
H−1

+ and H−.
Notice that in principle, to do this decomposition we need to keep track of

the odd and even poles of the original Butterworth or EMQF filter (so that we
know which poles of the obtained analytic filter go into H−1

+ and which into
H−). However there will be a simple rule to identify which is which.

Now we discuss the same steps in a little bit more detail. Applying s = jω
and s′ = jω′ to (7.33b) we obtain the relationship between s and s′:

− js′ =
−js− 1
−js+ 1

s = j
1− js′

1 + js′
(7.49)

10Notice that by multiplying the equations (7.48a) and (7.48b) we obtain the common pole
equation

F ′2(ω′) + 1 = 0

where the odd and even poles are mixed together.
11In fact, this is the classical method to construct phase splitters.

142 CHAPTER 7. FREQUENCY SHIFTERS

By cyclically shifing the ω axis according to (7.33b), the substitution (7.49)
converts an s′-plane unit-cutoff lowpass filter into an s-plane analytic filter and
therefore can be referred to as the ”LP to analytic” substitution. This substi-
tution particularly has the following properties.

- The substitution preserves the order of the filter.

- The substitution maps the imaginary axis onto itself according to (7.33b).

- The substitution maps each of the left and the right semiplanes back onto
itself, thereby preserving the stability of the filter (this is easiest seen
from (7.33b) by considering complex ω and ω′, where changing from one
semiplane to the other corresponds to complex conjugation of ω and ω′).

- Since the substitution (7.33b) applies a 45◦ cyclic arctangent scale shift
to the imaginary axis, it doesn’t preserve the Hermitian property of the
frequency response. Thus it will turn real filters into complex ones. Con-
versely, some of the real filters produced by the substitution may have
complex originals.

- The conjugate pairs are mapped to reciprocal conjugates, in both direc-
tions:

s1 = s∗2 ⇐⇒ s′1 · s′∗2 = 1
s′1 = s′∗2 ⇐⇒ s1 · s∗2 = 1

Notice that s1 · s∗2 = 1 ⇐⇒ |s1| · |s2| = 1 ∧ arg s1 = arg s2.

- The points on the unit circle satisfy s ·s∗ = 1, therefore their image points
satisfy s′ = s′∗, that is the unit circle is mapped to the real axis (in both
directions). More specifically

s′ = −jejα ⇐⇒ s = tan
α

2
(7.50)

that is the range s′ = −j . . .− 1 . . .+ j of the unit circle on the s′-plane is
mapped to the range s = 0 . . .− 1 . . .−∞ of the negative real semiaxis of
the s-plane.

- Mutually conjugate points on the unit circle are mapped to reciprocally-
symmetric points on the real axis (in both directions).

Thus, given a Butterworth or an EMQF filter H ′>0H
′−1
+ we can apply the

transformation (7.49) to its poles. Since the poles for each of these two filter
types are located on the stable half of the unit circle, they will be transformed to
the poles on the negative real axis according to (7.50). The interleaving of the
odd and even poles will be therefore preserved due to the monotonicity of the
transformation (7.50). Then the odd stable poles are used to construct H−(s)
while the even stable poles are used to construct H−1

+ (s), thereby obtaining the
phase splitter.

There is a very simple rule to identify, which poles are even and which are
odd. Assuming H−90(0) = 1 (which can be achieved by ensuring H−(0) =
H−1

+ (0) = 1) the phase response of H−90 = H−/H
−1
+ = H−H+ should have

a negative derivative at ω = 0, which implies that the pole which is closest to

7.9. CUTOFF PREWARPING 143

the origin ω = 0 should belong to H−. The second closest to the origin pole
therefore belongs to H−1

+ , the third one to H− etc.12

7.9 Cutoff prewarping

In constructing the discrete-time version of H−90(s) implemented as a series of
1-pole allpasses, the cutoff prewarping is subject to the considerations discussed
in section 5.6. That is, the theoretically correct way would be to prewarp a
single chosen frequency ωc:

ωca =
2
T

tan
ωcdT

2
(ωcd = ωc)

and obtain the analog 1-pole allpass cutoffs ωn by multiplying ωca by the re-
spective frequency ratios. This however implies that the width of the equiripple
phase response band will be shrunk by the arctangent function.

