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About this book: the book covers the theoretical and practical aspects of the
virtual analog filter design in the music DSP context. Only a basic amount of
DSP knowledge is assumed as a prerequisite. For digital musical instrument
and effect developers.
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Preface

The classical way of presentation of the DSP theory is not very well suitable for
the purposes of virtual analog filter design. The linearity and time-invariance
of structures are not assumed merely to simplify certain analysis and design
aspects, but are handled more or less as an “ultimate truth”. The connection
to the continuous-time (analog) world is lost most of the time. The key focus
points, particularly the discussed filter types, are of little interest to a digital
music instrument developer. This makes it difficult to apply the obtained knowl-
edge in the music DSP context, especially in the virtual analog filter design.

This book attempts to amend this deficiency. The concepts are introduced
with the musical VA filter design in mind. The depth of theoretical explanation
is restricted to an intuitive and practically applicable amount. The focus of the
book is the design of digital models of classical musical analog filter structures
using the topology-preserving transform approach, which can be considered as
a generalization of bilinear transform, zero-delay feedback and trapezoidal inte-
gration methods. This results in digital filters having nice amplitude and phase
responses, nice time-varying behavior and plenty of options for nonlinearities.
In a way, this book can be seen as a detailed explanation of the materials pro-
vided in the author’s article “Preserving the LTI system topology in s- to z-plane
transforms.”

The main purpose of this book is not to explain how to build high-quality
emulations of analog hardware (although the techniques explained in the book
can be an important and valuable tool for building VA emulations). Rather it is
about how to build high-quality time-varying digital filters. The author hopes
that these techniques will be used to construct new digital filters, rather than
only to build emulations of existing analog structures.

The prerequisites for the reader include familiarity with the basic DSP con-
cepts, complex algebra and the basic ideas of mathematical analysis. Some basic
knowledge of electronics may be helpful at one or two places, but is not critical
for the understanding of the presented materials.

The author apologizes for possible mistakes and messy explanations, as the
book didn’t go through any serious proofreading.

ix
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Preface to revision 2.0.0alpha

This preface starts with an excuse. With revision 2.0.0 the book receives a major
update, where the new material roughly falls into two different categories: the
practical side of VA DSP and a more theoretical part. The latter arose from
the desire to describe theoretical foundations for the subjects which the book
intended to cover. These foundations were not copied from other texts (except
where explicitly noted), but were done from scratch, the author trying to present
the subject in the most intuitive Way.i For that reason, especially in the more
theoretical part, the book possibly contains mistakes.

Certain pieces of information are simply ideas which the author sponta-
neously had and tried to describe,? not necessarily properly testing all of them.
This is another potential source of mistakes. One option would have been not
rushing the book release and making an exhaustive testing of the presented ma-
terial. During the same time the book text could have gone through a few more
polishing runs, possibly restructuring some of the material in an easier to grasp
way. However, this probably would have delayed the book’s release by half a
year or, likely, much more, as after five months of overly intensive work on the
book the author (hopefully) deserves some relaxing. On the other hand, the
main intention of the book is not to provide a collection of ready to use recipes,
but rather to describe one possible way to think about the respective matters
and give some key pieces of information. Thus, readers, who understood the
text, should be able to correct the respective mistakes, if any, on their own.
From that perspective, the book in the present state should fulfill its goal.

Therefore the author decided to release the book in an alpha state with
the above reservations.® Readers looking for a collection of time-proven recipes
might want to check other sources.

The author also has recieved a number of complaints in regards to the book
having too high requirements on the math side. It just so happens that certain
things simply need advanced math to be properly understood. Sacrificing the
exactness and the amount of information for the sake of a more accessible text
could have definitely been an option, but... that would have been a completely
different book. In that regard the new revision contains parts which are even
harder on the math side than the previous revisions, the math prerequisites for
these parts respectively being generally higher than for the rest of the book.
Such parts, however, may simply be skipped by the readers.

In regards to the usage of the math in the book, the author would like to
make one more remark. The book uses math notation not simply to provide
some calculation formulas or to do formal transformations. The math notation
is also used to express information, since quite in some cases it can do this
much more exactly than words. In that sense the respective formulas become
an integral part of the book’s text, rather than some kind of a parallel stream
of information. E.g. the formula (2.4), which some readers find daunting, is

L “Intuitive” here doesn’t mean “easy to understand”, but rather “when understood, it
becomes easy”.

21t is possible that some of these ideas are not new, but the author at the time of the
writing was not aware of that. This might result in a lack of respective credits and in a
different terminology, for which, should that happen to be the case, the author apologizes.

3The alpha state has been dropped in rev.2.1.0, as the author did some additional verifi-
cation of the new materials.
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simply providing a detailed explanation to the statement that each partial can
be integrated independently.

Certain readers, being initially daunted by the look of the text, also believe
that they need to read some other filter DSP text before attempting this one.
This is not necessarily so, since this book strongly deviates in its presentation
from the classical DSP texts and this might create a collision in the beginner’s
mind between two very different approaches to the material. Also, chances are,
after reading some other classical DSP text first, the reader will only find out
that this didn’t help much in regards to understanding this book and was simply
an additional investment of time.

The part of DSP knowledge which is more or less required (although a pretty
surface level should suffice) is a basic understanding of discrete time sampling.
Also basic knowledge of Fourier theory could be helpful, but probably even that
is not a must, as the book introduces it in a, however condensed, but sufficient
for the understanding of the the further text form. No preliminary knowledge
of filters is needed. Also, in author’s impression, often the real problem is pos-
sibly an insufficient level of math knowledge or experience, which then leads to
a reader believing that some additional filter knowledge is needed first, whereas
what’s lacking is rather purely the math skills. In this case, if the gap is not
very large, one could try to simply read through anyway, it might become pro-
gressively better, or the part of the math which is not being understood may
happen to be not essential for practical application of the materials.
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Chapter 1

Fourier theory

When we are talking about filters we say that filters modify the frequency
content of the signal. E.g. a lowpass filter lets the low frequencies through,
while suppressing the high frequencies, a highpass filter does vice versa etc.
In this chapter we are going to develop a formal definition! of the concept of
frequencies “contained” in a signal. We will later use this concept to analyse
the behavior of the filters.

1.1 Complex sinusoids

In order to talk about the filter theory we need to introduce complex sinusoidal
signals. Consider the complex identity:

elt = cost + jsint (t € R)

(notice that, if ¢ is the time, then the point e/! is simply moving along a unit
circle in the complex plane). Then

et eIt
cost = —
and ] ]
) eIt — eIt
sint = ?

Then a real sinusoidal signal a cos(wt + ) where a is the real amplitude and
o is the initial phase can be represented as a sum of two complex conjugate
sinusoidal signals:
acos(wt + ) :g (ej(wt-i-tp) + e—j(wt+<,a)> — (geﬂ/’) elwt 4 (ge—jw) e Jwt

Notice that we have a sum of two complex conjugate sinusoids e*7** with re-
spective complex conjugate amplitudes (a/2)e®7%?. So, the complex amplitude
simultaneously encodes both the amplitude information (in its absolute magni-
tude) and the phase information (in its argument). For the positive-frequency

component (a/2)el? - eIt the complex “amplitude” a/2 is a half of the real
amplitude and the complex “phase” ¢ is equal to the real phase.

IMore precisely we will develop a number of definitions.
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1.2 Fourier series

Let z(t) be a real periodic signal of a period T:
x(t) =zt +T)

Let w = 27/T be the fundamental frequency of that signal. Then x(¢) can
be representedi as a sum of a finite or infinite number of sinusoidal signals of
harmonically related frequencies jnw plus the DC offset termi ag/2:

z(t) = % + Z an, cos(jnwt + ¢p,) (1.1)

n=1

The representation (1.1) is referred to as real-form Fourier series. The respective
sinusoidal terms are referred to as the harmonics or the harmonic partials of
the signal.

The set of partials contained in a signal (including the DC term) is referred
to as the signal’s spectrum. Respectively, a periodic signal can be specified by
specifying its spectrum.

Using the complex sinusoid notation the same can be rewritten as

x(t) = Z X, elnet (1.2)

n=—oo

where each harmonic term a,, cos(jnwt + ¢,) will be represented by a sum of
Xned™?t and X_,e 9™ where X,, and X_,, are mutually conjugate: X, =
X*,. The representation (1.2) is referred to as complex-form Fourier series
and respectively we can talk of a complex spectrum. Note that we don’t have
an explicit DC offset partial in this case, it is implicitly contained in the series
as the term for n = 0.

It can be easily shown that the real- and complex-form coefficients are related
as

an

X, = ?e”’" (n > 0)
a
X = 50

This means that intuitively we can use the absolute magnitude and the argument
of X,, (for positive-frequency terms) as the amplitudes and phases of the real
Fourier series partials.

Complex-form Fourier series can also be used to represent complex (rather
than real) periodic signals in exactly the same way, except that the equality
X, = X7*, doesn’t hold anymore.

Thus, any real periodic signal can be represented as a sum of harmonically
related real sinusoidal partials plus the DC offset. Alternatively, any periodic
signal can be represented as a sum of harmonically related complex sinusoidal
partials.

2Formally speaking, there are some restrictions on z(t). It would be sufficient to require
that z(t) is bounded and continuous, except for a finite number of discontinuous jumps per
period.

3The reason the DC offset term is notated as ag/2 and not as ag has to do with simplifying
the math notation in other related formulas.
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1.3 Fourier integral

While periodic signals are representable as a sum of a countable number of
sinusoidal partials, a nonperiodic real signal can be representedﬁ as a sum of an
uncountable number of sinusoidal partials:

> dw
z(t) = / a(w) cos(wt + p(w)) — (1.3)
0 2m
The representation (1.3) is referred to as Fourier integml.i The DC offset term
doesn’t explicitly appear in this case.

Even though the set of partials is uncountable this time, we still refer to it
as a spectrum of the signal. Thus, while periodic signals had discrete spectra
(consisting of a set of discrete partials at the harmonically related frequencies),
nonperiodic signals have continuous spectra.

The complex-form version of Fourier integrali is

d:‘: (1.4)

x(t) = /O:O X (w)edt 5

For real z(t) we have a Hermitian X (w): X(w) = X*(—w), for complex z(t)
there is no such restriction. The function X (w) is referred to as Fourier trans-
form of z(t).”

It can be easily shown that the relationship between the parameters of the
real and complex forms of Fourier transform is

X(w):M

ele(w) (w > 0)
This means that intuitively we can use the absolute magnitude and the argument
of X(w) (for positive frequencies) as the amplitudes and phases of the real
Fourier integral partials.

Thus, any timelimited signal can be represented as a sum of an uncountable
number of sinusoidal partials of infinitely small amplitudes.

4As with Fourier series, there are some restrictions on z(t). Tt is sufficient to require z(t) to
be absolutely integrable, bounded and continuous (except for a finite number of discontinuous
jumps per any finite range of the argument value). The most critical requirement here is
probably the absolute integrability, which is particularly fulfilled for the timelimited signals.

5The 1/27 factor is typically used to simplify the notation in the theoretical analysis
involving the computation. Intuitively, the integration is done with respect to the ordinary,
rather than circular frequency:

o) = /0 7 a(f) cos(2mft + () df

Some texts do not use the 1/27 factor in this position, in which case it appears in other places
instead.

6 A more common term for (1.4) is inverse Fourier transform. However the term inverse
Fourier transform stresses the fact that z(t) is obtained by computing the inverse of some
transform, whereas in this book we are more interested in the fact that z(t) is representable
as a combination of sinusoidal signals. The term Fourier integral better reflects this aspect.
It also suggests a similarity to the Fourier series representation.

"The notation X (w) for Fourier transform shouldn’t be confused with the notation X(s)
for Laplace transform. Typically one can be told from the other by the semantics and the
notation of the argument. Fourier transform has a real argument, most commonly denoted as
w. Laplace transform has a complex argument, most commonly denoted as s.
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1.4 Dirac delta function

The Dirac delta function 6(t) is intuitively defined as a very high and a very
short symmetric impulse with a unit area (Fig. 1.1):

5(t) = {+oo ift=0

0 ift#0
5(—t) = 8(t)
/ h 5(t)dt =1
o(t) a
+00 1
0 >t

Figure 1.1: Dirac delta function.

Since the impulse is infinitely narrow and since it has a unit area,
| rmemar=ro) v

from where it follows that a convolution of any function f(t) with §(¢) doesn’t
change f(t):

(reoe = [ T )8t — )y dr = £(1)

Dirac delta can be used to represent Fourier series by a Fourier integral. If
we let

X(w) = z 2 (w — nwy) X,

n—=——oo

then

> Xt = [ X
o 2

n—=—oo
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Notice that thereby the spectrum X (w) is discrete, even though being formally
notated as a continuous function. From now on, we’ll not separately mention
Fourier series, assuming that Fourier integral can represent any necessary signal.

Thus, most signals can be represented as a sum of (a possibly infinite number
of ) sinusoidal partials.

1.5 Laplace transform

Let s = jw. Then, a complex-form Fourier integral can be rewritten as

2(t) = / T X (et 35

—joo 27y

where the integration is done in the complex plane along the straight line from
—joo to +joo (apparently X(s) is a different function than X (w)).® For time-
limited signals the function X (s) can be defined on the entire complex plane in
such a way that the integration can be done along any line which is parallel to
the imaginary axis:

o+joo s
x(t) = / X(s)e! d— (c €R) (1.5)

In many other cases such X (s) can be defined within some strip 01 < Re s < o3.
Such function X (s) is referred to as bilateral Laplace transform of x(t), whereas
the representation (1.5) can be referred to as Laplace integral.® 10

Notice that the complex exponential et is representable as

6st _ 6Re s-telm st

Res-t Im st

Considering e as the amplitude of the complex sinusoid e we notice

that et is:
- an exponentially decaying complex sinusoid if Re s < 0,
- an exponentially growing complex sinusoid if Re s > 0,
- a complex sinusoid of constant amplitude if Re s = 0.

Thus, most signals can be represented as a sum of (a possibly infinite number
of ) complex exponential partials, where the amplitude growth or decay speed of
these partials can be relatively arbitrarily chosen.

8 As already mentioned, the notation X (w) for Fourier transform shouldn’t be confused
with the notation X (s) for Laplace transform. Typically one can be told from the other by
the semantics and the notation of the argument. Fourier transform has a real argument, most
commonly denoted as w. Laplace transform has a complex argument, most commonly denoted
as s.

9A more common term for (1.5) is inverse Laplace transform. However the term inverse
Laplace transform stresses the fact that z(t) is obtained by computing the inverse of some
transform, whereas is this book we are more interested in the fact that x(t) is representable
as a combination of exponential signals. The term Laplace integral better reflects this aspect.

10The representation of periodic signals by Laplace integral (using Dirac delta function) is
problematic for o # 0. Nevertheless, we can represent them by a Laplace integral if we restrict
o to o =0 (that is Res = 0 for X(s)).
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SUMMARY

The most important conclusion of this chapter is: any signal occurring in prac-
tice can be represented as a sum of sinusoidal (real or complex) components.
The frequencies of these sinusoids can be referred to as the “frequencies con-
tained in the signal”. The full set of these sinusoids, including their amplitudes
and phases, is refereed to as the spectrum of the signal.

For complex representation, the real amplitude and phase information is
encoded in the absolute magnitude and the argument of the complex amplitudes
of the positive-frequency partials (where the absolute magnitude of the complex
amplitude is a half of the real amplitude). It is also possible to use complex
exponentials instead of sinusoids.



Chapter 2

Analog 1-pole filters

In this chapter we are going to introduce the basic analog RC-filter and use it
as an example to develop the key concepts of the analog filter analysis.

2.1 RC filter

Consider the circuit in Fig. 2.1, where the voltage x(t) is the input signal and the
capacitor voltage y(t) is the output signal. This circuit represents the simplest
1-pole lowpass filter, which we are now going to analyse.

x(t)

Figure 2.1: A simple RC lowpass filter.

Writing the equations for that circuit we have:

z=Ugr+ Uc

y="Uc

Ur = RI (2.1)
I'=qc

qc = CUc

where Upg is the resistor voltage, Uc is the capacitor voltage, I is the current
through the circuit and g¢ is the capacitor charge. Reducing the number of
variables, we can simplify the equation system to:

r=RCy+y

or
= L@y (2.2)
yiRCx Yy
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or, integrating with respect to time:

t
1
y=ult0)+ [ e~ ytr) dr
where tg is the initial time moment. Introducing the notation w, = 1/RC we
have .
y=u(t0) + [ welolr) - y(r) dr (23)
to
We will reintroduce w, later as the cutoff of the filter.

Notice that we didn’t factor 1/RC (or w.) out of the integral for the case
when the value of R is varying with time. The varying R corresponds to the
varying cutoff of the filter, and this situation is highly typical in the music DSP
context.1

2.2 Block diagrams

The integral equation (2.3) can be expressed in the block diagram form (Fig. 2.2).

We

x(t) - @ y(t)

Figure 2.2: A 1-pole RC lowpass filter in the block diagram form.

The meaning of the elements of the diagram should be intuitively clear.
The gain element (represented by a triangle) multiplies the input signal by w..
Notice the inverting input of the summator, denoted by “—”. The integrator

simply integrates the input signal:

t
output(t) = output(tg) + / input(7) dr
to
The representation of the system by the integral (rather than differential)
equation and the respective usage of the integrator element in the block diagram
has an important intuitive meaning. Intuitively, the capacitor integrates the
current flowing through it, accumulating it as its own charge:

ac(t) = qolto) + / I(r)dr

to

or, equivalently
t

Uc(t) = Uc(to) + % I(T) dr

One can observe from Fig. 2.2 that the output signal is always trying to
“reach” the input signal. Indeed, the difference x — y is always “directed” from

IWe didn’t assume the varying C because then our simplification of the equation system
doesn’t hold anymore, since o # CU¢ in this case.
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y to . Since w, > 0, the integrator will respectively increase or decrease its
output value in the respective direction. This corresponds to the fact that the
capacitor voltage in Fig. 2.1 is always trying to reach the input voltage. Thus,
the circuit works as a kind of smoother of the input signal.

2.3 Transfer function

Consider the integrator:

2(t) —| [ —> ()

Suppose x(t) = et (where s = jw or, possibly, another complex value). Then

t

T=tg

t
1
y(t) = y(tO) +/ e’Tdr = y(to) + ge.ST

= Loty (y(to) - 16““)

to S s

Thus, a complex sinusoid (or exponential) e*! sent through an integrator comes
out as the same signal et just with a different amplitude 1/s plus some DC
term y(tg) — e /s. Similarly, a signal X (s)e*" (where X (s) is the complex
amplitude of the signal) comes out as (X (s)/s)e® plus some DC term. That
is, if we forget about the extra DC term, the integrator simply multiplies the
amplitudes of complex exponential signals 5t by 1/s.

Now, the good news is: for our purposes of filter analysis we can simply
forget about the extra DC term. The reason for this is the following. Suppose
the initial time moment ¢, was quite long ago (tp < 0). Suppose further that
the integrator is contained in a stable ﬁlteri. It can be shown that in this case
the effect of the extra DC term on the output signal is negligible.® Since the
initial state y(to) is incorporated into the same DC term, it also means that the
effect of the initial state is negligible!®

Thus, we simply write (for an integrator):

1
/eST dr = =et
s

This means that et is an eigenfunction of the integrator with the respective
eigenvalue 1/s.

Since the integrator is linear,i not only are we able to factor X (s) out of the
integration:

/X(s)eST dr = X(s)/e” dr = éX(s)eSt

2We will discuss the filter stability later, for now we’ll simply mention that we’re mostly
interested in the stable filters for the purposes of the current discussion

3We will discuss the mechanisms behind that fact when we talk about transient response.

4In practice, typically, a zero initial state is assumed. Then, particularly, in the case of
absence of the input signal, the output signal of the filter is zero from the very beginning
(rather than for t > tg).

5The linearity here is understood in the sense of the operator linearity. An operator His
linear, if . . .

H (A fi(t) + A2fa(t)) = M H f1(t) + A2 H fa(t)
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but we can also apply the integration independently to all Fourier (or Laplace)
partials of an arbitrary signal z(t):

o+joo o+joo
/ (/ X (s)e™ dS) dr :/ ( X (s)e®™ dT) ﬁ =
o—j00 2”] o—j00 27T]

oI X () ds
= —eT — 24
/g s ¢ 2mj (2.4)

—jco
That is, the integrator changes the complex amplitude of each partial by a 1/s
factor.

Consider again the structure in Fig. 2.2. Assuming the input signal 2(¢) has
the form e*! we can replace the integrator by a gain element with a 1/s factor.
We symbolically reflect this by replacing the integrator symbol in the diagram
with the 1/s fraction (Fig. 2.3).%

We

x(t)

-]

Figure 2.3: A 1-pole RC lowpass filter in the block diagram form
with a 1/s notation for the integrator.

So, suppose z(t) = X (s)e*" and suppose we know y(¢). Then the input signal
for the integrator is w.(x — y). We now will further take for granted the knowl-
edge that y(t) will be the same signal e*! with some different complex amplitude
Y (s), that is y(t) = Y(s)e®t (notably, this holds only if w,. is constant, that is,
if the system is time—z’nvam’ant!!!)z Then the input signal of the integrator is
we(X(s) = Y(s))est and the integrator simply multiplies its amplitude by 1/s.
Thus the output signal of the integrator is w.(z —y)/s. But, on the other hand
y(t) is the output signal of the integrator, thus

z(t) —y(t)

y(t) = we S
Y(S)est _ ch(s) ; Y(S) est
or
Y(S) — LUCX(S) ;Y(S)

from where
sY (s) = weX(8) —w.Y(s)

60Often in such cases the input and output signal notation for the block diagram is replaced
with X (s) and Y(s). Such diagram then “works” in terms of Laplace transform, the input of
the diagram is the Laplace transform X (s) of the input signal z(¢), the output is respectively
the Laplace transform Y(s) of the output signal y(¢). The integrators can then be seen as
s-dependent gain elements, where the gain coefficient is 1/s.