Indeed, the bandwidth ∆ which we specify during the design of the ±90◦

phase shifter is the analog bandwidth:

∆ = log2

ωmax

ωmin
= log2

ωmax,a

ωmin,a
= ∆a

The respective digital bandiwdth is

∆d = log2

ωmax,d

ωmin,d
= log2

2
T

arctan
ωmax,aT

2
2
T

arctan
ωmin,aT

2

= log2

arctan
ωmax,aT

2

arctan
ωmin,aT

2

Clearly, ∆d < ∆a. If the upper bound of the equiripple band happens to be
close to Nyquist frequency, the bandwidth reduction will be quite noticeable.

One way around this is to prewarp each of the cutoffs ωn independently,
which should almost completely eliminate the effect of bandwidth reduction.
This will also destroy the equiripple minimax property of the phase response
of H−90(s), but the resulting non-optimality of the phase response may be
tolerable.

The other option is to define ∆a based on the specified discrete-time equirip-
ple band [ωmin,d, ωmax,d]. Given the sampling period T we can apply (3.7) to
obtain the respective analog frequency equiripple band [ωmin,a, ωmax,a]. Then we
can compute the analog 1-pole cutoffs by minimax optimization on that range.
Alternatively we use the obtained analog equiripple band [ωmin,a, ωmax,a] to de-
fine the analog bandwidth ∆a = log2(ωmax,a/ωmin,a), determine the necessary
selectivity factor ξ from (7.45) and obtain the cutoffs analytically using (7.43).
Apparently, for the same digital bandwidth, the phase response ripple amplitude
will be larger at lower sampling rates, since the respective analog bandwidth will
be larger.

12In principle, the application of the “LP to analytic” substitution approach to construct
phase splitters is not restricted to Butterworth and EMQF filters. Other lowpass filters can be
used as the prototypes. However, these lowpass filters need to satisfy a number of restrictions.
Essentially, we need that F ′(ω′) satisfies the reciprocal symmetry property (7.35).

144 CHAPTER 7. FREQUENCY SHIFTERS

SUMMARY

A frequency shifter can be built by multiplying an analytic signal by a com-
plex sinusoid. Technically this implies the usage of a 90◦ phase splitter, whose
output signals are multiplied by phase-locked sine and cosine signals and then
are subtracted or added together. A 90◦ phase splitter can be built as a series
of 1-pole allpasses, whose cutoff coefficients can be found numerically by min-
imax optimization or obtained analytically from Butterworth or EMQF filters
(or simply directly from power and elliptic rational functions).

Further reading

S.J.Orfanidis, Lecture notes on elliptic filter design (available on the au-
thor’s webpage).

M.Kleehammer, Mathematical development of the elliptic filter (available
in QSpace online repository).

Elliptic filter (Wikipedia artile).

L.M.Milne-Thomson, Jacobian elliptic functions and theta functions (in
Handbook of mathematical functions by M.Abramowitz and I.A.Stegun,
available on the internet).

History

The revision numbering is major.minor.bugfix. Pure bugfix updates are not
listed here.

1.0.2 (May 18, 2012)

first public revision

1.1.0 (June 7, 2015)