"In other words, we take for granted the fact that e! is an eigenfunction of the entire
circuit.
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and
We

Y(s) = X(s)

S+ we

Thus, the circuit in Fig. 2.3 (or in Fig. 2.2) simply scales the amplitude of the
input sinusoidal (or exponential) signal X (s)e®t by the w./(s + w,) factor.
Let’s introduce the notation

H(s) = (2.5)

Then
Y(s) = H(s)X(s) (2.6)

H(s) is referred to as the transfer function of the structure in Fig. 2.3 (or
Fig. 2.2). Notice that H(s) is a complex function of a complex argument.
For an arbitrary input signal z(¢) we can use the Laplace transform repre-

sentation ]
o+joo ds
x(t) = / X (s)est —
T—joo 27T.7

From the linearity® of the circuit in Fig. 2.3, it follows that the result of the
application of the circuit to a linear combination of some signals is equal to
the linear combination of the results of the application of the circuit to the
individual signals. That is, for each input signal of the form X (s)e®* we obtain
the output signal H(s)X (s)e®*. Then for an input signal which is an integral sum
of X(s)e®*, we obtain the output signal which is an integral sum of H(s)X (s)e®".
That is )

o+joo ds

vy = [ X (27)

o—joo 27T]
So, the circuit in Fig. 2.3 independently modifies the complex amplitudes of the
sinusoidal (or exponential) partials e* by the H(s) factor!

Notably, the transfer function can be introduced for any system which is
linear and time-invariant. For the differential systems, whose block diagrams
consist of integrators, summators and fixed gains, the transfer function is always
a non-strictly pmperﬂ rational function of s. Particularly, this holds for the
electronic circuits, where the differential elements are capacitors and inductors,
since these types of elements logically perform integration (capacitors integrate
the current to obtain the voltage, while inductors integrate the voltage to obtain
the current).

It is important to realize that in the derivation of the transfer function con-
cept we used the linearity and time-invariance (the absence of parameter mod-
ulation) of the structure. If these properties do not hold, the transfer function
can’t be introduced! This means that all transfer function-based analysis holds
only in the case of fixed parameter values. In practice, if the parameters are
not changing too quickly, one can assume that they are approximately constant

8Here we again understand the linearity in the operator sense:
H A f1(t) + A2 f2(t) = M H f1(t) + Ao H fa(t)

The operator here corresponds to the circuit in question: y(t) = Hz(t) where z(t) and y(t)
are the input and output signals of the circuit.

9A rational function is nonstrictly proper, if the order of its numerator doesn’t exceed the
order of its denominator.
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during a certain time range. That is we can “approximately” apply the transfer
function concept (and the discussed later derived concepts, such as amplitude
and phase Tesponses, poles and zeros, stability criterion etc.) if the modulation
of the parameter values is “not too fast”.

2.4 Complex impedances

Actually, we could have obtained the transfer function of the circuit in Fig. 2.1
using the concept of compler impedances.
Consider the capacitor equation:

I=CU
If
I(t) = I(s)e™
U(t) = U(s)e*

(where I(t) and I(s) are obviously two different functions, the same for U(t)
and U(s)), then .
U =sU(s)e* = sU(t)

and thus .
I(t) = I(s)e*t = CU = CsU(s)e’ = sCU(t)
that is
I =sCU
or .
=—1
v sC

Now the latter equation looks almost like Ohm'’s law for a resistor: U = RI. The
complex value 1/sC' is called the complex impedance of the capacitor. The same
equation can be written in the Laplace transform form: U(s) = (1/sC)I(s).

For an inductor we have U = LI and respectively, for I(t) = I(s)e** and
U(t) = U(s)e® we obtain U(t) = sLI(t) or U(s) = sLI(s). Thus, the complex
impedance of the inductor is sL.

Using the complex impedances as if they were resistances (which we can do,
assuming the input signal has the form X(s)e®!), we simply write the voltage
division formula for the circuit in in Fig. 2.1:

Ur+Uc

or, cancelling the common current factor I(¢) from the numerator and the de-
nominator, we obtain the impedances instead of voltages:

y(t) (t)

1/sC
0= g5
from where
y(t) 1/sC 1 1/RC We

H = —Y = = e —
()= o) TR+ 1/sC ~11sRC _ 5+1/RC st w

which coincides with (2.5).
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2.5 Amplitude and phase responses

Consider again the structure in Fig. 2.3. Let z(t) be a real signal and let

x(t) = /:HOO X (s)e® E

be its Laplace integral representation. Let y(t) be the output signal (which is
obviously also real) and let

o+joo s
y(t) = / Y (s)e™ ds

be its Laplace integral representation. As we have shown, Y (s) = H(s)X(s)
where H(s) is the transfer function of the circuit.
The respective Fourier integral representation of z(t) is apparently

“+o0
z(t) = X (jw)elv?t dw
2m

— 0o

where X (jw) is the Laplace transform X(s) evaluated at s = jw. The real
Fourier integral representation is then obtained as

ag(w) =2 - [X(jw)]
pa(w) = arg X (jw)

For y(t) we respectively have' 11

ay(w) =2-Y(jw)| =2 [H(jw) X (jw)| = [H(jw)]| - az(w) (> 0)
argY (jw) = arg (H(jw) X (jw)) = ¢ (w) + arg H (jw) -

Thus, the amplitudes of the real sinusoidal partials are magnified by the |H (jw)|
factor and their phases are shifted by arg H(jw) (w > 0). The function |H (jw)|
is referred to as the amplitude response of the circuit and the function arg H (jw)
is referred to as the phase response of the circuit. Note that both the amplitude
and the phase response are real functions of a real argument w.

The complex-valued function H (jw) of the real argument w is referred to
as the frequency response of the circuit. Simply put, the frequency response is
equal to the transfer function evaluated on the imaginary axis.

Since the transfer function concept works only in the linear time-invariant
case, so do the concepts of the amplitude, phase and frequency responses!

10This relationship holds only if H(jw) is Hermitian: H(jw) = H*(—jw). If it weren’t the
case, the Hermitian property wouldn’t hold for Y (jw) and y(¢) couldn’t have been a real signal
(for a real input z(t)). Fortunately, for real systems H (jw) is always Hermitian. Particularly,
rational transfer functions H(s) with real coefficients obviously result in Hermitian H (jw).

HFormally, w = 0 requires special treatment in case of a Dirac delta component at w = 0
(arising particularly if the Fourier series is represented by a Fourier integral and there is a
nonzero DC offset). Nevertheless, the resulting relationship between ay (0) and a.(0) is exactly
the same as for w > 0, that is ay(0) = H(0)az(0). A more complicated but same argument
holds for the phase.
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2.6 Lowpass filtering

Consider again the transfer function of the structure in Fig. 2.2:

H(s) = —=<
S+ we
The respective amplitude response is
. We
H(jw)|=|————
Hje) = | 5

Apparently at w = 0 we have H(0) = 1. On the other hand, as w grows, the
magnitude of the denominator grows as well and the function decays to zero:
H(+joo) = 0. This suggests the lowpass filtering behavior of the circuit: it lets
the partials with frequencies w < w. pass through and stops the partials with
frequencies w > w,. The circuit is therefore referred to as a lowpass filter, while
the value w, is defined as the cutoff frequency of the circuit.

It is convenient to plot the amplitude response of the filter in a fully log-
arithmic scale. The amplitude gain will then be plotted in decibels, while the
frequency axis will have a uniform spacing of octaves. For H(s) = w./(s + w.)
the plot looks like the one in Fig. 2.4.

|H(jw)],dB 4 |
|
Passband Transition Stopband
0 . band

|
6+
194
-18 +

SV

we/8
Figure 2.4: Amplitude response of a 1-pole lowpass filter.

The frequency range where |H (jw)| = 1 is referred to as the filter’s passband.
The frequency range where |H (jw)| ~ 0 is referred to as the filter’s stopband.
The frequency range between the passand and the stopband where |H (jw)| is
changing from approximately 1 to approximately 0 is referred to as the filter’s
transition band.22

Notice that the plot falls off in an almost straight line as w — oco. Apparently,
at w > w, and respectively |s| > w. we have H(s) = w./s and |H(s)| = w./w.
This is a hyperbola in the linear scale and a straight line in a fully logarithmic
scale. If w doubles (corresponding to a step up by one octave), the amplitude

12We introduce the concepts of pass-, stop- and transition bands only qualitatively, without
attempting to give more exact definitions of the positions of the boundaries between the bands.
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gain is approximately halved (that is, drops by approximately 6 decibel). We
say that this lowpass filter has a rolloff of 6dB/oct.

Another property of this filter is that the amplitude drop at the cutoff is
—3dB. Indeed

We

o) =

1 1
‘1+]’ V2

The phase response of the 1-pole lowpass is respectively

We + Jwe

H(iw) = ¢
arg H(jw) = arg ot o
giving 0 at w = 0, —7/4 at the cutoff and —7/2 at w — +oo. With phase

response plots we don’t want a logarithmic phase axis, but the logarithmic
frequency scale is usually desired. Fig. 2.5 illustrates.

arg H(jw) »

0__

—7/4-

—7/2

g!

UJC/8 We Bwe
Figure 2.5: Phase response of a 1-pole lowpass filter.

Note that the phase response is close to zero in the passband, this will be a
property encountered in most of the filters that we deal with.

2.7 Cutoff parameterization

Suppose w, = 1. Then the lowpass transfer function (2.5) turns into

1
s+ 1

H(s) =

Now perform the substitution s « s/w.. We obtain

1 We

H = =
(s) sjwe+1 s+ we

which is again our familiar transfer function of the lowpass filter.
Consider the amplitude response graph of 1/(s + 1) in a logarithmic scale.
The substitution s < s/w. simply shifts this graph to the left or to the right
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(depending on whether w. < 1 or w, > 1) without changing its shape. Thus,
the variation of the cutoff parameter doesn’t change the shape of the ampli-
tude response graph (Fig. 2.6), or of the phase response graph, for that matter

(Fig. 2.7).

|H(jw)|,dB

12 +

EV

we/8

Figure 2.6: 1-pole lowpass filter’s amplitude response shift by a
cutoff change.

-——a
-
-~

—7/4-

_———

We / 8 We 8wc w

—7/2

Figure 2.7: 1-pole lowpass filter’s phase response shift by a cutoff
change.

The substitution s «— s/w, is a generic way to handle cutoff parameterization
for analog filters, because it doesn’t change the response shapes. This has a nice
counterpart on the block diagram level. For all types of filters we simply visually
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combine an w, gain and an integrator into a single block:ﬁ

We
>—/] .

— - - =

KN

Apparently, the reason for the w,./s notation is that this is the transfer function

of the serial connection of an w, gain and an integrator. Alternatively, we simply
assume that the cutoff gain is contained inside the integrator:

i - T

The internal representation of such integrator block is of course still a cutoff
gain followed by an integrator. Whether the gain should precede the integrator
or follow it may depend on the details of the analog prototype circuit. In the
absence of the analog prototype it’s better to put the gain before the integrator,
because then the integrator will smooth the jumps and further artifacts arising
out of the cutoff modulation. Another reason to put the cutoff gain before the
integrator is that it has an important impact on the behavior of the filter in the
time-varying case. We will discuss this aspect in Section 2.16.

With the cutoff gain implied inside the integrator block, the structure from
Fig. 2.2 is further simplified to the one in Fig. 2.8:

z(t) o @ y(t)

Figure 2.8: A 1-pole RC lowpass filter with an implied cutoff.

Unit-cutoff notation

As a further shortcut arising out of the just discussed facts, it is common to
assume w. = 1 during the filter analysis. Particularly, the transfer function of
a 1-pole lowpass filter is often written as

1

H(S):s—i—l

It is assumed that the reader will perform the s « s/w. substitution as neces-
sary.

13Notice that including the cutoff gain into the integrator makes the integrator block in-
variant to the choice of the time units:

t
y() = y(to) +/t wez(T)dT

because the product w.dr is invariant to the choice of the time units. This will become
important once we start building discrete-time models of filters, where we would often assume
unit sampling period.
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To illustrate the convenience of the unit cutoff notation we will obtain the
explicit expression for the 1-pole lowpass phase response shown in Fig. 2.5:

1
14 jw

arg H(jw) = arg = —arg(l + jw) = —arctanw (2.8)

The formula (2.8) explains the apparent from Fig. 2.5 symmetry (relative to the
point at w = w,) of the phase response in the logarithmic frequency scale, as
this symmetry is simply due to the property of the arctangent function:

1
arctan  + arctan — = — (2.9)
z 2

2.8 Highpass filter

If instead of the capacitor voltage in Fig. 2.1 we pick up the resistor voltage as
the output signal, we obtain the block diagram representation as in Fig. 2.9.

—y(t)

Figure 2.9: A 1-pole highpass filter.

Obtaining the transfer function of this filter we get

s
H =
(5) =7 o
or, in the unit-cutoff form,
s
H =
(8) =7

It’s easy to see that H(0) = 0 and H(+joo) = 1, whereas the biggest change in
the amplitude response occurs again around w = w,. Thus, we have a highpass
filter here. The amplitude response of this filter is shown in Fig. 2.10 (in the
logarithmic scale).

It’s not difficult to observe or show that this response is a mirrored version of
the one in Fig. 2.4. Particularly, at w < w. we have H(s) ~ s/w., so when the
frequency is halved (dropped by an octave), the amplitude gain is approximately
halved as well (drops by approximately 6dB). Again, we have a 6dB/oct rolloff.

The phase response of the highpass is a 90° shifted version of the lowpass
phase response:

Jjw us 1
ar =—
1o 2 11w

Fig. 2.11 illustrates. Note that the phase response in the passband is close to
zero, same as we had for the lowpass.
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|H(jw)|,dB A |
I
Stopband Transition Passband
0+ band .
I
I
I
-6 + 1
I
I
|
12+ |
|
I
I
-18 + !

EV

wc/8 We Bwe
Figure 2.10: Amplitude response of a 1-pole highpass filter.

arg H(jw) ,

/4 -

o
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)

€ Y

we/8 We

Figure 2.11: Phase response of a 1-pole highpass filter.

2.9 Poles and zeros

Poles and zeros are two very important concepts used in connection with filters.
Now might be a good time to introduce them.
Consider the lowpass transfer function:

H(s) = —
S+ we
Apparently, this function has a pole in the complex plane at s = —w,. Similarly,
the highpass transfer function
s
H(s) =
(5) =7 o
also has a pole at s = —w,, but it also has a zero at s = 0.

Recall that the transfer functions of linear time-invariant differential systems
are nonstrictly proper rational functions of s. Writing any such function in the
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multiplicative form we obtain

2
n
—
V)
|
w
3
N

o
=

I
Q

=

Z

Vv
=

Vv
uO
3

N, >1) (2.10)

(s —pn)

Il
A

n

where N, stands for the order of the denominator, simultaneously being the
number of poles, and N, stands for the order of the numerator, simultaneously
being the number of zeros. Thus such transfer functions always have poles and
often have zeros. The poles and zeros of transfer function (especially the poles)
play an important role in the filter analysis. For simplicity they are referred to
as the poles and zeros of the filters.

The transfer functions of real linear time-invariant differential systems have
real coeficients in the numerator and denominator polynomials. Apparently,
this doesn’t prevent them from having complex poles and zeros, however, being
roots of real polynomials, those must come in complex conjugate pairs. E.g. a
transfer function with a 3rd order denominator can have either three real poles,
or one real and two complex conjugate poles.

The 1-pole lowpass and highpass filters discussed so far, each have one pole.
For that reason they are referred to as 1-pole filters. Actually, the number of
poles is always equal to the order of the filter or (which is the same) to the
number of integrators in the filter.!* Therefore it is common, instead of e.g. a
“4dth-order filter” to say a “4-pole filter”.

The number of poles therefore provides one possible way of classification of
filters. It allows to get an approximate idea of how complex the filter is and
also often allows to estimate some other filter properties without knowing lots
of extra detail. The number of zeros in the filter is usually less important and
therefore typically is not used for classification.

Finite and infinite zeros/poles

Equation (2.10) assumes that all p, and z, are finite. However often (especially
when dealing with complex numbers) it is convenient to include the infinity into
the set of “allowed” values. Respectively, if N, < N, we will say that H(s) has
a zero of order N, — N, at the infinity. E.g. the 1-pole lowpass transfer function
has a zero of order 1 at the infinity.

Conversely, if N, > N, we could say that H(s) has a pole of order N, — N,
at the infinity, however this situation won’t occur for a transfer function of a
differential filter, since NV, cannot exceed N,.

Apparently, zeros at the infinity are not a part of the explicit factoring (2.10)
and occur implicity simply due to the difference of the numerator and denomi-
nator orders. Even though they don’t show up in (2.10) they may occasionally
show up in other formulas or transformations. Thus, whether the infinite zeros
(or also poles, if we deal with other rational functions) are included into the
set of zeros/poles under consideration depends on the context. Unless explicitly

141n certain singular cases, depending on the particular definition details, these numbers
might be not equal to each other.
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mentioned, usually only finite zeros and poles are meant, however the readers
are encouraged to use their own judgement in this regard.

Notice that if zeros/poles at the infinity are included, the total number of
zeros is always equal to the total number of poles.

Rolloff

In (2.10) let w — +o0o. Apparently, this is the same as simply letting s — oo
and therefore we obtain

(s = 00)

as the asymptotic behavior, which means that the amplitude response rolloff
speed at w — 400 is 6(N, — N,)dB/oct.

Now suppose some of the zeros of H(s) are located at s = 0 and let N,o be
the number of such zeros. Then, for w — 0 we obtain

H(s)~g-sM (s —0)

(assuming there are no poles at s = 0). Therefore the amplitude response rolloff
speed at w — 0 is 6N,odB/oct. Considering that 0 < N,o < N, < N, the
rolloff speed at w — 400 or at w — 0 can’t exceed 6.V,dB/oct. Also, if all zeros
of a filter are at s = 0 (that is N,o = N) then the sum of the rolloff speeds at
w — 0 and w — 400 is exactly 6.N,dB/oct.

The case of 0dB/oct rolloff deserves a special attention. The 0dB/oct at
w — +o0o occurs when N, = N,. Respectively H(s) — g as s — oo. Since
g must be real, it follows that so is H(oco), thus we arrive at the following
statement: if H(co) # 0, then the phase response at the infinity is either 0° or
180°. The same statement applies for w — 0 if N,o = 0, where we simply notice
that H(0) must be real due to H(jw) being Hermitian.'> The close-to-zero
phase response in the passbands of 1-pole low- and high-passes is a particular
case of this property.

Stability

The other, probably even more important property of the poles (but not zeros)
is that they determine the stability of the filter. A filter is said to be stable (or,
more exactly, BIBO-stable, where BIBO stands for “bounded input bounded
output”) if for any bounded input signal the resulting output signal is also
bounded. In comparison, unstable filters “explode”, that is, given a bounded
input signal (e.g. a signal with the amplitude not exceeding unity), the output
signal of such filter will grow indefinitely.

It is known that a filter!S is stable if and only if all its poles are located

50f course, H(0) and H(co) are real regardless of the rolloff speeds. However zero values
of H do not have a defined phase response and can be approached from any direction on the
complex plane of values of H. On the other hand a nonzero real value H(0) or H(oco) means
that H(s) must be almost real in some neightborhood of s = 0 or s = co respectively.

16More precisely a linear time-invariant system, which particularly implies fixed parameters.
This remark is actually unnecessary in the context of the current statement, since, as we
mentioned, the transfer function (and respectively the poles) are defined only for the linear
time-invariant case.
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in the left complex semiplane (that is to the left of the imaginary axis).z For
our lowpass and highpass filters this is apparently true, as long as w. > 0. If
we < 0, the pole is moved to the right semiplane, the filter becomes unstable
and will “explode”. This behavior can be conveniently explained in terms of
the transient response of the filters and we will do so later.

We have established by now that if we put a sinusoidal signal through a
stable filter we will obtain an amplitude-modified and phase-shifted sinusoidal
signal of the same frequency (after the effects of the initial state, if such were
initially present, disappear). In an unstable filter the effects of the initial state
do not decay with time, but, on the opposite, infinitely grow, thus the output
will not be the same kind of a sinusoidal signal and it doesn’t make much sense
to take of amplitude and phase responses, except maybe formally.

It is possible to obtain an intuitive understanding of the effect of the pole
position on the filter stability. Consider a transfer function of the form (2.10)
and suppose all poles are initially in the left complex semiplane. Now imagine
one of the poles (let’s say p;) starts moving towards the imaginary axis. As
the pole gets closer to the axis, the (s — p;) factor in the denominator becomes
smaller around w = Im p; and thus the amplitude response at w = Im p; grows.
When p; gets onto the axis, the amplitude response at w = Imp; is infinitely
large (since jw = p1, we have H(jw) = H(p1) = o). This corresponds to the
filter getting unstable.'®

It should be stressed once again, that the concepts of poles and zeros are
bound to the concept of the transfer function and thus are properly defined only
if the filter’s parameters are not modulated. Sometimes one could talk about
poles and/or zeros moving with time, but this is rather a convenient way to
describe particular aspects of the change in the filter’s parameters rather than
a formally correct way. Although, if the poles and zeros are moving “slowly
enough”, this way of thinking could provide a good approximation of what’s
going on.

Cutoff

The cutoff control is defined as s < s/w, substitution. Given a transfer function
denominator factor (s — p), after the cutoff substitution it becomes (s/w. — p).
The pole associated with this factor becomes defined by the equation

s/we—p=0
which gives s = w.p. This means that the pole position is changed from p to

Wep.
Obviously, the same applies for zeros.

17The case when some of the poles are exactly on the imaginary axis, while the remaining
poles are in the left semiplane is referred to as marginally stable case. For some of the
marginally stable filters the BIBO property may still theoretically hold. However since in
practice (due to noise in analog systems or precision losses in their digital emulations) it’s
usually impossible to have the pole locations exactly defined and we will not concern ourselves
with this boundary case. One additional property of filters with all poles in the left semiplane
is that their state decays to zero in the absence of the input signal. Marginally stable filters
do not have this property.

18The reason, why the stable area is the left (and not the right) complex semiplane, is
discussed later in connection with transient response.
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Minimum and maximum phase

Consider a change to a filter’s transfer function (2.10) where we flip one of
the poles or zeros symmetrically with respect to the imaginary axis.!® E.g. we
replace p1 with —pJ or z; with —zf. Apparently, such change doesn’t affect the
amplitude response of the filter.

Indeed, a pole’s contribution to the amplitude response is, according to
(2.10), |jw—pn|, which is the distance from the pole p, to the point jw. However
the distance from the point —p} to jw is exactly the same, thus replacing p,,
with —p}, doesn’t change the amplitude response (Fig. 2.12). The same applies
to the situation when we change a zero from z, to —zJ.

Im s

Figure 2.12: Contribution to the amplitude response from two sym-
metric points.

Flipping a pole symmetrically with respect to the imaginary axis normally
doesn’t make much sense, since this would turn a previously stable filter into
an unstable one. Even though sometimes we will be specifically interested in
using unstable filters (particularly if the filter is nonlinear), such flipping is not
very useful. The point of the flipping is preserving the amplitude response and,
as we mentioned, the concept of the amplitude response doesn’t really work in
the case of an unstable filter.

The situation is very different with zeros, though. Zeros can be located in
both left and right semiplanes without endangering filter’s stability. Therefore
we could construct filters with identical amplitude responses, differing only in
which of the zeros are positioned to the left and which to the right of the
imaginary axis. Even though the amplitude response is not affected by this, the
phase response apparently is, and this could be the reason to chose between the
two possible positions of each (or all) of the zeros.

Qualitatively comparing the effect of the positioning a zero to the left or to
the right, consider the following. A zero located to the left of the imaginary axis
makes a contribution to the phase response which varies from —90° to +90° as w
goes from —oo to +00. A zero located on the right makes a contribution which
varies from 4+90° to —90°. That is, in the first case the phase is increasing by

19Conjugation p* flips the pole p symmetrically with respect to the real axis. Now if we
additionally flip the result symmetrically with respect to the origin, the result —p* will be
located symmetrically to p with respect to the imaginary axis.
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180° as w goes from —oo to 400, in the second case it is decreasing by 180°.

The phase is defined modulo 360° and generally we cannot compare two
different values of the phase. E.g. if we have two values p; = +120° and
w2 = —90°, we can’t say for sure, whether ¢, is larger than o by 210°, or
whether ¢ is smaller than ¢y by 150°. So, we only can reliably compare
continuous changes to the phase. In the case of comparing the positioning of
a zero in the left or right complex semiplane, we can say that in one case the
phase will be growing and in the other it will be decreasing.

If all zeros are in the left semiplane, then the phase will be increasing as
much as possible, the total contribution of all zeros to the phase variation on w €
(—00, +00) being equal to +180°-N,. If all zeros are in the right semiplane, then
the phase will be decreasing as much as possible, the total contribution being
—180° - V.. Assuming the filter is stable, all its poles are in the left semiplane.
The factors corresponding to the poles are contained in the denominator of the
transfer function, therefore left-semiplane poles contribute to the decreasing of
the phase, the total contribution being —180° - N,,.

If all zeros are positioned in the left semiplane, the total phase variation is
—180° - (N, — N.). If all zeros are positioned in the right semiplane, the total
phase variation is —180° - (N, + N,). Since 0 < N, < N, the absolute total
phase variation in the second case is as large as possible, whereas in the first case
it is as small as possible. For that reason the filters and/or transfer functions
having all zeros in the left semiplane are referred to as minimum phase, and
respectively the filters and/or transfer functions having all zeros in the right
semiplane are referred to as mazimum phase.?°

2.10 LP to HP substitution

The symmetry between the lowpass and the highpass 1-pole amplitude responses
has an algebraic explanation. The 1-pole highpass transfer function can be
obtained from the 1-pole lowpass transfer function by the LP to HP (lowpass
to highpass) substitution:
s—1/s

Applying the same substitution to a highpass 1-pole we obtain a lowpass 1-pole.
The name “LP to HP substitution” originates from the fact that a number of
filters are designed as lowpass filters and then are being transformed to their
highpass versions. Occasionally we will also refer to the LP to HP substitution as
LP to HP transformation, where essentially there won’t be a difference between
the two terms.

Recalling that s = jw, the respective transformation of the imaginary axis
is jw <« 1/jw or, equivalently

we— —1/w

Recalling that the amplitude responses of real systems are symmetric between
positive and negative frequencies (|H (jw)| = |H(—jw)|) we can also write

we—1l/w (for amplitude response only)

20The only filter which we discussed so far which was having a zero was the 1-pole highpass.
It has the zero right on the imaginary axis and thus we can’t really say whether it’s minimum
or maximum phase or “something in between”. However later we will encounter some filters
with zeros located off the imaginary axis and in some cases the choice between minimum and
maximum phase will become really important.
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Taking the logarithm of both sides gives:
logw + —logw (for amplitude response only)

Thus, the amplitude response is flipped around w = 1 in the logarithmic scale.
The LP to HP substitutions also transforms the filter’s poles and zeros by
the same formula:

s'=1/s

where we substitute pole and zero positions for s. Clearly this transformation
maps the complex values in the left semiplane to the values in the left semiplane
and the values in the right semiplane to the right semiplane. Thus, the LP to
HP substitution exactly preserves the stability of the filters.

Notice that thereby a zero occuring at s = 0 will be transformed into a zero
at the infinity and vice versa (this is the main example of why we sometimes
need to consider zeros at the infinity). Particularly, the zero at s = oo of the
1-pole lowpass filter is transformed into the zero at s = 0 of the 1-pole highpass
filter.

The LP to HP substitution can be performed not only algebraically (on a
transfer function), but also directly on a block diagram, if we allow the usage
of differentiators. Since the differentiator’s transfer function is H(s) = s, re-
placing all integrators by differentiators will effectively perform the 1/s « s
substitution, which apparently is the same as the s « 1/s substitution. Shall
the usage of the differentiators be forbidden, it might still be possible to convert
differentiation to the integration by analytical transformations of the equations
expressed by the block diagram.

2.11 Multimode filter

Actually, we can pick up the lowpass and highpass signals simultaneously from
the same structure (Fig. 2.13). This is referred to as a multimode filter.

— yup(?)

"0 | (0

Figure 2.13: A 1-pole multimode filter.

It’s easy to observe that yrp(t) + ynp(t) = x(¢), that is the input signal is
split by the filter into the lowpass and highpass components. In the transfer
function form this corresponds to

We s

HLP(S)+HHP(S): S+ we + S+ we =1
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The multimode filter can be used to implement almost any 1st-order stable
differential filter by simply mixing its outputs. Indeed, let

_ bis+bo

H(s) parap

where we assume ag # 0.3 Letting w. = ap we obtain

_b1$+b0_b S bo We

H(s)

bo
= b1 H, — | H,
S+ We 1s+wc We 8+ we ! HP(8)+<w> LP(S)

c

Thus we simply need to set the filter’s cutoff to ag and take the sum

y =biynp(t) + <f}0) yLp(t)

c

as the output signal.

Normally (although not always) we are interested in the filters whose re-
sponses do not change the shape under cutoff variation, but are solely shifted to
the left or to the right in the logarithmic frequency scale. Such modal mixtures
are easiest written in the unit-cutoff form:

_b18+b0_b S 1

H = b
(5) s+1 1s—|—1+03—|—1

where we actually imply

b ¢) + b
H(s) = 2(8/w) b
(s/we) + 1
Respectively, the mixing coefficients become independent of the cutoff:

y = biyup(t) + boyLe(t)

Fig. 2.14 illustrates.

() - y(t)

bo

Figure 2.14: Modal mixture with 1-pole multimode filter imple-
menting H(s) = (bis+bg)/(s + 1).

211f a9 = 0, it means that the pole of the filter is exactly at s = 0, which is a rather exotic
situation to begin with. Even then, chances are that by = 0 as well, in which case the filter
either reduces to a multiplication by a gain (H(s) = b1) or, if the coefficients vary, we can
take the limiting value of bg/wc in the respective formulas.
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2.12 Shelving filters

By adding/subtracting the lowpass-filtered signal to/from the unmodified input
signal one can build a low-shelving filter:

y(t) =z(t) + K - yLp(t)

The transfer function of the low-shelving filter is respectively:

H(s):1+KS+1

The amplitude response is plotted Fig. 2.15. Typically K > —1. At K = 0 the
signal is unchanged. At K = —1 the filter turns into a highpass.

|H(jw)|,dB

+6

-12 4

-18

1 >
T >

wC/S We 8("-)0 w

Figure 2.15: Amplitude response of a 1-pole low-shelving filter (for
various K).

The high-shelving filter is built in a similar way:
y(t) =x(t) + K - yup(t)

and
s

s+1
The amplitude response is plotted Fig. 2.16.

Actually, it would be more convenient to specify with the fact that the
amplitude boost or drop for the “shelf” in decibels. It’s not difficult to realize
that the decibel boost is

H(s)=1+K

Gap = 20log;(K + 1)
Indeed, e.g. for the low-shelving filter at w = 0 (that is s = 0) we have®?
HO)=1+K

22H(0) = 1+ K is not a fully trivial result here. We have it only because the lowpass filter
doesn’t change the signal’s phase at w = 0. If instead it had e.g. inverted the phase, then we
would have obtained 1 — K here.
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‘H(jw”a dB A

+6 -+

12 +

-18 +

we/8

Figure 2.16: Amplitude response of a 1-pole high-shelving filter
(for various K).

We also obtain H(+joo) =1+ K for the high-shelving filter.

There is, however, a problem with the shelving filters built this way. Even
though these filters do work as a shelving filters, the definition of the cutoff at
w = 1 for such filters is not really convenient. Indeed, looking at the amplitude
response graphs in Figs. 2.15 and 2.16 we would rather wish to have the cutoff
point positioned exactly at the middle of the respective slopes. A solution to
this problem will be described in Chapter 10.

2.13 Allpass filter

The ideas explained in the discussion of the minimum and maximum phase
properties of a filter can be used to construct an allpass flter. Since in this
chapter our focus is on 1-poles, we will construct a 1-pole allpass but the same
approach generalizes to an allpass of an arbitrary order.

Starting with an identity 1-pole transfer function

s+ 1
H(s):8+15

and noticing that this is a minimum phase filter, let’s flip its zero symmetrically
with respect to the imaginary axis, thereby turning it into a maximum phase
filter:

1

s—1
H(S):s—i—l

As we discussed before, such change can’t affect the amplitude response of the
filter and thus

(2.11)

jw—1
jw+1
On the other hand the phase response has changed from arg H(jw) = 0 to some
decreasing function of w (Fig. 2.17).

() =
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arg H(jw) »
/2 +

—r/24

Figure 2.17: Phase response of the 1-pole allpass filter (2.11).

The filters whose purpose is to affect only the phase of the signal, not touch-
ing the amplitude part at all, are referred to as allpass filters.”> Obviously,
(2.11) is a 1-pole allpass. However it’s not the only possible one.

Apparently, multiplying a transfer function by —1 doesn’t change the am-
plitude response. Therefore, multiplying the right-hand side of (2.11) by —1 we
obtain another 1-pole allpass.

7175
14

H(s) (2.12)

This one differs from the one in (2.11) by the fact that the phase response
of (2.12) is changing from 0 to —m (Fig. 2.18) whereas the phase of (2.11) is
changing from +7/2 to —m/2. Often it’s more convenient, if the allpass filter’s
phase response starts at zero, which could be a reason for preferring (2.12) over
(2.10).

arg H(jw) a

0__

—r/2

€ Y

wC/S We 8Wc

Figure 2.18: Phase response of the 1-pole allpass filter (2.12).

23The most common VA use for the allpass filters is probably in phasers.
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Notably, the phase response of the allpass (2.12) (Fig. 2.18) is the doubled
phase response of the 1-pole lowpass (Fig. 2.7). It is easy to realize that the
reason for this is that the numerator (1—s) contributes exactly the same amount
to the phase response as the denominator (1 + s):

1—jw
1+ jw

arg = arg(l — jw) —arg(l+jw) = —2arg(l+ jw) = —2arctanw (2.13)

where the symmetry of the phase response in Fig. 2.18 is due to (2.9).
Noticing that
1-s 1 s

H(s) = = — = H, — H,
(5) 1+s 1+4s 1+s Lp(s) up (s)

we find that the allpass (2.12) can be obtained by simply subtracting the high-
pass output from the lowpass output of the multimode filter, the opposite order
of subtraction creating the (2.11) allpass.

As mentioned earlier, the same approach can in principle be used to construct
arbitrary allpasses. Starting with a stable filter

N

H (5 —pn)
N
H (s —pn)

we flip all zeros over to the right complex semiplane, turning H(s) into a max-
imum phase filter:

X
V3
S~—
]
3

1
Il
L

N
JJICES)

S
H(S_pn)

In practice, however, high order allpasses are often created by simply connecting
several of 1- and 2-pole allpasses in series.
2.14 Transposed multimode filter

We could apply the transposition to the block diagram in Fig. 2.13. The trans-
position process is defined as reverting the direction of all signal flow, where
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forks turn into summators and vice versa (Fig. 2.19) .ﬁ The transposition keeps
the transfer function relationship within each pair of an input and an output
(where the input becomes the output and vice versa). Thus in Fig. 2.19 we have
a lowpass and a highpass input and a single output.

THP (t)

y(t) =@ @ _—

Figure 2.19: A 1-pole transposed multimode filter.

Looking carefully at Fig. 2.19 we would notice that the lowpass part of the
structure is fully identical to the non-transposed lowpass. The highpass part
differs solely by the relative order of the signal inversion and the integrator in the
feedback loop. It might seem therefore that the ability to accept multiple inputs
with different corresponding transfer functions is the only essential difference of
the transposed filter from the non-transposed one.

This is not fully true, if time-varying usage of the filter is concerned. Note
that if the modal mixture is involved, the gains corresponding to the transfer
function numerator coefficients will precede the filter (Fig. 2.20). Thus, if the
mixing coefficients vary with time, the coefficient variations will be smoothed
down by the filter (especially the lowpass coefficient, but also to an extent the
highpass one), in a similar way to how the cutoff placement prior to the inte-
grator helps to smooth down cutoff variations. Compare Fig. 2.20 to Fig. 2.14.

Figure 2.20: 1-pole transposed multimode filter implementing
H(s) = (b1s+bg)/(s +1).

One particularly useful case of the transposed 1-pole’s multi-input feature, is
feedback shaping. Imagine we are mixing an input signal z;, (¢) with a feedback
signal zpi(t), and we wish to filter each one of those by a 1-pole filter, and the
cutoffs of these 1-pole filters are identical. That is, the transfer functions of those
filters share a common denominator. Then we could use a single transposed 1-

24The inverting input of the summator in the transposed version was obtained from the
respective inverting input of the summator in the non-transposed version as follows. First the
inverting input is replaced by an explicit inverting gain element (gain factor —1), then the
transposition is performed, then the inverting gain is merged into the new summator.
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pole multimode filter as in Fig. 2.21. The mixing coefficients A, B, C and D
define the numerators of the respective two transfer functions.

A
‘Tin(t) ., LP
B TMMF —— y(¢)
4)[> PP
C D
< xfbk(t)

Figure 2.21: A transposed multimode filter (TMMF) used for feed-
back signal mixing.

2.15 Transient response

For a 1-pole filter it is not difficult to obtain an explicit expression for the filter’s
output, given the filter’s input. Indeed, let’s rewrite (2.2) in terms of w.:

y(t) = we - (2(t) —y(1))
We can further express w, in terms of the system pole p = —w,:
y=p-(y—x) (2.14)

Writing the system equation in terms of the pole will prove to be useful, when
we reuse the results obtained in this section in later chapters of the book.
Rewriting (2.14) in a slightly different way we obtain

y—py=—px (2.15)
Multiplying both sides by e~Pt:
e Ply — pe Ply = —pe Pz
and noticing that the left-hand size is a derivative of e P'y(t) we have

d, _ _
E(e Ply) = —pe P'x

Integrating both sides from 0 to ¢ with respect to ¢:

ylt)=9(0) == [ ealr)dr
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t
eyt =y(0) < p | e a(r)dr
0
Multiplying both sides by eP?:
t
y(t) = y(0)ePt —p / P x(r) dr (2.16)
0

we obtain a formula which allows us to explicitly compute the filter’s output,
knowing the filter’s input and initial state.
Now suppose z(t) = X(s)e*t. Then (2.16) implies

t
y(t) = y(())ept _pePtX(S)/ e(S—p)T dr —
0

(s—p)7 |t
e
=y(0)e?" — peP' X (s) - ——— =
(0) &) 5=
(s=p)t _ 1
0)e” — pet' X (s) - =
= y(0)e" — pe' X (s) ——
= (y(0 X(s) ) " + —L X (s)e" =
s—p

(0) H(S)X(s)) eP' + H(s)X(s)e* =

= (y(0)
= (y(0) — H(s)z(0))e?" + H(s)z(t) =
= H(s)x(t) + (y(0) — H(s)z(0))e (2.17)
where —p w
H(s) = s—0p B S+ we

is the filter’s transfer function.

Now look at the last expression of (2.17). The first term corresponds to
(2.6). This is the output of the filter which we would expect according to our
previous discussion. The second term looks new, but, since normally p < 0, this
term is exponentially decaying with time. Thus at some moment the second
term becomes negligible and only the first term remains. We say that the filter
has entered a steady state and refer to H(s)x(t) as the steady-state response of
the filter (for the complex exponential input signal z(t) = X (s)e®t). The other
term, which is exponentially decaying and exists only for a certain period of
time is called the transient response.

Now we would like to analyse the general case, when the input signal is a
sum of such exponential signals:

o+joo d
x(t) = / X (s)e™ &
g—joo 27{]

First, assuming y(0) = 0 and using the linearity of (2.16), we apply (2.17)
independently to each partial X (s)eSt of z(t), obtaining

p = / H(s)X(s)e™ / His 27;7 (2.18)

Again, the first term corresponds to (ﬁ) and is the steady-state response.
Respectively, the second term, which is exponentially decaying (notice that the



34 CHAPTER 2. ANALOG 1-POLE FILTERS

integral in the second term is simply a constant, not changing with t), is the
transient response.

Comparing (2.18) to (2.16) we can realize that the difference between y(0) =
0 and y(0) # 0 is simply the addition of the term y(0)eP*. Thus we simply add
the missing term to (2.18) obtaining

/H d ( /H 27U>'ept:

= y( )+(y(0)—ys(0)) et =y, (t) + ye(t) (2.19)

where

. ds
/ H(s o ; (2.20a)

ye(t) —ys5(0)) - e (2.20Db)

are the steady-state and transient responses.

Looking at (2.20) we can give the following interpretation to the steady-state
and transient responses. Steady-state response is the “expected” response of the
filter in terms of the spectrum of 2(¢) and the transfer function H(s), this is the
part of the filter’s output that we have been exclusively dealing with until now
and this is the part that we will continue being interested in most of the time.
Particularly, this is the part of the filter’s output for which the terms amplitude
and phase response are making sense. However, at the initial time moment the
filter’s output will usually not match the expected response (y(0) # ys(0)), since
the initial filter state may be arbitrary. Even if y(0) = 0, we still usually have
ys(0) # 0. But the integrator’s state cannot change abruptlyf and therefore
there will be a difference between the actual and “expected” outputs. This
difference however decays exponentially as eP!. This exponentially decaying
part, caused by a discrepancy between the “expected” output and the actual
state of the filter is the transient response (Fig. 2.22).

The origin of the term “steady-state response” should be obvious by now.
As for the term “transient response” things might be a bit more subtle, but
actually it’s also quite simple.

Suppose the input of the filter is receiving a steady signal, e.g. a periodic
wave and suppose the filter has entered the steady state by ¢ = to (meaning
that the transient response became negligibly small). Suppose that at t = ¢y a
transient occurs in the input signal: the filter’s input suddenly changes to some
other steady signal, e.g. it has a new waveform, or amplitude, or frequency, or
all of that. This means that at this moment the definition of the steady state
also changes and the filter’s output does no longer match the “expected” signal.
Thus, at t = tg we suddenly have y4(t) # y(t) and a decaying transient response
impulse is generated. The transient response turns a sudden jump, which would
have occured in the filter’s output due to the switching of the input signal, into
a continuous exponential “crossfade”.

25 Assuming the input signal is finite. In theoretical filter analysis sometimes infinitely large
input signals (most commonly z(t) = §(t)) are used. In such cases the filter state may change
abruptly (and this is the whole purposes of using input signals such as §(t).
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Yt (t) A 4

y(0)—ys(0)

0 t
Figure 2.22: Transient response of a 1-pole lowpass filter (dashed
line depicts the unstable case).

Highpass transient response

For a highpass, since yup(t) = 2(t) —yrp(t) = z(t) — y, equation (2.19) converts
into

yup (1) = 2(1) = (ys(1) + 3:(1)) = (2(t) = ys (1)) = y(t) = yurs(t) + yue(?)

where the highpass steady-state response is

yups (£) = @ (t) —ys(t) = 2(t) - / H(s) X (s)e"" 2% -
°t E - S s)e’t E =
:/X(s)e o7 /H( )X (s) 2
B / (1= H(s)X(s)e 2% B / Higp(s) X (s)e”" szSy

and the highpass transient response is

yupe(t) = =y (t) = — (¥(0) — ys(0)) - "' =
= ((@(t) = y(0)) = (x(t) = ys(0))) - " = (yur(0) — yups(0)) - e

That is we are having the same kind of exponentially decaying discrepancy
between the output signal and the steady-state signal, where the exponent eP!
itself is identical to the one in the lowpass transient response.