- TSK filters

- frequency shifters

- further minor changes

145

146 HISTORY

Index

1-pole filter, 7
2-pole filter, 81
4-pole filter, 61

allpass filter, 24, 90
allpass substitution, 54
amplitude response, 13, 35
analytic signal, 115
arctangent scale, 131

bandpass filter, 81, 86
bilinear transform, 40

inverse, 42
topology-preserving, 52
unstable, 59

BLT, 40
BLT integrator, see trapezoidal inte-

grator

canonical form, 50
cheap TPT method, 72
complex exponential, 5
complex impedances, 12
complex sinusoid, 1
cutoff, 8, 14

parametrization of, 15

damping
in SVF, 84

DC offset, 2
delayless feedback, 44
DF1, 50
DF2, 50
differentiator, 54
diode ladder filter, 73
Dirac delta, 4
direct form, 50

eigenfunction, 9
elliptic rational function, 119

filter

1-pole, 7
2-pole, 81
4-pole, 61
allpass, 24, 90
bandpass, 81, 86
highpass, 17, 64, 81
ladder, 61
lowpass, 7, 61, 81
multimode, 20, 65, 81
notch, 89
peaking, 90
Sallen–Key, 98
shelving, 21, 86
stable, 18
TSK, 98

flanger, 110
Fourier integral, 3
Fourier series, 2
Fourier transform, 3
frequency response, 13, 35
frequency shifter, 113

gain element, 8

harmonics, 2
Hermitian, 3
highpass filter, 17, 64, 81
Hilbert transform, 115
Hilbert transform pair, 115

instantaneous gain, 46
instantaneous offset, 46
instantaneous response, 46
instantaneously unstable

feedback, 57
integrator, 8

BLT, see integrator, trapezoidal
naive, 31
trapezoidal, 37

ladder filter, 61
diode, 73

147

148 INDEX

Laplace integral, 5
Laplace transform, 5
linearity, 11
lowpass filter, 7, 14, 61, 81
“LP to analytic” substitution, 140
LP to BP substitution, 91
LP to BS substitution, 93
LP to HP substitution, 19

minimax approximation, 119
multimode filter, 20, 65, 81

naive integrator, 31
nonstrictly proper, 11
notch filter, 89

partials, 2
peaking filter, 90
phase response, 13, 35
Phase splitter, 115
phaser, 107
pole, 18
prewarping, 43

Remez algorithm, 119
rolloff, 14

Sallen–Key filter, 98
shelving filter, 21, 86
stable filter, 18
state-variable filter, 81
substitution

LP to analytic, 140
LP to BP, 91
LP to BS, 93
LP to HP, 19

summator, 8
SVF, 81

time-invariant, 10
topology, 51
topology-preserving transform, 42, 52
TPBLT, 52
TPT, 42, 52

cheap, 72
transfer function, 11, 34
transposition, 26
trapezoidal integrator, 37
TSK filter, 98

unit delay, 32

z-integral, 30
z-transform, 30
zero, 18
zero-delay feedback, 45

	Preface
	Fourier theory
	Complex sinusoids
	Fourier series
	Fourier integral
	Dirac delta function
	Laplace transform

	Analog 1-pole filters
	RC filter
	Block diagrams
	Transfer function
	Complex impedances
	Amplitude and phase responses
	Lowpass filtering
	Cutoff parametrization
	Highpass filter
	Poles, zeros and stability
	LP to HP substitution
	Multimode filter
	Shelving filters
	Allpass filter
	Transposed multimode filter

	Time-discretization
	Discrete-time signals
	Naive integration
	Naive lowpass filter
	Block diagrams
	Transfer function
	Poles
	Trapezoidal integration
	Bilinear transform
	Cutoff prewarping
	Zero-delay feedback
	Direct forms
	Other replacement techniques
	Instantaneously unstable feedback

	Ladder filter
	Linear analog model
	Linear digital model
	Feedback shaping
	Multimode ladder filter
	HP and BP ladders
	Simple nonlinear model
	Advanced nonlinear model
	Diode ladder

	2-pole filters
	Linear analog model
	Linear digital model
	Further filter types
	LP to BP/BS substitutions
	Nonlinear model
	Serial decomposition
	Transposed Sallen--Key filters

	Allpass-based effects
	Phasers
	Flangers

	Frequency shifters
	General ideas
	Analytic signals
	Phase splitter
	Implementation structure
	Remez algorithm
	Cutoff optimization
	Analytical construction of phase response
	``LP to analytic'' substitution
	Cutoff prewarping

	History
	Index