Poles and stability

At this point we could get a first hint at the mechanism behind the relationship
between the filter poles and filter stability. The transient response of the 1-pole
filter decays as eP® (this means it it takes longer time to reach a steady state
at lower cutoffs). However, if p > 0, the transient response doesn’t decay, but
instead infinitely grows with time (as shown by the dashed line in Fig. 2.22),
and we say that the filter “explodes”.
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At p = 0 the 1-pole lowpass filter doesn’t explode, but stays at the same
value (since p = 0 implies ¢ = 0 for this filter), corresponding to the marginally
stable case. But this actually happens because of the specific form of the transfer
function we are using: H(s) = —p/(s — p). Thus, p = 0 simultaneously implies
a zero total gain, which prevents the explosion.

However, in a more general case, a marginally stable 1-pole filter can explode.
We are going to discuss this using Jordan 1-poles.

Steady state

The steady-state response is actually not a precisely defined concept, as it has
a subjective element. A bit earler we have been analysing the situation of an
abrupt change of the input signal causing a discrepancy between the steady-
state response and the actual output signal, this discrepancy being responsible
for the appearance of the transient response term. However we don’t have to
understand this case as an abrupt change of the input signal. Instead we could
consider the input signal over the entire time duration as a whole incorporating
the abrupt change as an integral part of the signal. E.g. instead of considering
the input signal changing from sint to 2sin(4t + 1) at some moment t = to, we
would formally consider a non-periodic signal z(t) defined as

sint if t < tg
z(t) =9, . .
2sin(4t+ 1) ift >t

In that sense there would be just some non-periodic input signal x(t) which
doesn’t change to some other input signal. Then we would have a different
definition of the signal’s spectrum, the spectrum being constant all the time,
rather than suddenly changing at ¢ = ¢y, which would mean there is no transient
at t = tg. Thus we would also be having a different definition of the steady
state response, which wouldn’t have a discrepancy with the filter’s output signal
at t = ty either. Therefore there wouldn’t be a transient response impulse
appearing at ¢ = ty. Thus, the definition of the input signal has a subjective
element, which results in the same subjectivity of the definition of the steady-
state response signal.

The formal definition of the steady-state response is the formula (2.20a).
Careful readers who are also familiar with Laplace transform theory might be
by now asking themselves the question, whether the multiplication of X (s) by
H(s) has any effect on the region of convergence and, if yes, what are the
implications of this effect. Surprisingly, this question has a connection to the
subjectivity of the steady-state response.

The thing is that due to the subjectivity of the steady-state response, we
don’t care too much about what the Laplace integral in (2.20a) converges to.
Most importantly, it does converge. And normally it will converge for any Re s
(with some additional care being taken in evaluation of (2.20a) if the integration
path Res = const contains some poles). It’s just that as we horizontally shift
the integration path Res = const, and this path is thereby traversing through
the poles of H(s)X (s), the integral (2.20a) will converge to some other function,
but it will converge nevertheless. In fact we even cannot say what the Laplace
transform’s region of convergence for (2.20a) is. We could say what the region
of convergence is for X (s), since we have the original signal z(¢), but we cannot
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say what is the region of convergence for H(s)X(s), since its original signal
would be ys(t) and we don’t have an exact definition of the latter.

Therefore we actually could choose which of the different resulting signals
delivered by (2.20a) (for different choices of the “region of convergence” of
H(s)X (s)) to take as the steady-state response. For one, we probably shouldn’t
go outside of the region of convergence of X (s), since otherwise we would have
a different input signal and the result would be simply wrong. However, other
than that we have total freedom. Given that all poles (or actually, the only pole,
since so far H(s) is a 1-pole) of H(s) are located to the left of the imaginary axis
(which is the case for the stable filter), it probably makes most sense to choose
the range of Re s containing the imaginary axis as the region of convergence of
H(s)X(s), because H(s) evaluated on the imaginary axis gives the amplitude
and phase responses and thus the steady-state response definition will be in
agreement with amplitude and phase responses.

What shall we do, however, if Rep > 0 (where p is the pole of H(s)), that
is H(s) is unstable? First, let’s notice that as we change the integration path
in (2.20a) from Re s < p to Re s > p the integral (2.20a) changes exactly by the
residue of H(s)X (s)e*t at s = p (it directly follows from the residue theorem).
But this residue is simply

s=p s=p

Res (H(s)X (s)e*") = Res ( . X(s)e“) =aX(p)e (where a = —p)

Therefore the steady state response y;(t) defined by the integral (2.20a) is chang-
ing by a term of the form aX (p)eP!, which is then added to or subtracted from
the transient response to keep the sum y(¢) unchanged. But the transient re-
sponse already consists of a similar term, just with a different amplitude. Thus
the change from Res < p to Res > p simply changes the transient response’s
amplitude. Therefore, there is not much difference, whether in the unstable case
we evaluate (2.20a) for e.g. Res = 0 or for some Res > p. It might therefore
be simply more consistent to always evaluate it for Re s = 0, regardless of the
stability, but, as we just explained, this is not really a must.

Note that thereby, even though amplitude and phase responses make no
sense for unstable filters, the equation (2.20a) still applies, therefore the transfer
function H(s) itself makes total sense regardless of the filter stability.

Jordan 1-pole

For the purposes of theoretical analysis of systems of higher order it is sometimes
helpful to use 1-poles where the input signal is not multiplied by the cutoff —p:

y=py+=w (2.21)

(Fig. 2.23). We also allow p to take complex values. Such 1-poles are the
building elements of the state-space diagonal forms and of the so-called Jordan
chains. For that reason we will refer to (2.21) as a Jordan I-pole.

One could argue that there is not much difference between the 1-pole equa-
tions (2.14) and (2.21) and respectively between Fig. 2.2 and Fig. 2.23, since
one could always represent the Jordan 1-pole via the ordinary 1-pole lowpass
by dividing the input signal of the latter by the cutoff. Also it would be no
problem to allow p to take complex values in (2.14). This approach however
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0 J )

Figure 2.23: Jordan 1-pole. Note that the integrator is not sup-
posed to internally contain the implicit cutoff gain!

won’t work if p = 0. For that reason, in certain cases it is more conveninent to
use a Jordan 1-pole instead.

Changing from (2.14) to (2.21) effectively takes away the —p coefficient in
front of = from all formulas derived from (2.14). Particularly, (2.16) turns into

y(t) = y(0)eP" + /0 PN (r)dr (2.22)

and (2.17) turns into

t

y(t) = y(O)ePt + eth(s) / e(s—p)T dr =
0

_ (y(o) -~ ipX(s)) et 4 ﬁX(s)eSt (2.23)
where have )
ys(t) = — X (s)et = H(s)x(t)
s—p
and )
H(s) = P

From this point on we’ll continue the transient response analysis in terms of
Jordan 1-poles. The results can be always converted to ordinary 1-poles by
multiplying the input signal by —p.

Hitting the pole

Suppose the input signal of the filter is z(t) = X (p)eP! (where X (p) is the com-
plex amplitude). In this case (2.23) cannot be applied, because the denominator
s — p turns to zero and we have to compute the result differently. From (2.22)
we obtain

y(t) = y(0)e?* + X (p) /0 Pt ePT 4 = y(0)e?t 4+ X (p)tett (2.24)

Now there doesn’t really seem to be a steady-state component in (2.24). The
second term might look a bit like the steady-state response. Clearly it’s not
having the usual steady-state response form H(p)X (p)eP, but that would be
impossible since H(p) = co. Not only that, it’s not even proportional to the
input signal (or, more precisely, the proportionality coefficient is equal to ¢,
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thereby changing with time), thus not really looking like any kind of a steady
state. The first term doesn’t work as a steady-state response either, since it
depends on the initial state of the system.

Since the idea of the steady-state response is, to an extent, subjective, it
means the output which we expect from the system independently of the initial
state, we could formally introduce

ys(t) = X (p)te”

as the steady-state response in this case, thereby further transforming (2.24) as

y(t) = y(0)e’" + XteP" = (y(0) — ys(0))e”" + ys(t) = ye(t) + ys(t)

The benefit of this choice is that the transient response still consists of a single
ePt partial. The other option is letting

which means that (2.24) entirely consists of the transient response.

In either case, the problem is that as s — p in (2.23), the steady-state
response defined by y,(t) = H(s)X (s)e*" becomes infinitely large and we need
to switch to a different steady-state response definition. Note, that there is
no jump in the output signal y(¢), nor does y(t) become infinitely large. The
switching is occuring only in the way how we separate y(t) into steady-state and
transient parts.

We could further illustrate what is going on by a detailed evaluation of (2.23)
at s — p. The part which needs special attention is the integral of e(s=P)7:

t (s—p)7 |t (s=p)t _ 1
. . (& . €
lim e*=P)7 dr = lim =lim —— =t
s—p Jo $=p S—P |,_g S°OP S—DP

and thus y(¢) = y(0)e?* + X (p)telt, which matches our previous result.

In the particular case of p = 0 the equation (2.24) turns into
y(t) = y(0) + X (0)t

thus the marginally stable system to which Fig. 2.23 turns at p = 0 explodes if
s =0, that is if z(¢) is constant.?®

Jordan chains

Fur the purposes of further analysis of transient responses of systems of higher
orders it will be instructive to analyse the transient response generated by serial
chains of identical Jordan 1-poles, referred to as Jordan chains (Fig. 2.24).

Given a complex exponential input signal z(t) = X (s)e®, the output of the
first 1-pole will have the form

yi1(t) = ys1 (t) + ye (t) = Hi(s) X (s)e™ + (y1(0) — Hi(s) X (s))e?

where
1

$—P

Hl(S) =

261¢’s easy to see that this system is simply an integrator.
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Figure 2.24: Jordan chain

The output of the second 1-pole will be therefore
yo(t) = H ()X (s)e™ + (y1(0) — Hi(s)X (s))te” + (y2(0) — Hi ()X (s))e™

where we have used (2.23) and (2.24).
Before we obtain the output of the further 1-poles we first need to apply
(2.22) to z(t) = Xt"eP! yielding

tn-}-l

pt
CEEN

y(t) = y(0)e" + X
Then

ys(t) = HY (s)X (s)e*" + (y1(0) — Hl(S)X(S))%ep“r

+ (y2(0) — HY(5)X (s))te?" + (y3(0) — H7(s) X (s))e™
and, continuing in the same fashion, we obtain for the n-th 1-pole:

tl/
Pt (2.25)

n—1
yn(t) = HP ()X (s)e™ + D (yn—0(0) = H] 7" (5) X (s)) i

v=0
Apparently the first term HJ'(s)X (s)e®t is the steady-state response whereas
the remaining terms are the transient response. In principle, one could argue,
that treating the remaining terms as transient response can be questioned, since
we have some ambiguity in the definition of the steady-state response of the 1-
poles if their poles are hit by their input signals. However, while this argument
might be valid in respect to individual 1-poles, from the point of view of the
entire Jordan chain all terms t“eP?/v! are arising out of the mismatch between
the chain’s internal state and the input signal, therefore we should stick to the
steady-state response definition H}*(s)X (s)e®!. This also matches the fact that
the transfer function of the entire Jordan chain is H{¥(s) = 1/(s — p)~, where
N is the number of 1-poles in the chain.

2.16 Cutoff as time scaling

Almost all analysis of the filters which we have done so far applies only to
linear time-invariant filters. In practice, however, filter parameters are often
being modulated. This means that the filters no longer have the time-invariant
property and our analysis does not really apply. In general, the analysis of
time-varying filters is a pretty complicated problem. However, in the specific
(but pretty common) case of cutoff modulation there is actually a way to apply
the results obtained for the time-invariant case.

Imagine a system of an arbitrary order (therefore, containing one or more
integrators). Suppose the cutoff gain elements are always preceding the integra-
tors and suppose all integrators have the same cutoff gain (that is, these gains
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always have the same value, even when modulated). For each such integrator,
given its input signal (which we denote as x(t)), its output signal is defined by

y(t) = ylto) + / wer(r) dr

to

If cutoffs are synchronously varying with time, we could reflect this explicitly:

u(t) = y(to) + / we(r)z(r) dr (2.26)

to

We would like to introduce a new time variable 7 defined by
d7 = we(r)dr

and respectively write
t

y(t) = y(to) + / 2(r) dF (7)

T=to

Under the additional restriction w¢(¢) > 0 the function 7(7) becomes monotonic
and we can introduce the warped time t:

df = w,(t)dt
that is

t= /wc(t)dt (2.27)

t= /Ot we(T)dr

If we further restrict w.(¢) to be bounded to a positive finite range:

E.g. we could take

0 < Wmin < we(t) < Wmax < +00 (2.28)

(which is a fairly reasonable restriction on the cutoff), the monotonic function
t(t) will provide a 1:1 mapping between t € (—o0, +00) and f € (—o0, +0c). We
can therefore reexpress the signals x(t) and y(t) in terms of £, obtaining some
functions & (f ) and ¢ (t~ ), and ultimately

g (1) :ﬂ(fo)-i-/{ B(7)dF (2.29)

This means that the variation of w. can be equivalently represented as warping
of the time axis, the cutoff gains in the warped time scale having a constant
unity value.?”

In principle the restriction (2.28) can be relaxed to simply w.(t) > 0, thereby
allowing w, to become zero or to infinitely grow. This somewhat complicates
the reasoning about the warped time . E.g. if w.(t) = 0 over a prolonged
period of time, then we need to compress the respective time range of x(t) into
a zero-length time range of #(f), essentially simply throwing out the respective
part of the signal. However, practically a zero cutoff simply means that the
system state is frozen. On the other hand, an infinitely growing cutoff is nothing
special, unless the cutoff grows to infinity over a finite time range, which is quite
an artificial situation, so we will simply ignore this theoretical possibility.

2TInstead of unit cutoff we can have any other positive value, by simply linearly stretching
the time axis in addition to the warping ¢(¢).
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Equivalent topologies

The fact that cutoff modulation can be equivalently represented as warping of
the time scale has several implications of high importance. One implication has
to do with equivalence of systems with different topologies.

The term topology in this context simply refers to the components used
in the system’s block diagram and the way they are connected to each other.
Often, the reason we would want to talk about the topology would be to put
it against the idea of the transfer function. More specifically: there can be
systems with different topologies implementing the same transfer function. We
have already seen the example of that: there is an ordinary 1-pole multimode
and a transposed 1-pole multimode, which both can be used to implement one
and the same transfer function.

According to our previous discussion, systems having identical transfer func-
tions will behave identically (at least in the absence of the transient response
arising out of a non-zero initial state of the system). However, all of our anal-
ysis of system behavior, including the transient response, was done under the
assumption of time-invariance. This assumption is actually critical: for a time-
varying system the situation is more complicated and two systems may behave
differently even if they share the same transfer function.”® We had a brief ex-
ample of that in Section 2.7 where we compared different positionings of the
cutoff gain relative to the integrator.

However (2.29) means that if the cutoff modulation is compliant to (2.26)
(pre-integrator cutoff gain) and if the only time-varying aspect of the system
is the cutoff modulation, the systems will behave identically. Indeed, we could
use one and the same time-warping (2.27) for both of the systems, thus, if they
are identically behaving in the original time-invariant case, so will they in the
time-warped case.

This question will be addressed once again from a slightly more detailed
point in Section 7.12.

Time-varying stability

A further implication of (2.29) is the fact that the stability of a system cannot
be destroyed by the cutoff modulation. This is true for an arbitrary system,
given all cutoff gains are preceding the integrators and are having equal values
all the time. Indeed, the warping of the time axis (2.27) can’t affect the BIBO
property of the signals z(t) and y(t), thus stability is unaffected by the time
warping.2®

280f course, strictly speaking time-varying systems do not have a transfer function. But it
is intuitive to use the idea of a “time-varying transfer function”, understood as the transfer
function which is formally evaluated pretending the system’s parameters are fixed at each
time moment. E.g. if we have a 1-pole lowpass with a varying cutoff we(t), we would say that
its transfer function at each time moment is H(s) = wc(t)/(we(t) + s). Of course, this is not
a true transfer function in the normal sense. Particularly, for an exponential input e%* the
filter’s output is not equal to y(t) = H(s,t)et.

29Note that this applies only to the idealized continuous-time systems. After conversion to
discrete time the same argument will not automatically hold and the stability of the resulting
discrete time system will need to be proven again. However, it is not unreasonable to expect,
given a discretization method which preserves time-invariant stability, that it will also at least
approximately preserve the time-varying stability.
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For the 1-pole filter, however, the time-varying stability can be checked in a
much simpler manner. As we should remember, the output signal equation for
a 1-pole lowpass, written in the differential form is

§=we(t)(z —y)

This means that, as long as w. > 0, the value of y always “moves in the direction
towards the input signal” (or it doesn’t move, if w. = 0). In this case, clearly,
the absolute value of y can’t exceed the maximum of the absolute value of x.3°
On the contrary, imagine w. < 0, z(t) = 0 and y(¢t) # 0 (let’s say z(t) was
nonzero for a while and then we switched it off, leaving y(t) at a nonzero value).
The differential equation turns into § = —w.y = |we| - y, which clearly produces
an indefinitely growing y(t).

The 1-pole highpass filter’s output is simply x(t) — y(t) (where y(t) is the
lowpass signal), therefore the highpass filter is stable if and only if the lowpass
filter is stable.

We have seen that cutoff is a very special filter parameter, such that its mod-
ulation can’t destroy the filter’s stability (provided some reasonable conditions
are met). There are also some trivial cases, when the modulated parameters
are not a part of a feedback loop, such as e.g. the mixing gain of a shelving
filter. Apparently, such parameters when being varied can’t destroy the filter’s
stability as well. With the filter types which we introduce later in this book
there will be other parameters within feedback loops which in principle can be
modulated. Unfortunately, for the modulation of such other parameters there
is no simple answer (although sometimes the stability can be proven by some
means). Respectively there is no easy general criterion for time-varying filter
stability as there is for the time-invariant case. Often, we simply hope that
the modulation of the filter parameters does not make the (otherwise stable)
filter unstable. This is not simply a theoretical statement, on the contrary, such
cases, where the modulation destabilizes a filter, do occur in practice.

SUMMARY

The analog 1-pole filter implementations are built around the idea of the mul-
timode 1-pole filter in Fig. 2.13. The transfer functions of the lowpass and
highpass 1-pole filters are

We
H =
LP (8) S+ we
and s
H =
HP(S) S+ We

respectively. Other 1-pole filter types can be built by combining the lowpass
and the highpass signals.

30Tf we = 0 then y(t) doesn’t change. This is the marginally stable case. Particularly, even
if z(¢) = 0, the output y(¢) will stay at whatever value it is, rather than decaying towards the
zZero.
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Chapter 3

Time-discretization

Now that we have introduced the basic ideas of analog filter analysis, we will
develop an approach to convert analog filter models to the discrete time.

3.1 Discrete-time signals

The discussion of the basic concepts of discrete-time signal representation and
processing is outside the scope of this book. We are assuming that the reader
is familiar with the basic concepts of discrete-time signal processing, such as
sampling, sampling rate, sampling period, Nyquist frequency, analog-to-digital
and digital-to-analog signal conversion. However we are going to make some
remarks in this respect.

As many other texts do, we will use the square bracket notation to denote
discrete-time signals and round parentheses notation to denote continuous-time
signals: e.g. z[n] and x(¢).

We will often assume a unit sampling rate fs = 1 (and, respectively, a unit
sampling period T' = 1), which puts the Nyquist frequency at 1/2, or, in the
circular frequency terms, at w. Apparently, this can be achieved simply by a
corresponding choice of time units.

Theoretical DSP texts typically state that discrete-time signals have periodic
frequency spectra. This might be convenient for certain aspects of theoretical
analysis such as analog-to-digital and digital-to-analog signal conversion, but it’s
highly unintuitive otherwise. It would be more intuitive, whenever talking of a
discrete-time signal, to imagine an ideal DAC connected to this signal, and think
that the discrete-time signal represents the respective continuous-time signal
produced by such DAC. Especially, since by sampling this continuous-time sig-
nal we obtain the original discrete-time signal again. So the DAC and ADC con-
versions are exact inverses of each other (in this case). Now, the continuous-time
signal produced by such DAC doesn’t contain any partials above the Nyquist
frequency. Thus, its Fourier integral representation (assuming T = 1) is

g o dw
o) = [ K)o 2

—T

45
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and its Laplace integral representation is

xmpzlﬁﬂx@kmds

_jﬂ-

Introducing notation z = e® and noticing that
d
ds =d(log z) = &
z

we can rewrite the Laplace integral as

xM:%X@de

2m)z

(where X (z) is apparently a different function than X (s)) where the integration
is done counterclockwise along a circle of radius e centered at the complex
plane’s origin:!

=% =7 TIW = 7 . eIV (—r<w<m) (3.1)

We will refer the representation (3.1) as the z-integral.> The function X (z) is
referred to as the z-transform of x[n].

In case of non-unit sampling period T # 1 the formulas are the same, except
that the frequency-related parameters get multiplied by T' (or divided by fs), or

equivalently, the n index gets multiplied by 7' in continuous-time expressions:®

7 fs ] dw

z[n] = X (w)edTn —
—rfe 2m

o+jmfs ds

zn] = / X(s)esTm —

o—jnfs 27T.7

z=eT

dz -

z[n] = ]{ X(2)2" 5— (z=e"M, —nf, <w < 7o)
2mjz

The notation z" is commonly used for discrete-time complex exponential

signals. A continuous-time signal x(t) = ¢ is written as x[n] = 2™ in discrete-

time, where z = e*T. The Laplace-integral amplitude coefficient X (s) in X (s)e**

then may be replaced by a z-integral amplitude coefficient X (z) such as in
X(z)z™.

LAs with Laplace transform, sometimes there are no restrictions on the radius e” of the
circle, sometimes there are.

2 A more common term for (3.1) is the inverse z-transform, but we will prefer the z-integral
term for the same reason as with Fourier and Laplace integrals.

3Formally the o parameter of the Laplace integral (and z-integral) should have been mul-
tiplied by T as well, but it doesn’t matter, since this parameter is chosen rather arbitrarily.
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3.2 Naive integration

The most “interesting” element of analog filter block diagrams is obviously the
integrator. The time-discretization for other elements is trivial, so we should
concentrate on building the discrete-time models of the analog integrator.

The continuous-time integrator equation is

t
o(t) =y(t0) + [ a(r)ar
to
In discrete time we could approximate the integration by a summation of the
input samples. Assuming for simplicity 7' = 1, we could have implemented a
discrete-time integrator as

n

yln] = ylno — 1+ Y V]

v=ng

We will refer to the above as the naive digital integrator.
A pseudocode routine for this integrator could simply consist of an accumu-
lating assignment:

// perform one sample tick of the integrator
integrator_output := integrator_output + integrator_input;

It takes the current state of the integrator stored in the integrator_output vari-
able and adds the current sample’s value of the integrator_input on top of that.

In case of a non-unit sampling period T # 1 we have to multiply the accu-
mulated input values by 7:*

// perform one sample tick of the integrator
integrator_output := integrator_output + integrator_inputx*T;

3.3 Naive lowpass filter

We could further apply this “naive” approach to construct a discrete-time model
of the lowpass filter in Fig. 2.2. We will use the naive integrator as a basis for
this model.2

Let the x variable contain the current input sample of the filter. Consid-
ering that the output of the filter in Fig. 2.2 coincides with the output of the
integrator, let the y variable contain the integrator state and simultaneously
serve as the output sample. As we begin to process the next input sample, the

4 Alternatively, we could, of course, scale the integrator’s output by T, but this is less
useful in practice, because the T factor will be usually combined with the cutoff gain factor
we preceding the integrator.

5Based on the fact that the naive integration introduced above is identical to Euler
backward-difference integration, there is an opinion that the naive approach (loosely defined
as “take whatever values we have now at the integrator inputs and apply a single naive inte-
gration step to those”) is identical to the Euler method. This is not 100% so. The readers are
encouraged to formally apply backward- and forward-difference Euler methods to y = we(y—x)
to convince themselves that there are some differences. Particularly, the backward-difference
method is implicit (requires solving an equation), while the forward-difference method pro-
duces the “future” value of the output. For more complicated systems the differences could
be more drastic, although the author didn’t explicitly verify that.
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y variable will contain the previous output value. At the end of the processing
of the sample (by the filter model) the y variable will contain the new output
sample. In this setup, the input value for the integrator is apparently (z —y)w.,
thus we simply have

// perform one sample tick of the lowpass filter
y =y + (x-y)*omega_c;

(mind that w. must have been scaled to the time units corresponding to the
unit sample period!)

A naive discrete-time model of the multimode filter in Fig. 2.13 could have
been implemented as:

// perform one sample tick of the multimode filter
hp := x-1p;
lp := 1p + hp*omega_c;

where the integrator state is stored in the Ip variable.

The above naive implementations (and any other similar naive implemen-
tations, for that matter) work reasonably well as long as w. < 1, that is the
cutoff must be much lower than the sampling rate. At larger w. the behavior
of the filter becomes rather strange, ultimately the filter gets unstable. We will
now develop some theoretical means to analyse the behavior of the discrete-time
filter models, figure out what are the problems with the naive implementations,
and then introduce another discretization approach.

3.4 Block diagrams

Let’s express the naive discrete-time integrator in the form of a discrete-time
block diagram. The discrete-time block diagrams are constructed from the same
elements as continuous-time block diagrams, except that instead of integrators
they have unit delays. A unit delay simply delays the signal by one sample.
That is the output of a unit delay comes “one sample late” compared to the
input. Apparently, the implementation of a unit delay requires a variable, which
will be used to store the new incoming value and keep it there until the next
sample. Thus, a unit delay element has a state, while the other block diagram
elements are obviously stateless. This makes the unit delays in a way similar to
the integrators in the analog block diagrams, where the integrators are the only
elements with a state.
A unit delay element in a block diagram is denoted as:

The reason for the notation z~! will be explained a little bit later. Using a unit
delay, we can create a block diagram for our naive integrator (Fig. 3.1). For an
arbitrary sampling period we obtain the structure in Fig. 3.2. For an integrator
with embedded cutoff gain we can combine the w, gain element with the T gain
element (Fig. 3.3). Notice that the integrator thereby becomes invariant to the
choice of the time units, since w.T is invariant to this choice.

Now let’s construct the block diagram of the naive 1-pole lowpass filter.
Recalling the implementation routine:
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z[n] £ yln]

z
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-

Figure 3.2: Naive integrator for arbitrary 7.

wT
x[n] S y[n]

|
-

z

Figure 3.3: Naive integrator with embedded cutoff.

// perform one sample tick of the lowpass filter
y =y + (x-y)*omega_c;

we obtain the diagram in Fig. 3.4. The 27! element in the feedback from the
filter’s output to the leftmost summator is occurring due to the fact that we are
picking up the previous value of y in the routine when computing the difference
T —y.

Figure 3.4: Naive 1-pole lowpass filter (the dashed line denotes the
integrator).
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This unit delay occurring in the discrete-time feedback is a common problem
in discrete-time implementations. This problem is solvable, however it doesn’t
make too much sense to solve it for the naive integrator-based models, as the
increased complexity doesn’t justify the improvement in sound. We will address
the problem of the zero-delay discrete-time feedback later, for now we’ll con-
centrate on the naive model in Fig. 3.4. This model can be simplified a bit, by
combining the two z~! elements into one (Fig. 3.5), so that the block diagram
explicitly contains a single state variable (as does its pseudocode counterpart).

Figure 3.5: Naive 1-pole lowpass filter with just one z~! element
(the dashed line denotes the integrator).

3.5 Transfer function

Let x[n] and y[n] be respectively the input and the output signals of a unit
delay:

o U

S

For a complex exponential input z[n] = e = 2™ we obtain

yln] = sV = esnes = 227l = 27y )]

That is

That is, 2! is the transfer function of the unit delay! It is common to express
discrete-time transfer functions as functions of z rather than functions of s. The
reason is that in this case the transfer functions are nonstrictly proper® rational
functions, similarly to the continuous-time case, which is pretty convenient. So,
for a unit delay we could write H(z) = 2z~ 1.

Now we can obtain the transfer function of the naive integrator in Fig. 3.1.

Suppose’ z[n] = X(z)z™ and y[n] = Y(2)z", or shortly, z = X(2)z" and

6Under the assumption of causality, which holds if the system is built of unit delays.
7As in continuous-time case, we take for granted the fact that complex exponentials 2™ are
eigenfunctions of discrete-time linear time-invariant systems.
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y = Y(2)z". Then the output of the z~! element is yz~!. The output of the
summator is then z + yz~!, thus

1

y=r+yz
from where
y(l-2"") =2
and )
H(z) =2 =

r 1—2z1
This is the transfer function of the naive integrator (for 7' = 1).

It is relatively common to express discrete-time transfer functions as ratio-
nal functions of z=! (like the one above) rather than rational functions of z.
However, for the purposes of the analysis it is also often convenient to have
them expressed as rational functions of z (particularly, for finding their poles
and zeros). We can therefore multiply the numerator and the denominator of
the above H(z) by z, obtaining:

Since z = e*, the frequency response is obtained as H(e’*). The amplitude
and phase responses are |H (e*)| and arg H(e/*) respectively.®
For T # 1 we obtain

H(z)=T-2

z—1

and, since z = e the frequency response is H (e/*T).

Now let’s obtain the transfer function of the naive 1-pole lowpass filter in
Fig. 3.5, where, for the simplicity of notation, we assume 7' = 1. Assuming
complex exponentials * = X(z)z" and y = Y (2)z" we have z and yz~! as
the inputs of the first summator. Respectively the integrator’s input is w.(x —
yz~1). And the integrator output is the sum of y2~! and the integrator’s input.
Therefore

y=yz ' +we(r—yzt)

From where
(1-(1-w)z )y =we
and
Y We _ We#
o 1-(1-w)zl z—(1—-w)

The transfer function for 7' # 1 can be obtained by simply replacing w. by w.T.
The respective amplitude response is plotted in Fig. 3.6. Comparing it to
the amplitude response of the analog prototype we can observe serious deviation
closer to the Nyquist frequency. The phase response (Fig. 3.7) has similar
deviation problems.
In principle, the amplitude response deviation can be drastically reduced
by correcting the filter’s cutoff setting. E.g. one could notice that the second

8 Another way to look at this is to notice that in order for 2™ to be a complex sinusoid ejwn
we need to let z = eJ¥.
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Figure 3.6: Amplitude response of a naive 1-pole lowpass filter for a
number of different cutoffs. Dashed curves represent the respective
analog filter responses for the same cutoffs.
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Figure 3.7: Phase response of a naive 1-pole lowpass filter for a
number of different cutoffs. Dashed curves represent the respective
analog filter responses for the same cutoffs.

of the amplitude responses in Fig. 3.6 is occurring a bit too far to the right,
compared to the analog response (which is what we’re aiming at). Therefore
we could achieve a better matching between the two responses by reducing the
cutoff setting of the digital filter by a small amount. Depending on the formal
definition of the response matching, one could derive an analytical expression
for such cutoff correction. There are two main problems with that, though.

One problem is that many other filters, e.g. a 2-pole resonating lowpass, have
more parameters, e.g. not only cutoff but also the resonance, and we potentially
may need to correct all of them, which results in much more involved math.
This problem is not as critical though, and there are some methods utilizing
this approach.

The other problem, though, is the phase response. Looking at Fig. 3.7 it
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seems that no matter how we try to correct the filter’s cutoff, the phase response
will be always zero at Nyquist, whereas we would desire something close to
—m/2. The effects of the deviation of the filter’s phase response are mostly
quite subtle. Therefore it’s somewhat difficult to judge how critical the phase
devations might be.” However there’s one absolutely objective and major issue
associated with the phase deviations. Attempting to mix outputs of two filters
with some deviations in either or both of the amplitude and phase responses
may easily lead to unexpected and undesired results. For that reason in this
book we will concentrate on a different method which is much more robust in
this respect.

Poles and zeros

Discrete-time block diagrams are differing from continuous-time block diagrams
only by having z~! elements instead of integrators. Recalling that the transfer
function of an integrator is s =%, we conclude that from the formal point of view
the difference is purely notational.

Now, the transfer functions of continuous-time block diagrams are non-
strictly proper rational functions of s. Respectively, the transfer functions of
discrete-time block diagrams are nonstrictly proper rational functions of z.

Thus, discrete-time transfer functions will have poles and zeros in a way sim-
ilar to continuous-time transfer functions. Similarly to continuous-time transfer
functions, the poles will define the stability of a linear time-invariant filter. Con-
sider that z = e*7 and recall the stability criterion Res < 0 (where s = p,,
where p,, are the poles). Apparently, Res < 0 <= |z|] < 1. We might there-
fore intuitively expect the discrete-time stability criterion to be |p,| < 1 where
pn are the discrete-time poles. This is indeed the case, a linear time-invariant
difference systemﬁ is stable if and only if all its poles are located inside the
unit circle. We will give more detail about the mechanisms behind this in the
discussion of the discrete-time transient response in Sections 3.12 and 7.13.

3.6 Trapezoidal integration

Instead of naive integration, we could attempt using the trapezoidal integration
method (T' = 1):

// perform one sample tick of the integrator

integrator_output := integrator_output +
(integrator_input + previous_integrator_input)/2;

previous_integrator_input := integrator_input;

Notice that now we need two state variables per integrator: integrator_output
and previous_integrator_input. The block diagram of a trapezoidal integrator is
shown in Fig. 3.8. We'll refer to this integrator as a direct form I trapezoidal
integrator. The reason for this term will be explained later.

9Many engineers seem to believe that the deviations in phase response are quite tolerable
acoustically. The author’s personal preference is to be on the safe side and not take the risks
which are difficult to estimate. At least some caution in this regard would be recommended.
10Difference systems can be defined as those, whose block diagrams consist of gains, sum-
mators and unit delays. More precisely those are causal difference systems. There are also
difference systems with a lookahead into the future, but we don’t consider them in this book.
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Figure 3.8: Direct form I trapezoidal integrator (T' = 1).

We could also construct a trapezoidal integrator implementation with only
a single state variable. Consider the expression for the trapezoidal integrator’s
output:

yln) = ying 1]+ Y2 A= (52)

v=ngo

Suppose y[no—1] = 0 and x[ng—1]=0, corresponding to a zero initial state (recall
that both y[ng — 1] and z[ng — 1] are technically stored in the =1 elements).
Then

I
hall
N
|
o | =
+
i
=
I
N =
VY
[~]=
2
N
|
=
+
[~]=
B8
=
N——
I

y[n]
:1< Z xv — 1]+ Z x[u]) :;<Z x[v] + Z x[u]) =
v=no+1 v=ng v=ng v=ngo
_ u[n — 1] + u[n]
2
where

Now notice that wu[n] is the output of a naive integrator, whose input signal
is z[n]. At the same time y[n] is the average of the previous and the current
output values of the naive integrator. This can be implemented by the structure
in Fig. 3.9. Similar considerations apply for nonzero initial state. We’ll refer to
the integrator in Fig. 3.9 as a direct form II or canonical trapezoidal integrator.
The reason for this term will be explained later.

We can develop yet another form of the bilinear integrator with a single state
variable. Let’s rewrite (3.2) as

y[n]:y[no—leﬁu 3 m[,,H@
and let
n—1
uln —1] :y[n]_@:y[no—l]—f'w—k Z z[v]
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1/2

Figure 3.9: Direct form II (canonical) trapezoidal integrator (T' =
1).

Notice that

yln] =uln — 1] + @ (3.3a)
and
[n]

2
Expressing (3.3a) and (3.3b) in a graphical form, we obtain the structure in
Fig. 3.10. We'll refer to the integrator in Fig. 3.10 as a transposed direct form

11 or transposed canonical trapezoidal integrator. The reason for this term will
be explained later.

u[n] = uln — 1] + z[n] = y[n] + (3.3b)

Figure 3.10: Transposed direct form II (transposed canonical)
trapezoidal integrator (7' = 1).

The positioning of the 1/2 gain prior to the integrator in Fig. 3.10 is quite
convenient, because we can combine the 1/2 gain with the cutoff gain into a
single gain element. In case of an arbitrary sampling period we could also
include the T factor into the same gain element, thus obtaining the structure in
Fig. 3.11. A similar trick can be performed for the other two integrators, if we
move the 1/2 gain element to the input of the respective integrator. Since the
integrator is a linear time-invariant system, this doesn’t affect the integrator’s
behavior in a slightest way.

Typically one would prefer the direct form II integrators to the direct form I
integrator, because the former have only one state variable. In this book we will
mostly use the transposed direct form II integrator, because this is resulting in
slightly simpler zero-delay feedback equations and also offers a nice possibility
for the internal saturation in the integrator.
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Figure 3.11: Transposed direct form II (transposed canonical)
trapezoidal integrator with “embedded” cutoff gain.

The transfer functions of all three integrators are identical. Let’s obtain
e.g. the transfer function of the transposed canonical integrator (in Fig. 3.10).
Assuming signals of the exponential form z", we can drop the index [n], under-
standing it implicity, while the index [n—1] will be replaced by the multiplication
by z~!. Then (3.3) turn into

e S
Y =uz —|—2

Substituting the second equation into the first one we have

(D)l
y=1\Y 9 9

+242
z = -+ =z
Y Y SR

x
ylz —1) = §(z—|— 1)
and the transfer function of the trapezoidal integrator is thus

y 1 z4+1
r 2 z-1

For an arbitrary T one has to multiply the result by T, to take the respective
gain element into account:

_T z+1

Hz) =5

If also the cutoff gain is included, we obtain

wT z+1
2 z—1

H(z) =

One can obtain the same results for the other two integrators.
What is so special about this transfer function, that makes the trapezoidal
integrator so superior to the naive one, is to be discussed next.
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3.7 Bilinear transform

Suppose we take an arbitrary continuous-time block diagram, like the familiar
lowpass filter in Fig. 2.2 and replace all continuous-time integrators by discrete-
time trapezoidal integrators. On the transfer function level, this will correspond

to replacing all s~! with % . j—fi That is, technically we perform a substitution
1 T z+1
sTh=—"
2 z-1

in the transfer function expression.
It would be more convenient to write this substitution explicitly as
2 z-1
§= ="
T z+1

(3.4)

The substitution (3.4) is referred to as the bilinear transform, or shortly BLT.
For that reason we can also refer to trapezoidal integrators as BLT integrators.
Let’s figure out, how does the bilinear transform affect the frequency response
of the filter, that is, what is the relationship between the original continuous-
time frequency response prior to the substitution and the resulting discrete-time
frequency response after the substitution.

Let H,(s) be the original continuous-time transfer function. Then the re-
spective discrete-time transfer function is

HA@=$&(;'2+1> (3.5)

Respectively, the discrete-time frequency response is

) 2 JjwT _ 1 2 jwT/2 _ —jwT/2
Ho( @) =H, (=S~ )=, (=S~ )=
T ewT +1 T eiwT/2 4 g—jwT/2

2 T
= Ha (T] tan a}2>

Notice that H,(s) in the last expression is evaluated on the imaginary axis!!!

That is, the bilinear transform maps the imaginary axis in the s-plane to the

unit circle in the z-plane! Now, H, (% J tan %) is the analog frequency response

evaluated at % tan % That is, the digital frequency response at w is equal to
the analog frequency response at % tan % This means that the analog fre-
quency response in the range 0 < w < +o0 is mapped into the digital frequency
range 0 < wT < 7 (0 < w < 7f,), that is from zero to Nyquist!i Denoting
the analog frequency as w, and the digital frequency as wgq we can express the

argument mapping of the frequency response function as

2 T
Wa = tan % (3.6)
or, in a more symmetrical way
o T
w2 = tan % (3.7

11 A similar mapping obviously occurs for the negative frequencies.
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Notice that for frequencies much smaller that Nyquist frequency we have wT <
1 and respectively w, ~ wq.

This is what is so unique about the bilinear transform. It simply warps the
frequency range [0, +00) into the zero-to-Nyquist range, but otherwise doesn’t
change the frequency response at all! Considering in comparison a naive inte-
grator, we would have obtained:

-1 z
5 ]
z—1
§=— (3.8)
z—1
H =H,
i) =, (1)

" elv —1 e
Hy(e? )Ha< e > :Ha(lfe J )
which means that the digital frequency response is equal to the analog transfer
function evaluated on a circle of radius 1 centered at s = 1. This hardly defines
a clear relationship between the two frequency responses.

So, by simply replacing the analog integrators with digital trapezoidal in-
tegrators, we obtain a digital filter whose frequency response is essentially the
same as the one of the analog prototype, except for the frequency warping.
Particularly, the relationship between the amplitude and phase responses of the
filter is fully preserved, which is particularly highly important if the filter is to
be used as a building block in a larger filter. Very close to perfect!

Furthermore, the bilinear transform maps the left complex semiplane in the
s-domain into the inner region of the unit circle in the z-domain. Indeed, let’s
obtain the inverse bilinear transform formula. From (3.4) we have

T
(z—i—l)%:z—l

sT sT
1+ —= 11— —
+2 z( 2)

T
14T
sT

2

The equation (3.9) defines the inverse bilinear transform. Now, if Res < 0,
then, obviously

from where

and

z =

(3.9)

sT sT

‘1—&- 5 < ‘1 5

and |z| < 1. Thus, the left complex semiplane in the s-plane is mapped to the
inner region of the unit circle in the z-plane. In the same way one can show
that the right complex semiplane is mapped to the outer region of the unit
circle. And the imaginary axis is mapped to the unit circle itself. Comparing
the stability criterion of analog filters (the poles must be in the left complex
semiplane) to the one of digital filters (the poles must be inside the unit circle),
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we conclude that the bilinear transform exactly preserves the stability of the
filters!

In comparison, for a naive integrator replacement we would have the follow-
ing. Inverting the (3.8) substitution we obtain

sz=z-—1
z(1—s)=1
and
1
z =
1—s5
Assuming Re s < 0 and considering that in this case
1 1 1 |1-3+% 1 1+s| 1
7 — —| = = e | == < =
2 1—-s 2 1-5 2 1-—s 2

we conclude that the left semiplane is mapped into a circle of radius 0.5 cen-
tered at z = 0.5. So the naive integrator overpreserves the stability, which is
not nice, since we would rather have digital filters behaving as closely to their
analog prototypes as possible. Considering that this comes in a package with a
poor frequency response transformation, we should rather stick with trapezoidal
integrators.

So, let’s replace e.g. the integrator in the familiar lowpass filter structure in
Fig. 2.2 with a trapezoidal integrator. Performing the integrator replacement,
we obtain the structure in Fig. wz We will refer to the trapezoidal integrator
replacement method as the topology-preserving transform (TPT) method. This
term will be explained and properly introduced later. For now, before we simply
attempt to implement the structure in Fig. 3.12 in code, we should become aware
of a few further issues.

3.8 Cutoff prewarping

Suppose we are using the lowpass filter structure in Fig. 3.12 and we wish to have
its cutoff at w.. If we however simply put this w. parameter into the respective
integrator gain element w.7'/2, the frequency response itself and, specifically, its
value at the cutoff will be different from the expected one. Fig. 3.13 illustrates.
The —3dB level is specifically highlighted in Fig. 3.13, since this is the amplitude
response value of the 1-pole lowpass filter at the cutoff, thereby aiding the visual
identification of the cutoff point on the response curves.'?

Apparently, the difference between analog and digital response is occuring
due to the warping of the frequency axis (3.6). We would like to estimate the

12Note that thereby, should we become interested in the amplitude and phase responses of
Fig. 3.12, we don’t have to derive the discrete-time transfer function of Fig. 3.12. Instead we
can simply take the amplitude and phase responses of the analog 1-pole (which are simpler
to compute) and apply the mapping (3.7). This is the reason that we almost exclusively deal
with analog transfer functions in this book, we simply don’t need digital ones most of the
time.

13 Apparently, the picture in Fig. 3.13 will be the same at any other sampling rate, except
that the frequency axis values will need to be relabelled proportionally to the sampling rate
change. E.g. at 88.2kHz the labels would be 4, 8, 16, 22.05, 32 and 44.1kHz respectively. We
could have labelled the axis in terms of normalized w instead, but giving the absolute values
is more illustrative. Particularly, the audible frequency range is easier to see.
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Figure 3.12: 1-pole TPT lowpass filter (the dashed line denotes the
trapezoidal integrator).
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Figure 3.13: Amplitude response of an unprewarped bilinear-
transformed 1-pole lowpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.

frequency error introduced by the warping. To simplify the further discussion
let’s rewrite (3.6) as a mapping function pu(w):

wWa = wlwy) = = tan —— (3.10)

Now, given some desired analog response, we could take some point w, on
this response and ask ourselves, where is the same point located on the digital
response. According to (3.10), it is located at p~ Y (wa) (where 1~ is the function
inverse of 11). Thus the ratio of the actual and desired frequencies is u=!(w,) /Wa,
or, in the octave scale:

#~H(wa)

a

AP =log,

The solid curve in Fig. 3.14 illustrates (note that Fig. 3.14 labels the AP axis
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in semitones).
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Figure 3.14: Bilinear transform’s detuning of analog frequencies
plotted against analog frequency (solid curve) or digital frequency
(dashed curve). Sampling rate 44.1kHz.

We could also express the detuning of analog frequencies in terms of the
corresponding digital frequency. Given the digital frequency response, we take
some point wy and ask ourselves, where is the same point located on the analog
response. According to (3.10), it is located at pu(wg) and thus the frequency
ratio is wq/p(waq), respectively

Wwd

AP =log, ———
82 1 (wa)

The dashed curve in Fig. 3.14 illustrates. Note that we are not talking about how
much the specified digital frequency will be detuned (because digital frequencies
are not getting detuned, they are already where they are), it’s still about how
much the corresponding analog frequency will be detuned.

Thus, given an analog filter with a frequency response H,(jw), its digital
counterpart will have its frequencies detuned as shown in Fig. 3.14. Particularly,
the cutoff point, instead of being at the specified frequency w = w,, will be at

wa = p M (we) (3.11)

In principle, one could argue that the frequency response change in Fig. 3.13
is not that drastic and could be tolerated, especially since the deviation occurs
mostly in the high frequency range, which is not the most audible part of the
frequency spectrum. This might have been the case with the 1-pole lowpass
filter, however for other filters with more complicated amplitude responses it
won’t be as acceptable. Fig. 3.15 illustrates the frequency error for a 2-pole
resonating lowpass filter. The resonance peaks (which occur close to the filter’s
cutoff) are very audible and so would be their detuning, which according to
Fig. 3.14 is in the range of semitones. Particularly, at 16kHz the dashed curve
in Fig. 3.14 shows a detuning of ca. 1 octave, meaning that we would have a
resonance at this point when it should have been occurring at ca. 32kHz.
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Figure 3.15: Amplitude response of an unprewarped bilinear-
transformed resonating 2-pole lowpass filter for a number of dif-
ferent cutoffs. Dashed curves represent the respective analog filter
responses for the same cutoffs. Sampling rate 44.1kHz.

Prewarping at cutoff

As a general rule (to which there are exceptions), we would like the cutoff point
of the filter to be positioned exactly at the specified cutoff frequency w.. In this
regard we could notice that if we used a different cutoff value

We = wlwe) (3.12)
then (3.11) would give

Wq = M_I(JJC) = N_I(N(WC)) = We

and the cutoff point would be exactly where we wanted it to be. Fig. 3.16 illus-
trates. The cutoff correction (3.12) is a standard technique used in combination
with the bilinear transform. It is referred to as cutoff prewarping.

Technically, cutoff prewarping means that we use @, instead of w, in the
gains of the filter’s integrators. However, the integrator gains are not exactly
w, but rather w.7'/2. From (3.12) and (3.10) we have

oI 2 wT T wT
= —tan - — =tan
2 T 2 2 2
Thus, we can directly apply (3.13) to compute the prewarped gains @.7'/2. Note
that (3.13) is essentially identical to (3.7).

(3.13)

The cutoff prewarping redistributes the frequency error shown in Fig. 3.14.
In the absence of prewarping the error was zero at w = 0 and monotonically
growing as w increases. With the cutoff prewarping the error is zero at w = w,
instead and grows further away from this point.

Indeed, let H(jw) be unit-cutoff analog response of the filter in question.
And let’s pick up an analog frequency w, and find the respective detuning. The
correct frequency response at w, is

H,(w,) = H(jwa/we) (3.14a)
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Figure 3.16: Amplitude response of a prewarped bilinear-
transformed 1-pole lowpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.

On the other hand, given the prewarped cutoff ©. = u(w.), the digital frequency
response at some frequency wy is

Hy(e?**) = H(ju(wa) /@) = H(jp(wa)/m(we)) (3.14b)

We want to find such wy that the arguments of H(jw) in (3.14a) and (3.14b)
are identical:

) _ we (3.15)
p(we) We
From where
wg = M_l (wa N(Wc’)>
We

The solid curves in Fig. 3.17 illustrate the respective detuning w, /w4 (in semi-
tones) of analog frequencies.
Alternatively from (3.15) we could express w, as a function of wy:

We
Wq =

e pwa)
M(WC)
thus expressing the analog frequency detuning w,/wy as a function of wy. The
dashed curves in Fig. 3.17 illustrate.

Apparently, the maximum error to the left of w = w, is attained at w = 0.
Letting w, — 0 and, equivalently, wy — 0 we have u(wq) ~ wq and (3.15) turns

into
Wd Waq

M(wc) We
or

Wa We
and thus the detuning at w = 0 is

wa  pwe)

(3.16)
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Figure 3.17: Prewarped bilinear transform’s detuning of analog fre-
quencies plotted against analog frequency (solid curves) or digital
frequency (dashed curves). Different curves correspond to pre-
warping at different cutoff frequencies. Sampling rate 44.1kHz.

Other prewarping points

We have just developed the prewarping technique from the condition that the
cutoff point must be preserved by the mapping (3.6). However instead we could
have required any other point w, to be preserved.

Given the cutoff w., the analog response at wy, is

Hy(wp) = H(jwp/we) (3.17a)

On the other hand, given the prewarped cutoff &, (we want to prewarp at
a different point now, therefore we don’t know yet, what is the relationship
between w. and &) the digital frequency response at w,, is

Ha(e™*) = H(jp(wp) /) (3.17b)

We want to find such @, that the arguments of H(jw) in (3.17a) and (3.17b)
are identical:

and
We = Mw (3.18)
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Equation (3.18) is the generalized prewarping formula, where w,, is the frequency

response point of zero detuning. We will refer to w), as the prewarping point.
According to (3.18) prewarping at w, simply means that the cutoff should

be multiplied by p(w,)/wp. At w, = w, this multiplication reduces to (3.12).

In order to find the detuning at other frequencies, notice that equations
(3.14) turn into
Hy(wa) = H(jwg /we)
; . - wpt(w
HAe10) = H(intwn) o) = 1 (22424

WCN(WIJ)

from where, equating the arguments of H (jw):

wpt(wa) _ wa

wept(wp)  we

we have

plwa) _ wa

plwp)  wp
Equation (3.19) is identical to (3.15) except that it has w,, in place of w,. Thus we
could reuse the results of the previous analysis of the analog frequency detuning.
In particular Fig. 3.17 fully applies, different curves corresponding to different
prewarping points. At the same time, (3.16) simply turns to

(3.19)

AP = log, 1lwp) (3.20)

w=0 p

Bounded cutoff prewarping

Even though cutoff prewarping is an absolutely standard technique and is often
used without any second thought, the need for a different choice of the prewarp-
ing point is actually not as exotic as it might seem. Consider e.g. the amplitude
response of a 1-pole highpass filter prewarped by (3.12), shown in Fig. 3.18.
One can notice a huge discrepancy between analog and digital amplitude re-
sponses occurring well into the audible frequency range [0, 16kHz]. The error is
getting particularly bad at cutoffs above 16kHz. In comparison, the responses
of unprewarped filters in Fig. 3.19 even look kind of better, especially if only the
audible frequency range is considered. This would be even more so, if higher
sampling rates are involved, where the audible range error in Fig. 3.19 would
become smaller, while the same error in Fig. 3.18 can still get as large, given a
sufficiently high cutoff value.

Apparently, the large error within the audible range in Fig. 3.18 is due to
the detuning error illustrated in Fig. 3.17. This error wasn’t as obvious in the
case of the 1-pole lowpass filter, since this filter’s amplitude response is almost
constant to the left of the cutoff point. On the other hand, highpass filter’s
amplitude response is changing noticeably in the same area, which makes the
detuning error is made much more promiment.

Does this suggest that we shouldn’t use cutoff prewarping with highpass fil-
ters? In principle this is engineer’s decision. However consider the unprewarped
resonating 2-pole highpass filter’s amplitude response in Fig. 3.20. As with the
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Figure 3.18: Amplitude response of a prewarped bilinear-
transformed 1-pole highpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.
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Figure 3.19: Amplitude response of an unprewarped bilinear-
transformed 1-pole highpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.

responating lowpass, the resonance peak detuning is quite prominent here. Also
the difference in the response value is magnified around the resonance point. All
in all, we’d rather prewarp the cutoff (Fig. 3.21) and tolerate the detuning to
the left of we.

However notice, that as the cutoff peak is getting out of the audible range,
we stop caring, where exactly it is positioned, since it can’t be heard anyway.
So, why should we then tolerage the error in the audible range which continues
to increase even faster? Instead, at this moment we could fix the prewarping



3.8. CUTOFF PREWARPING 67

N |H(ej“’)|,dB
+12 3
\
\
\
\
AY
+6-- N \\
ol T
I I
I I
I I
I I
-6 | |
] I I
: / (L 2 T
2 4 8 11.025 16 22.05 f, kHz

Figure 3.20: Amplitude response of an unprewarped bilinear-
transformed resonating 2-pole highpass filter for a number of dif-
ferent cutoffs. Dashed curves represent the respective analog filter
responses for the same cutoffs. Sampling rate 44.1kHz.
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Figure 3.21: Amplitude response of a prewarped bilinear-
transformed resonating 2-pole highpass filter for a number of dif-
ferent cutoffs. Dashed curves represent the respective analog filter
responses for the same cutoffs. Sampling rate 44.1kHz.

point to the upper boundary of the audible range:

We if we < Wmax
wp = .
Wmax  1f We > Wnax

or simply
wp = min {we, Wmax } (3.21)
where wpax 18 some point around 16kHz. At least then the detuning in the

audible range won’t grow any further than it is at w. = wmax (Fig. 3.22). The
picture gets even better at higher sampling rates (Fig. 3.23).
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Figure 3.22: Effect of cutoff prewarping bounded at 16kHz. Sam-
pling rate 44.1kHz.
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Figure 3.23: Effect of cutoff prewarping bounded at 16kHz. Sam-
pling rate 88.1kHz.

Substituting (3.21) into (3.18) we obtain

,u(wc) if We S Wmax

We =9 f1(Wimax) (3.22)

we i we > Wnax

_ p(min {we, wimax})
min {we, Wmax
wmax
The mapping defined by (3.22) is shown in Fig. 3.24. Note that thereby we
become able to specify the cutoffs beyond Nyquist, and actually to specify arbi-
trarily large cutoffs, since the new mapping curve is crossing the former vertical
asymptote at w, = 7/2.
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Figure 3.24: Bounded cutoff prewarping. The thick dashed line
shows the unbounded prewarping continuation. The thin oblique
dashed line is the continuation of the straight part of the prewarp-
ing curve. The black dot marks the breakpoint of the prewarping

curve.

The breakpoint at w. = wnax in Fig. 3.24 can be somewhat unexpected. In
order to understand the mechanism behind its appearance suppose w, is varying
with time. Using (3.18) we compute the time derivative of @&.:

- iﬂ(wp) 4 H(Wp)w

We =w
¢ “dt wp wp ¢

As w, becomes larger than wax the first term suddenly disappears and there is a

jump in w,. In other words, the variation of the prewarping point makes its own

contribution to @.. As soon as the variation stops, the respective contribution

abruptly disappears.
The frequency detunings occurring in case of (3.22) can be found directly
from Fig. 3.17, keeping in mind that (3.22) is simply another expression of

(3.21).

Continuous-speed prewarping

The breakpoint occurring in Fig. 3.24 might be undesirable if the cutoff is being
modulated, since there can be a sudden change of the perceived modulation
speed as the cutoff traverses through the prewarping breakpoint. For that reason
it might be desirable to smooth the breakpoint in one way or the other. The
simplest approach would be to continue the curve as a tangent line after the
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breakpoint:
We lf We § Wmax
D = {“( ) ' (3.23)
/J(Wmax) + (Wc - Wmax)ﬂl (Wmax) lf We Z Wmax
where
d /2 wT 1 wT T 2
/ T e vy - - _ 2% =
u(w)dw(Ttan 2) o7 = L+tan” = 1+<2u(W))

cosZ —
2

is the derivative of p(w). Note, however, that this will no longer keep wmax as
the prewarping point and the situation would be something in between @)
and (3.22).

At w, — oo from (3.23) we have

‘Dc - ﬂ(wmax) + (Wc - wmax)ﬂl(wmax) ~ ,U//(Wmax)wc (324)
Comparing the right-hand side of (3.24) to (3.18) we obtain the equation for

the effective prewarping point at infinity:

w
H) ) (3.25)
Wp
In principle w, can be found from (3.25), however we are not so much interested
in how far off will be the prewarping point, as in the estimation of the associated
increase in detuning. By (3.20)

= log, lu(wp) = log, MI(Wmax) (at we = 00)
w=0 Wp

AP

which for wpax = 16kHz at 44.1kHz sampling rate gives ca. 2.5 octaves, while

at 88.2kHz sampling rate it gives only about 0.5 octave. In comparison, at

We = Wmax (and respectively w, = wmax) we would have a smaller value

= log, (wp) = log, M Wmax)
w

w=0 p Wmax

which for wp.x = 16kHz at 44.1kHz sampling rate gives ca. 1 octave, while at
88.2kHz sampling rate it gives only about 2 semitones.

We have therefore found the effect of (3.23) on the detuning occurring at
w = 0 for w, — oo. It would also be nice to estimate the same effect at w = wpax.
By (3.19)

Wq wp
which by (3.25) becomes
Wq
/“‘L( ) - Ml(wmax)
Wa

Letting wy = wyax we have

2 Wmax1'
n
max 1 .
We = PHWmax) S 2 = — sin (WmaxT)

! T
H (Wmax) cos—2 (wmax ) T

2
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and the detuning itself is the logarithm of the ratio

i T
Ya _ Yo _ 5N (@maxT) = sinc (WmaxT)
W Wmax wmaxT

For wyax = 16kHz at 44.1kHz sampling rate this gives ca. —1.5 octaves, while
at 88.1kHz it gives ca. —4 semitones.

Since (as illustrated by Fig. 3.17) the detuning is a monotonic function of
w, at w. = oo we are having the audible range detuning error in the range of
ca. [—1.5,2.5] octaves at 44.1kHz sampling rate and in the range of ca. [—4, 6]
semitones at 88.2kHz sampling rate. Therefore it is more or less balanced out,
although being a bit larger at higher frequencies.

Apparently, more elaborate ways of smoothing the breakpoint in Fig. 3.24
may be designed, but we won’t cover them here as the options are almost infinite.

Prewarping of systems of filters

According to (3.18), prewarping is nothing more than a multiplication of the
cutoff gains of the integrators by u(w,)/wp, where w, is the prewarping point.

Suppose we are having a system consisting of several filters connected to-
gether. When prewarping filters in such system, it would be a good idea to
choose a common prewarping point for all filters. In this case we multiply their
cutoffs by one and the same coefficient. Thereby their amplitude and phase
responses are shifted by one and the same amount (in the logarithmic frequency
axis), and they all retain the frequency response relationships which existed
between them prior to prewarping. Effectively this is the same as changing the
“common cutoff” of the filter system, and the frequency response of the entire
system is simply shifted horizontally by the same amount, fully retaining its
shape.

On the other hand by prewarping them independently we shift the frequency
response of each filter differently from the others and the amplitude and phase
relationships between those are thereby destroyed. Therefore the amplitude and
phase response shapes of the entire system of filters are not preserved.

As an illustration consider a parallel connection of a 1-pole lowpass and a
1-pole highpass filter, the lowpass cutoff being w./2, the highpass cutoff being
2w, where w, is the formal cutoff of the system:

LP

HP

The transfer function of such system (written in the unit-cutoff form) is

1 n s/2
1425 145/2

H(s)

The result of prewarping the lowpass and the highpass separately at their respec-
tive cutoffs w./2 and 2w is shown in Fig. 3.25. Actually for the w. = 11.025kHz
and w, = 16kHz the highpass cutoff 2w, needed to be clipped prior to prewaring,
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since it is equal or exceeds Nyquist and cannot be directly prewarped by (3.12).
Compare to Fig. 3.26 where the prewarping of both filters has been done at the
common point we.
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Figure 3.25: Separate prewarping of system components (for a
number of different cutoffs). Dashed curves represent the respec-
tive analog filter responses for the same cutoffs. Sampling rate
44.1kHz.
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Figure 3.26: Common-point prewarping of system components (for
a number of different cutoffs). Dashed curves represent the respec-
tive analog filter responses for the same cutoffs. Sampling rate
44.1kHz.

Other prewarping techniques

With 1-pole lowpass and highpass filters the only available control parameter is
the filter cutoff. Thus the only option which we had for compensating the bilin-
ear transform’s frequency detuning was correcting the cutoff value. Other filters
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may have more parameters available. Usually their parameters (e.g. resonance)
will have a strong “vertical” effect on the amplitude response and thus are not
very suitable for compensating the frequency detuning. However in some cases
there will be further options of horizonally altering the filter’s amplitude (and
phase) responses without causing noticeable changes in the vertical direction.
In such cases we will have further options for more detailed compensation of the
frequency detuning.

Note, however, that these compensations, being not expressible as cutoff
multiplication, may destroy the frequency response of a system of filters, unless
there is some other way to make them have identical effect on all of the filters
in the system. We will discuss some examples of this later in the book.

3.9 Zero-delay feedback

There is a further problem with the trapezoidal integrator replacement in the
TPT method. Replacing the integrators with trapezoidal ones introduces delay-
less feedback loops (that is, feedback loops not containing any delay elements)
into the structure. E.g. consider the structure in Fig. 3.12. Carefully examining
this structure, we find that it has a feedback loop which doesn’t contain any
unit delay elements. This loop goes from the leftmost summator through the
gain, through the upper path of the integrator to the filter’s output and back
through the large feedback path to the leftmost summator.

Why is this delayless loop a problem? Let’s consider for example the naive
lowpass filter structure in Fig. 3.5. Suppose we don’t have the respective pro-
gram code representation and wish to obtain it from the block diagram. We
could do it in the following way. Consider Fig. 3.27, which is the same as Fig. 3.5,
except that it labels all signal points. At the beginning of the computation of
a new sample the signals A and B are already known. A = z[n] is the current
input sample and B is taken from the internal state memory of the z~! element.
Therefore we can compute C = A — B. Then we can compute D = (w.T)C
and finally £ = D + B. The value of F is then stored into the internal memory
of the 2! element (for the next sample computation) and is also sent to the
output as the new y[n] value. Easy, right?

A C D E

Figure 3.27: Naive 1-pole lowpass filter and the respective signal
computation order.

Now the same approach doesn’t work for the structure in Fig. 3.12. Because
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there is a delayless loop, we can’t find a starting point for the computation
within that loop.

The classical way of solving this problem is exactly the same as what we had
in the naive approach: introduce a z~! into the delayless feedback, turning it
into a feedback containing a unit delay (Fig. 3.28). Now there are no delayless
feedback paths and we can arrange the computation order in a way similar to
Fig. 3.27. This however destroys the resulting frequency response, because the
transfer function is now different. In fact the obtained result is not significantly
better (if better at all) than the one from the naive approach. There are some
serious artifacts in the frequency response closer to the Nyquist frequency, if the
filter cutoff is sufficiently high.

x[n] ¥

wT/2

Figure 3.28: Digital 1-pole lowpass filter with a trapezoidal inte-
grator and an extra delay in the feedback.

Therefore we shouldn’t introduce any modifications into the structure and
solve the zero-delay feedback problem instead. The term “zero-delay feedback”
originates from the fact that we avoid introducing a one-sample delay into the
feedback (like in Fig. 3.28) and instead keep the feedback delay equal to zero.

So, let’s solve the zero-delay feedback problem for the structure in Fig. 3.12.
Notice that this structure simply consists of a negative feedback loop around
a trapezoidal integrator, where the trapezoidal integrator structure is exactly
the one from Fig. 3.11. We will now introduce the concept of the instantaneous
response of this integrator structure.

So, consider the integrator structure in Fig. 3.11. Since there are no delayless
loops in the integrator, it’s not difficult to obtain the following expression for

y[n]:

2Tx[n] +uln — 1] (3.26)

Notice that, at the time z[n] arrives at the integrator’s input, all values in
the right-hand side of (3.26) are known (no unknown variables). Introducing
notation

yln] =

we have
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or, dropping the discrete time argument notation for simplicity,
y=gr+s

That is, at any given time moment n, the output of the integrator y is a linear
function of its input x, where the values of the parameters of this linear function
are known. The g parameter doesn’t depend on the internal state of the integra-
tor, while the s parameter does depend on the internal state of the integrator.
We will refer to the linear function f(x) = g + s as the instantaneous response
of the integrator at the respective implied time moment n. The coefficient g can
be referred to as the instantaneous response gain or simply instantaneous gain.
The term s can be referred to as the instantaneous response offset or simply
instantaneous offset.

Let’s now redraw the filter structure in Fig. 3.12 as in Fig. 3.29. We have
changed the notation from x to £ in the gz + s expression to avoid the confusion
with the input signal x[n] of the entire filter.

a[n] 9 + 5 yln]

Figure 3.29: 1-pole TPT lowpass filter with the integrator in the
instantaneous response form.

Now we can easily write and solve the zero-delay feedback equation. Indeed,
suppose we already know the filter output y[n]. Then the output signal of the
feedback summator is x[n] —y[n] and the output of the integrator is respectively
g(z[n] — y[n]) + s. Thus

yln] = g(z[n] —y(nl) + s
or, dropping the time argument notation for simplicity,
y=gl@—y)+s (3.27)

The equation (3.27) is the zero-delay feedback equation for the filter in Fig. 3.29
(or, for that matter, in Fig. 3.12). Solving this equation, we obtain

y(1+g)=gr+s

and respectively
_gr+s
14y

(3.28)

Having found y (that is, having predicted the output y[n]), we can then proceed
with computing the other signals in the structure in Fig. 3.12, beginning with
the output of the leftmost summator.'*

14 Notice that the choice of the signal point for the prediction is rather arbitrary. We could
have chosen any other point within the delayless feedback loop.
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It’s worth mentioning that (3.28) can be used to obtain the instantaneous
response of the entire filter from Fig. 3.12. Indeed, rewriting (3.28) as

g
= —X + —
Y71 +g 1+g
and introducing notations
g
G=—
1+g
S
S=—
1+g
we have
y=Gx+ S (3.29)

So, the instantaneous response of the entire lowpass filter in Fig. 3.12 is again a
linear function of the input. We could use the expression (3.29) e.g. to solve the
zero-delay feedback problem for some larger feedback loop containing a 1-pole
lowpass filter.

3.10 Implementations

1-pole lowpass

We are now going to convert the structure in Fig. 3.12 into a piece of code. Let’s
introduce helper variables into Fig. 3.12 as shown in Fig. 3.30, where we have
used the already known to us fact that, given the integrator’s instantaneous
response gz + s, the value of s equals the output of the z~! element.

v

weT'/2

Figure 3.30: 1-pole TPT lowpass filter with helper variables.

We already know y from (3.29). Since g = w.T'/2, we have

vzg(w—y)=g($—Gw—S):9($—Higm— 1jg> =

1 s xr— s
= T — = 3.30
g<1+g 1+g> gl+g (3.30)

Now (3.30) gives a direct expression for v in terms of known signals, not using
y. In order to avoid unnecessary computations, we can simply reobtain y using
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the obvious from Fig. 3.30 fact that y is just a sum of v and s:
y=v-+s (3.31)

We also need the z~! input (which we need to store in the z~1’s memory) which
is also obtained from Fig. 3.30 in an obvious way:

u=y+v (3.32)

The equations (3.30), (3.31) and (3.32) can be directly expressed in program
code:

// perform one sample tick of the lowpass filter
// G = g/(1+g)
// the variable ’s’ contains the state of z"-1 block

v := (x-8)*G;
y =V + s;
s 1=y + v;

or instead expressed in a block diagram form (Fig. 3.31). Notice that the block
diagram doesn’t contain any delayless loops anymore.

g/(1+g)

] Pyl

SRR PR

Figure 3.31: 1-pole TPT lowpass filter with resolved zero-delay
feedback.

1-pole multimode

The highpass signal can be obtained from the structure in Fig. 3.31 in a trivial
manner, since ygp = & —yLp, thereby turning Fig. 3.31 into a multimode 1-pole.
1-pole highpass

If we need only the highpass signal, we could do it in a smaller number of
operations than in the multimode 1-pole. By noticing that

yup = x—yrp = — (v+3s) = (z—8)—v = (x—s)—ﬁ(:c—s) = 1J1rg(x—s)

and that 5
g
= +v=s8+20=85+ —r0
u yLp v S v S 1 P
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we can implement the highpass filter as follows:

// perform one sample tick of the highpass filter
// Ghp = 1/(1+g)

// the variable ’s’ contains the state of z"-1 block

XS = X - S;
y := xs*Ghp;
s := s + y*x2g;

however this way we have traded an addition/subtraction pair for one multipli-
cation, plus instead of one cutoff-dependent parameter G we need to store and
access Ghp and 2g. Therefore this is not necessarily a performance improve-
ment.

1-pole allpass

The allpass signal can be obtained from the multimode 1-pole in a trivial man-
ner, recalling that yap = yLp —yup. However, if we need only the allpass signal,
we could save a couple of operations. Noticing that

yap=yYp —yup =v+s—(z—(v+3s)) =(s+2v) — (z—s)
and that s + 2v = u is the new state of the z~! block, we obtain
// perform one sample tick of the allpass filter

// 2Glp=2g/(1+g)
// the variable ’s’ contains the state of z"-1 block

XS := X - 8;
s := s + xs*2Glp;
= s - Xxs;

3.11 Direct forms

Consider again the equation (3.5), which describes the application of the bilin-
ear transform to convert an analog transfer function to a digital one. There is a
classical method of digital filter design which is based directly on this transfor-
mation, without using any integrator replacement techniques. In the author’s
experience, for music DSP needs this method typically has a largely inferior
quality, compared to the TPT. Nevertheless we will describe it here for com-
pleteness and for a couple of other reasons. Firstly, it would be nice to try to
analyse and understand the reasons for the problems of this method. Secondly,
this method could be useful once in a while. Particularly, its deficiencies mostly
disappear in the time-invariant (unmodulated or sufficiently slowly modulated)
case.

Having obtained a digital transfer function from (3.5), we could observe,
that, since the original analog transfer function was a rational function of s, the
resulting digital transfer function will necessarily be a rational function of z.
E.g. using the familiar 1-pole lowpass transfer function

We

Ha(s): S+ We
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we obtain

2 z-—1 We
H =H,| =" = =
alz) (T z+ 1) % . zﬁ + we

“L(z41) “L(z+1)

(z—1)+2L(z+1) (1+20)z— (1- L)

Now, there are standard discrete-time structures allowing an implementation
of any given nonstrictly proper rational transfer function. It is easier to use
these structures, if the transfer function is expressed as a rational function of
271 rather than the one of z. In our particular example, we can multiply the
numerator and the denominator by z~!, obtaining

@l (14271

T R -

The further requirement is to have the constant term in the denominator equal
to 1, which can be achieved by dividing everything by 1 + w.T'/2:

weT ( 1)
—2 (1 + 2=
T
14¢
1_wcT
1- 2z~ 1
1+%

Hy(z) = (3.33)

Now suppose we have an arbitrary rational nonstrictly proper transfer function
of z, expressed via z~! and having the constant term in the denominator equal

to 1:
N
> bz
H(z) = —=°

- N
1-— E anz~ "
n=1

This transfer function can be implemented by the structure in Fig. 3.32 or by
the structure in Fig. 3.33. One can verify (by computing the transfer functions
of the respective structures) that they indeed implement the transfer function
(3.34). There are also transposed versions of these structures, which the readers
should be able to construct on their own.

Let’s use the direct form II to implement (3.33). Apparently, we have

(3.34)

N=1
w.T
bop=b = —2—
B
wT
_ 1=
a1_1+wcT

2

and the direct form implementation itself is the one in Fig. 3.34 (we have merged
the by and by coefficients into a single gain element).

In the time-invariant (unmodulated) case the performance of the direct form
filter in Fig. 3.34 should be identical to the TPT filter in Fig. 3.12, since both
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(P

=

Figure 3.33: Direct form II (DF2), a.k.a. canonical form.

bo
z[n] y[n]

a1 21

Figure 3.34: Direct form II 1-pole lowpass filter.

implement the same bilinear-transformed analog transfer function (2.5). When
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the cutoff is modulated, however, the performance will be different.

We have already discussed in Sections 2.7 and 2.16 that different topologies
may have different time-varying behavior even if they share the same transfer
function. Apparently, the difference in behavior between Fig. 3.34 and Fig. 3.12
is another example of that. Comparing the implementations in Figs. 3.34 and
3.12, we notice that the structure in Fig. 3.34 contains a gain element at the
output, the value of this gain being approximately proportional to the cutoff (at
low cutoffs). This will particularly produce unsmoothed jumps in the output in
response to jumps in the cutoff value. In the structure in Fig. 3.12, on the other
hand, the cutoff jumps will be smoothed by the integrator. Thus, the difference
between the two structures is similar to the just discussed effect of the cutoff
gain placement with the integrator.

We should conclude that, other things being equal, the structure in Fig. 3.34
is inferior to the one in Fig. 3.12 (or Fig. 3.31). In this respect consider that
Fig. 3.12 is trying to explicitly emulate the analog integration behavior, preserv-
ing the topology of the original analog structure, while Fig. 3.34 is concerned
solely with implementing a correct transfer function. Since Fig. 3.34 implements
a classical approach to the bilinear transform application for digital filter design
(which ignores the filter topology) we’ll refer to the trapezoidal integration re-
placement technique as the topology-preserving bilinear transform (or, shortly,
TPBLT). Or, even shorter, we can refer to this technique as simply the topology-
preserving transform (TPT), implicitly assuming that the bilinear transform is
being used.!®

In principle, sometimes there are possibilities to “manually fix” the struc-
tures such as in Fig. 3.34. E.g. the time-varying performance of the latter is
drastically improved by moving the by gain to the input. The problem however
is that this kind of fixing quickly gets more complicated (if being possible at
all) with larger filter structures. On the other hand, the TPT method explicitly
aims at emulating the time-varying behavior of the analog prototype structure,
which aspect is completely ignored by the classical transform approach. Be-
sides, if the structure contains nonlinearities, preserving the topology becomes
absolutely critical, because otherwise these nonlinearites can not be placed in
the digital model.'® Also, the direct forms suffer from precision loss issues, the
problem growing bigger with the order of the system. For that reason in practice
the direct forms of orders higher than 2 are rarely used,z but even 2nd-order
direct forms could already noticeably suffer from precision losses.

15 Apparently, naive filter design techniques also preserve the topology, but they do a rather
poor job on the transfer functions. Classical bilinear transform approach does a good job on
the transfer function, but doesn’t preserved the topology. The topology-preserving transform
achieves both goals simultaneously.

16This is related to the fact that transfer functions can be defined only for linear time-
invariant systems. Nonlinear cases are obviously not linear, thus some critical information
can be lost, if the conversion is done solely based on the transfer functions.

17A higher-order transfer function is typically decomposed into a product of transfer func-
tions of 1st- and 2nd-order rational functions (with real coefficients!). Then it can be imple-
mented by a serial connection of the respective 1st- and 2nd-order direct form filters.
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3.12 Transient response

Looking at the 1-pole lowpass filter’s discrete-time transfer function (3.33) and
noticing that w. = —p where p is the analog pole, we could rewrite (3.33) as

—pT
2

—Zr(1+271)
H(z) = — 77—
1- ingl

Comparing this to (3.9) we notice that

T
1+ 5

_ T
1-5

=D

where p is the result of the application of the inverse bilinear transform formula
(3.9) to p. Further noticing that

1 (1-
1—28 2 \1-

2

1+ 2L 1—p
2): P (3.35)

_1_§ 5

ofSefS

we rewrite H(z) as

1—-p 1 -1 1—p 1
H(z): D +z p'z—i—

2 1-pzt 2 z—p

Thus p is the pole of H(z), as we should have expected.
On the other hand, applying trapezoidal integration to the 1-pole lowpass
differential equation in the pole form (2.14), we have

y[n] —yln —1] =pT - (y[”] +12/[n —1]  z[n]+ ;C[n _ 1]>

from where

<1 - ’f) yln] = (1+ p2T> yin—1] = P2 ] + afn — 1))

2
pT —pT
ylnl =yl 11+ T - (ol + o 1)) =
—pyln— 1]+ (1 - py 2

where we have used (3.35).
Now consider a complex exponential z[n] = X (z)z". For such z[n] we have

i) = pyln — 1] + (1 - p) 2

X (2)2" = py[n — 1]+ ¢=" (3.36)

where we introduced notation

. R
Gg=(1-p)—

X(2)
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for conciseness. Recursively substituting (3.36) into itself at progessively de-
creasing values of n we obtain

_ 5ylo] (1;;_1) _*1 Lo = 7yl + 2 — zn iz =
= 5yl0] + (1 - ) X () =

=p"y[0] + (2" —p")H(2) X (2) =

= H(2)X(2)z" + (y[0] — H(2)X(z)) - p" =

= ys[n] + (y[0] — ys[0]) - "™ = ys[n] + ye[n]

where

are the steady-state and transient responses respectively.

Thus, the discrete-time 1-pole transient response is a decaying exponent p”,
provided the discrete-time system is stable and |p| < 1. If [p| > 1 the transient
response grows infinitely.

3.13 Instantaneously unstable feedback

Writing the solution (3.28) for the zero-delay feedback equation (3.27) we in fact
have slightly jumped the gun. Why? Let’s consider once again the structure in
Fig. 3.29 and suppose g gets negative and starts growing in magnitude further
in the negative direction.ﬁ When g becomes equal to —1, the denominator of
(3.28) turns into zero. Something bad must be happening at this moment.

Instantaneous smoother

In order to understand the meaning of this situation, let’s consider the delayless
feedback path as if it was an analog feedback. An analog signal value can’t
change instantaneously. It can change very quickly, but not instantaneously,
it’s always a continuous function of time. We could imagine there is a smoother

180f course, such lowpass filter formally has a negative cutoff value. It is also unstable.
However unstable circuits are very important as the linear basis for the analysis and imple-
mentation of e.g. nonlinear self-oscillating filters. Therefore we wish to be able to handle
unstable circuits as well.
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unit somewhere in the feedback path (Fig. 3.35). This smoother unit has a
very very fast response time. We introduce the notation g for the output of the
smoother.

z[n] gé+s y[n]

ok

Figure 3.35: Digital 1-pole lowpass filter with a trapezoidal inte-
grator in the instantaneous response form and a smoother unit &
in the delayless feedback path.

So, suppose we wish to compute a new output sample y[n] for the new input
sample z[n]. At the time x[n] “arrives” at the filter’s input, the smoother still
holds the old output value y[n — 1]. Let’s freeze the discrete time at this point
(which formally means we simply are not going to update the internal state
of the 27! element). At the same time we will let the continuous time ¢ run,
formally starting at ¢ = 0 at the discrete time moment n.

In this time-frozen setup we can choose arbitrary units for the continuous
time t. The smoother equation can be written as

sgn(t) = sgn(y(t) — 5(t))

That is, we don’t specify the details of the smoothing behavior, however the
smoother output always changes in the direction from gy towards y at some (not
necessarily constant) speed.E Particularly, we can simply define a constant
speed smoother:

y=sgn(y —y)
or we could use a 1-pole lowpass filter as a smoother:

=Yy—-y

<.

The initial value of the smoother is apparently 4(0) = y[n — 1].
Now consider that

sgny(t) = sgn(y(t) — y(t)) = sgn(g(zn] — y(t)) + s — y(t)) =
=sgn((gz[n] +s) — (1 + g)y(t)) = sgn(a — (1 + 9)y(t))

where a = gx[n]+ s is constant in respect to t. First, assume 1+ g > 0. Further,
suppose a — (14 ¢)5(0) > 0. Then %(0) > 0 and then the value of the expression
a—(1+4¢)g(t) will start decreasing until it turns to zero at some ¢, at which point
the smoothing process converges. On the other hand, if a— (14 ¢)5(0) < 0, then
7(0) < 0 and the value of the expression a— (1+ g)y(t) will start increasing until
it turns to zero at some t, at which point the smoothing process converges. If

a— (14 ¢)y(0) = 0 then the smoothing is already in a stable equilibrium state.

19We also assume that the smoothing speed is sufficiently large to ensure that the smoothing
process will converge at all cases where it potentially can converge (this statement should
become clearer as we discuss more details).
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So, in case 1 4+ g > 0 the instantaneous feedback smoothing process always
converges. Now assume 1 + g < 0. Further, suppose a — (1 + ¢)g(0) > 0. Then
7(0) > 0 and then the value of the expression a — (1 + ¢)g(¢) will start further
increasing (or stay constant if 1 + g = 0). Thus, g(¢) will grow indefinitely.
Respectively, if a — (1 4+ ¢)g(0) < 0, then g(t) will decrease indefinitely. This
indefinite growth/decrease will occur within the frozen discrete time. Therefore
we can say that ¢ grows infinitely in an instant. We can refer to this as to an

instantaneously unstable zero-delay feedback loop.

The idea of the smoother introduced in Fig. 3.35 can be used as a general
means for analysing zero-delay feedback structures for instantaneous instability.
We will refer to this technique as instantaneous smoother.

1-pole lowpass as an instantaneous smoother

The analysis of the instantaneous stability can also be done using the analog
filter stability analysis means. Let the smoother be an analog 1-pole lowpass
filter with a unit cutoff (whose transfer function is ﬁ)zo and notice that in
that case the structure in Fig. 3.35 can be redrawn as in Fig. 3.36. This filter

has two formal inputs z[n] and s and one output y[n].

.

Figure 3.36: An instantaneous representation of a digital 1-pole
lowpass filter with a trapezoidal integrator and an analog lowpass
smoother.

We can now e.g. obtain a transfer function from the x[n] input to the y[n]
output. Ignoring the s input signal (assuming it to be zero), for a continuous-
time complex exponential input signal arriving at the x[n] input, which we
denote as z[n|(t), we have a respective continuous-time complex exponential
signal at the y[n] output, which we denote as y[n](t):

il =g (sl ~ b))

from where

yln)(t) = —L——an)(t)

B 1+gs+1

that is

g s+1
H = =
(s) [ S )

20 Apparently, the variable s used in the transfer function ﬁ is a different s than the one
used in the instantaneous response expression for the integrator. The author apologizes for

the slight confusion.
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This transfer function has a pole at s = —(1 4 g). Therefore, the structure is
stable if 1 4+ g > 0 and not stable otherwise.

The same transfer function analysis could have been done between the s
input and the y[n] output, in which case we would have obtained

s+1

"o = vy

The poles of this transfer function however, are exactly the same, so it doesn’t
matter.2L

Generalized zero-delay feedback loop

The zero-delay feedback instantaneous response structure in Fig. 3.29 can be
considered as a particular case of a general one, drawn in Fig. 3.37, where the
input signal z[n] has been incorporated into the s term of the instantaneous
response gé + s and the negative feedback has been incorporated into the factor
g. Indeed, Fig. 3.37 can be obtained from Fig. 3.29 via

G=—yg
S=s+gzx

G

Figure 3.37: General zero-delay feedback structure in the instan-
taneous response form.

The zero-delay feedback equation solution written for Fig. 3.37 is obviously

S

=1 (3.37)

Y
From the previous discussion it should be clear that the structure becomes
instantaneously unstable for G > 1, that is when the total instantaneous gain
of the feedback loop is 1 or more.
The solution form (3.37) therefore provides a generic means to check an
arbitrary zero-delay feedback loop for instantaneous instability. E.g. rewriting
(3.28) (which we had written for Fig. 3.29) in the form (3.37) we obtain

y = gr + s
1—(-g)

where —g is the total instantaneous gain of the feedback loop (including the
feedback inversion), and thus the structure is instantaneously unstable at —g > 1
(or, equivalently, g < —1).

21This is a common rule: the poles of a system with multiple inputs and/or multiple outputs
are always the same regardless of the particular input-output pair for which the transfer
function is being considered (exceptions in singular cases, arising out of pole/zero cancellation
are possible, though).
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It might be tempting to simply say that the instantaneously unstable zero-
delay feedback occurs whenever the denominator of the zero-delay feedback
equation’s solution becomes zero or negative. However, this actually depends
on how did we arrive at the solution expression. E.g. if we multiply both the
numerator and the denominator of (3.28) by —1, the instantaneously unstable
case will occur for zero or positive denominator values. Therefore, we need to
make sure that our solution is written in the form (3.37) (where we need to verify
that G is the total instantaneous gain of the feedback loop) and only then can
we say that zero or negative denominator values correspond to instantaneously
unstable feedback.

Limits of bilinear transform

We have seen that for 1-poles the continuous- and discrete-time transient re-
sponses are

yi(t) = (y(0) — y5(0)) -
yi[n] = (y[0] — ys[0]) - p"

where the the discrete-time pole p is obtained from continuous-time pole p via
inverse bilinear transform (3.9).

In order to compare the transient responses we could compare the growth
of y over one sampling period T":

The comparison of eP” vs. p is done in Fig. 3.38. One can notice that as
p — 2/T — 0 the value of § grows too quickly (compared to e?T), approaching
infinity. This means that discrete-time transient response is growing infinitely
fast at p = 2/T, or, respectively as pT/2 = 1. At p > 2/T the value of p
is getting completely different from eP” particulary the sign of y[n] begins to
alternate between successive samples.

Now recall that in the 1-pole zero-delay feedback equation (3.28) we had
g =w.T/2=—pT/2. Thus, as g = —pT/2 — —1+0 the discrete-time transient
response is becoming infinitely fast. Close to this point and further beyond
it, trapezoidal integration doesn’t deliver a reasonable approximation to the
continuous-time case anymore.

If we attempt to interpret the same in terms of bilinear transform, then we
already know (Fig. 3.38) that the inverse bilinear transform (3.9) is becoming
infinitely large at s = 2/T, that is the inverse bilinear transform formula has a
pole at s = 2/T. This means that, if we are having a continuous-time system
with a pole at s & —2/T (which in case of the 1-pole lowpass corresponds to
g = w.T/2 =~ —1), then after the bilinear transform the system will have a pole
at z ~ oo, and the transformation result doesn’t work really well.

Avoiding instantaneously unstable feedback

Alright, so we have found out that zero-delay feedback structures are instan-
taneously unstable when the total instantaneous gain of the feedback loop is
greater than or equal to 1, but what can we do about it? Firstly, the problem
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Figure 3.38: e PT (solid) vs. p = (1 + pT/2)/(1 — pT/2) (thick
dashed) as functions of p. The two thin dashed lines are asymptotes
of (1+pT/2)/(1 —pT/2).

typically doesn’t occur. Mostly, in (3.37) we have G < 0, e.g. in the 1-pole
lowpass case we have G = —g < 0 for positive cutoff values. Even if G is or
can become positive, the situation G > 1 occurs at really excessive parameter
settings. Therefore one can consider, whether these extreme parameter settings
are so necessary to support, and possibly simply clip the filter parameters in
such a way that the instantaneous instability doesn’t occur.

Secondly, let’s notice that g = w.T'/2. Therefore another solution could be to
increase the sampling rate, which reduces the sampling period T" and respectively
the value of g (from an alternative point of view, it shifts the inverse bilinear
transform’s pole 2/T further away from the origin).

Unstable bilinear transform

There is yet another idea, which is not widely used, but we are going to discuss
it anyway.?? So, the instantaneous instability is occurring at the moment when
one of the analog filter’s poles hits the pole of the inverse bilinear transform (3.9),
which is located at s = 2/T. On the other hand, recall that the bilinear trans-
form is mapping the imaginary axis to the unit circle, thus kind-of preserving
the frequency response. If the system is not stable, then the frequency response
doesn’t make sense. Formally, the reason for this is that the inverse Laplace

22This idea has occurred to the author during the writing of the first revision of this book.
The author didn’t try it in practice yet, neither is he aware of other attempts.

Sufficient theoretical analysis is not possible here due to the fact that practical applications
of instantaneously unstable (or any unstable, for that matter) filters occur typically for non-
linear filters, and there are not many theoretical analysis means for the latter. Hopefully there
are no mistakes in the theoretical transformations, but even if there are mistakes, at least the
idea itself could maybe work.
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transform of transfer functions only converges for o > max {Rep,} where p,
are the poles of the transfer function, and respectively, if max{Rep,} > 0, it
doesn’t converge on the imaginary axis (o = 0). However, instead of the imag-
inary axis Res = o = 0, let’s choose some other axis Res = ¢ > max {Rep,}
and use it instead of the imaginary axis to compute the “frequency response”.

We also need to find a discrete-time counterpart for Res = o. Considering
that Re s defines the magnitude growth speed of the exponentials e5* we could
choose a z-plane circle, on which the magnitude growth speed of z™ is the same
as for e?t. Apparently, this circle is |z| = e?T. So, we need to map Res = o
to |z| = e?T. Considering the bilinear transform equation (3.4), we divide z by
€T to make sure ze~°7 has a unit magnitude and shift the s-plane result by o:

ze T 1

_ 3.38
T ze°T 41 ( )

s=o0+
We can refer to (3.38) as the unstable bilinear transform, where the word “un-
stable” refers not to the instability of the transform itself, but rather to the
fact that it is designed to be applied to unstable ﬁlters.f Notice that at 0 =0
the unstable bilinear transform turns into an ordinary bilinear transform. The
inverse transform is obtained by

—o)T
%(ze“ﬁ +1)=ze T —1
from where T T
Ze—o’T 1_(S_U> :1+(8_U)
2 2
and ()T
14 B=2-
o 60Tﬁ (3.39)

2

Apparently the inverse unstable bilinear transform (3.39) has a pole at s = U—‘y—%.
In order to avoid hitting that pole by the poles of the filter’s transfer function
(or maybe even generally avoid the real parts of the poles to go past that value)
we could e.g. simply let

o =max {0, Rep,}

or we could position o midways:

1
o :maX{O, Rep, — T}

In order to construct an integrator defined by (3.38) we first need to obtain
the expression for 1/s from (3.38):

1 - 1 _ Ze—o’T +1 B
s ot 2.2l T oT(ze T £ 1) +2(ze 0T — 1)
ze 7" +1 1+e Tzt

T =
(6T +2)e Tz + (6T — 2) (6T +2)—(2—0T)e’Tz—1

23 Apparently, the unstable bilinear transform defines the same relationship between Im s
and arg z as the ordinary bilinear transform. Therefore prewarping can be done in the same
way as for the ordinary bilinear transform.
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T 14 e Tzt
24T 1-— %QJTZA
That is X . ot
5 T 240l 1_20Teot 1 (3.40)

24+o0T

A discrete-time structure implementing (3.40) could be e.g. the one in Fig. 3.39.
Yet another approach could be to convert the right-hand side of (3.40) to the
analog domain by the inverse bilinear transform, construct an analog implemen-
tation of the resulting transfer function and apply the trapezoidal integrator
replacement to convert back to the digital domain. It is questionable, whether

this produces better (or even different) results than Fig. 3.39.

Figure 3.39: Transposed direct form II-style “unstable” trapezoidal
integrator.

3.14 Other replacement techniques

The trapezoidal integrator replacement technique can be seen as a particular
case of a more general set of replacement techniques. Suppose we have two
filters, whose frequency response functions are Fj(w) and Fy(w) respectively.
The filters do not need to have the same nature, particularly one can be an
analog filter while the other can be a digital one. Suppose further, there is a
frequency axis mapping function w’ = p(w) such that

By(w) = Fi(p(w))

Typically u(w) should map the entire domain of Fy(w) onto the entire domain
of F}(w) (however the exceptions are possible).

To make the subsequent discussion more intuitive, we will assume that pu(w)
is monotone, although this is absolutely not a must.ﬁ In this case we could say

24Gtrictly speaking, we don’t even care whether p(w) is single-valued. We could have instead
required that

Fa(p2(w)) = Fi(p1(w))
for some p1(w) and pa(w).
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that Fo(w) is obtained from Fj(w) by a frequency axis warping. Particularly,
this is exactly what happens in the bilinear transform case (the mapping u(w)
is then defined by the equation (3.6)). One cool thing about the frequency axis
warping is that it preserves the relationship between the amplitude and phase.

Suppose that we have a structure built around filters of frequency response
Fi(w), and the rest of the structure doesn’t contain any memory elements (such
as integrators or unit delays). Then the frequency response F'(w) of this struc-
ture will be a function of Fj(w):

F(w) = ®(Fi(w))

where the specifics of the function ®(w) will be defined by the details of the
container structure. E.g. if the building-block filters are analog integrators, then
Fi(w) = 1/jw. For the filter in Fig. 2.2 we then have

o(w) =

_w
w+ 1

Indeed, substituting F} (w) into ®(w) we obtain

jw 1
1+1/jw 1+ jw

F(w) = ®(F1(w)) = ®(1/jw) =

which is the already familiar to us frequency response of the analog lowpass
filter.

Now, we can view the trapezoidal integrator replacement as a substitution
of I instead of Fy, where u(w) is obtained from (3.6):

2 wdT
wa = wlwg) = TtanT
The frequency response of the resulting filter is obviously equal to ®(F(w)),
where Fy(w) is the frequency response of the trapezoidal integrators (used in
place of analog ones). But since Fy(w) = F;(u(w)).

(Fy(w)) = @(Fi(p(w)))

which means that the frequency response ®(Fs(+)) of the structure with trape-
zoidal integrators is obtained from the frequency response ®(Fj (-)) of the struc-
ture with analog integrators simply by warping the frequency axis. If the warp-
ing is not too strong, the frequency responses will be very close to each other.
This is exactly what is happening in the trapezoidal integrator replacement and
generally in the bilinear transform.

Differentiator-based filters

We could have used some other two filters, with their respective frequency re-
sponses F; and F5. E.g. we could consider continuous-time systems built around
differentiators rather than integrators.?®> The transfer function of a differentia-
tor is apparently simply H (s) = s, so we could use (3.4) to build a discrete-time

25The real-world analog electronic circuits are “built around” integrators rather than dif-
ferentiators. However, formally one still can “invert” the causality direction in the equations
and pretend that @(t) is defined by z(¢), and not vice versa.



92 CHAPTER 3. TIME-DISCRETIZATION

“trapezoidal differentiator”. Particularly, if we use the direct form II approach,
it could look similarly to the integrator in Fig. 3.9. When embedding the cutoff
control into a differentiator (in the form of a 1/w. gain), it’s probably better
to position it after the differentiator, to avoid the unnecessary “de-smoothing”
of the control modulation by the differentiator. Replacing the analog differen-
tiators in a structure by such digital trapezoidal differentiators we effectively
perform a differentiator-based TPT.

E.g. if we replace the integrator in the highpass filter in Fig. 2.9 by a dif-
ferentiator, we essentially perform a 1/s < s substitution, thus we should have
obtained a (differentiator-based) lowpass filter. Remarkably, if we perform a
differentiator-based TPT on such filter, the obtained digital structure is fully
equivalent to the previously obtained integrator-based TPT 1-pole lowpass fil-
ter.

Allpass substitution

One particularly interesting case occurs when F; and F5 define two different
allpass frequency responses. That is |Fj(w)| = 1 and |Fz(w)| = 1. In this case
the mapping p(w) is always possible. Especially since the allpass responses (de-
fined by rational transfer functions of analog and digital systems) always cover
the entire phase range from —7 to 7.2 In intuitive terms it means: for a filter
built of identical allpass elements, we can always replace those allpass elements
with an arbitrary other type of allpass elements (provided all other elements are
memoryless, that is there are only gains and summators). We will refer to this
process as allpass substitution. Whereas in the trapezoidal integrator replace-
ment we have replaced analog integrators by digital trapezoidal integrators, in
the allpass substitution we replace allpass filters of one type by allpass filters of
another type.

We can even replace digital allpass filters with analog ones and vice versa.
E.g., noticing that z~! elements are allpass filters, we could replace them with
analog allpass filters. One particularly interesting case arises out of the inverse
bilinear transform (3.9). From (3.9) we obtain

L 1 sT
= 2 (3.41)

sT

I+

The right-hand side of (3.41) obviously defines a stable 1-pole allpass filter,
whose cutoff is 2/T. We could take a digital filter and replace all z~! elements
with an analog allpass filter structure implementing (3.41). By doing this we
would have performed a topology-preserving inverse bilinear transform.

We could then apply the cutoff parametrization to these underlying analog

allpass elements:
sT s

L2
2 We

so that we obtain
1= s/we

=T 14+ s/we

26 Actually, for —oo < w < 400, they cover this range exactly N times, where N is the order
of the filter.
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The expression s/w,. can be also rewritten as sT'/2«, where « is the cutoff scaling

factor:

1 1—-5T)2a
1+ sT/2a

Finally, we can apply the trapezoidal integrator replacement to the cutoff-scaled
analog filter, converting it back to the digital domain. By doing so, we have
applied the cutoff scaling in the digital domain! On the transfer function level
this is equivalent to applying the bilinear transform to (3.42), resulting in

z

(3.42)

z—1
ZflzlfsT/Qa(_l_m _
1+sT/200 1+ 27

az+1)—(2—-1) (a—1z+(a+1)

alz+1)+(z—-1) (a+1)z4(a—1)

That is, we have obtained a discrete-time allpass substitution

i (a=Dzt(a+D)
(a+1)z+(a—1)
which applies cutoff scaling in the digital domain.z The allpass filter

(a—1Dz+(a+1)
(a+1)z+ (a—1)

H(z) =

should have been obtained, as described, by the trapezoidal integrator replace-
ment in an analog implementation of (3.42), alternatively we could use a direct
form implementation. Notice that this filter has a pole at z = (o — 1)/(ar + 1).
Since |a — 1| < |a + 1] Y > 0, the pole is always located inside the unit circle,
and the filter is always stable.

SUMMARY

We have considered three essentially different approaches to applying time-
discretization to analog filter models: naive, TPT (by trapezoidal integrator
replacement), and the classical bilinear transform (using direct forms). The
TPT approach combines the best features of the naive implementation and the
classical bilinear transform.

2"Differently from the analog domain, the digital cutoff scaling doesn’t exactly shift the
response along the frequency axis in a logarithmic scale, as some frequency axis warping is
involved. The resulting frequency response change however is pretty well approximated as
shiting in the lower frequency range.
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Chapter 4

State variable filter

After having discussed 1-pole filters, we are going to instroduce a 2-pole filter.
With 2-pole filters there is more freedom in choosing the filter topology than
with 1-poles, where any implementation of the latter would essentially be based
on a feedback loop around an integrator. A 2-pole topology of fundamental
importance and high usability is a classical analog model, commonly referred to
as state-variable filter (SVF). It can also serve as a basis for building arbitrary
2-pole filters by means of modal mixture.

4.1 Analog model

The block diagram of the state-variable filter is shown in Fig. 4.1. The three
outputs are the highpass, bandpass and lowpass signals. As usual, one can apply
transposition to obtain a filter with highpass, bandpass and lowpass inputs
(Fig. 4.2).

() ()
20 Al | o [ )
2R
©=

Figure 4.1: 2-pole multimode state-variable filter.

The differential equations implied by Fig. 4.1 are

yup = = — 2Ryp — yLp
YBP = We¢ - YHP (4.1)

YLP = We * YBP

95
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rLp (t)

Figure 4.2: Transposed 2-pole multimode state-variable filter.

Rewriting them in terms of the lowpass signal y = yrp and combining them
together we obtain

.2 .
RA) S (4.2)
wC wC
or
i+ 2Rw.y + wly = wix (4.3)

In a similar fashion one can easily obtain the transfer functions for the output
signals in Fig. 4.1. Assuming unit cutoff and complex exponential signals, we
have

yup =  — 2Ryp — yLp
1

YBP = —YHP
s

1
YLp = —YBP
S

from where 1

yup = & — 2R - —ynp — —Yup
5 5

2R 1
1+*+*2 YHp = T
S S

from where

and )
yup 1 s
HHP(S) = —_—= =
2R 1 2
T [ T s?+2Rs+1
s s
Thus
52 52
H = = c = 1
e (3) $2+2Rs+1  s2+42Rw.s + w? @ )
s WeS
H = = c = 1
Bp(s) s242Rs+1  $?2+2Rw.s+ w? (w )
1 w?
HLP(S) = = (wc = 1)

24 2Rs+1  $?2+2Rw.s+ w?
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Notice that yrp(t)+2Rypp (t)+yup (t) = z(t), that is, the input signal is split
into lowpass, bandpass and highpass components. The same can be expressed
in the transfer function form:

HLP(S) + 2RHBP(S) + HHP(S) =1 (44)

Amplitude responses

The amplitude responses of the state-variable filter are plotted in Figs. 4.3, 4.4
and 4.5. The pass-, stop- and transition bands of the low- and high-pass filters
are defined in the same manner as for the 1-poles, where the transition band now
can contain a peak in the amplitude response. For the bandpass the passband is
located in the middle (around the cutoff), and there is a stop- and a transition
band on each side of the cutoff. The slope rolloff speed is obviously —12dB/oct
for the low- and high-pass, and —6dB/oct for the bandpass.

|H(jw)|,dB , |

+12 4

+6+

o

&

)
EV

we/8
Figure 4.3: Amplitude response of a 2-pole lowpass filter.

One could observe that the highpass response is a mirrored version of the
lowpass response, while the bandpass response is symmetric by itself. The sym-
metry between the lowpass and the highpass amplitude responses has a clear
algebraic explanation: applying the LP to HP substitution to a 2-pole lowpass
produces a 2-pole highpass and vice versa. The symmetry of the bandpass am-
plitude response has the same explanation: applying the LP to HP substitution
to the 2-pole bandpass converts it into itself.

Since

|s2+2Rs +1|| =|-1+2Rj+1]=2R
s=j

the amplitude response at the cutoff is 1/2R for all three filter types. Except
for the bandpass, the cutoff point w = 1 is not exactly the peak location but it’s
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|H(jw)|,dB ,

+12 1

+6 1

-12 4

-18 4
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Figure 4.4: Amplitude response of a 2-pole highpass filter.

[H(jw)],dB

+12 1

+6 -

-12 4

-18 4

Stopband

Transition

band

I
Passband
I

=
|
<

Transition
band

Stopband

EV

Figure 4.5: Amplitude response of a 2-pole bandpass filter.

we/8

T
We

EV

pretty close (the smaller the value of R, the closer is the true peak to w = 1).
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Phase responses
The phase response of the lowpass is

1

- ars(142Rjw—u?) =
8 R —or el F 2R — W)

arg Hip(jw) =
2 -1

W . . wl—w
= —arcco = — arccot —————
1—w? 2Rw 2R

(4.5)

= —arctan

where we had to switch from arctan to arccot, since the principal value of arctan
gives wrong results for w > 1. Fig. 4.6 illustrates.

arg H(jw) a

—7/21

|
|
|
R=5 |
I
|

UJC/S We 8wc

EV

Figure 4.6: Phase response of a 2-pole lowpass filter. Bandpass
and highpass responses are the same, except that they are shifted
by +90° and 180° respectively.

We could notice the 2-pole phase response has the same kind of symmetry
around the cutoff point in the logarithmic frequency scale as the 1-pole filters.
This property can be explained from (4.5) by noticing that the substitution
w < 1/w changes the sign of the argument of arccot and by using the property
of arccot

arccot x + arccot(—x) = m

We also could notice that the steepness of the phase response is affected by the
parameter R. Explicitly writing the phase response in a logarithmic frequency
scale we have
eIT — gi® —sinhx
arg H je”) = —arccot ————— = —arccot ————— 4.6
g Hrp(je®) 3R i (4.6)
thus R simply scales the argument of arccot which results in stretching or shrink-
ing of the phase response.

The bandpass phase response is a +90°-shifted lowpass response:

jw T
J = — t+arg Hyp(s)

arg Hgp (jw) = arg 1+ 2Rjw—w? 2
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The bandpass phase response is a 180°-shifted lowpass response:

(jw)?

T 2Rjw—wr " T aretie(s)

arg Hyp (jw) = arg

The phase response at the cutoff is —90° for the lowpass:

1 1
112R —1  “89Rj —

arg Hyp(j) = arg g
respectively giving 0° for the bandpass and +90° for the highpass.

It can be also observed in Fig. 4.6 that the lowpass phase response is close
to zero in the passband, the same as for the 1-pole lowpass. As we shuld
have expected, the same also holds for the highpass’s passband. Somewhat
remarkably, as we just established by evaluating the bandpass phase response
at the cutoff, the same property also holds for the bandpass’s passpand, although
at small values of R the phase will be close to zero only in a small neighborhood
of the cutoff.

4.2 Resonance

With a 1-pole lowpass or highpass filter, the only parameter to control was the
filter cutoff, shifting the amplitude response to the left or to the right in the
logarithmic frequency scale. With 2-pole filters there is an additional parameter
R, which, as the reader could have noticed from Figs. 4.3, 4.4 and 4.5 controls
the height of the amplitude response peak occuring closely to w = w,.. A narrow
peak in the amplitude response is usually referred to as resonance. Thus, we
can say that the R parameter controls the amount of resonance in the filter.

On the other hand, from the same figures we can notice that the resonance
increases (the peak becomes higher and more narrow) as R decreases. It is easy
to verify that at R = 0 the resonance peak becomes infinitely high. A little bit
later we will also establish the fact that the state variable filter is stable if and
only if R > 0. Thus, the parameter R actually has the function of decreasing
or damping the resonance. For that reason we refer to the R parameter as
the damping.l By controlling the damping parameter we effectively control the
filter’s resonance.2

Damping and selfoscillation

At R =0 and z(t) = 0 the equation (4.3) turns into

j=—wly

LA more correct term, used in theory of harmonic oscillations, is damping ratio, where the
commonly used notation for the same parameter is (.

2The “resonance” control for the SVF filter can be introduced in a number of different
ways. One common approach is to use the parameter @ = 1/2R, however this doesn’t allow
to go easily into the selfoscillation range in the nonlinear versions of this filter, also the
math is generally more elegant in terms of R than in terms of ). Another option is using
r = 1— R, which differs from the resonance control parameter k of SKF/TSK filters (discussed
in Section 5.8) just by a factor of 2, the selfoscillation occuring at r = 1. Other, more
sophisticated mappings, can be used for a “more natural feel” of the resonance control.
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which is effectively a spring-mass equation

my = —ky
or
. k
Yy=-—Y
m

where respectively w. = y/k/m. Starting from a non-zero initial state such
system will oscillate around the origin infinitely long. Thus, in the absence of
the damping signal path (Fig. 4.7), the filter will be constantly selfoscillatmgi
Notably, the selfoscillation is appearing at the setting R = 0 where the resonance
peak is getting infinitely high. This is a general property of resonating filters
and has to do with the relationship between the filter poles and the filter’s
transient response, both covered later in this chapter and additionally and in a
more general form in Chapter 7.

—> yup (1) — yBp(t)

z(t) + @ @ yLp (1)

Figure 4.7: 2-pole multimode state-variable filter without the
damping path (selfoscillating).

The introduction of the damping signal

ij=—wly — 2Ry

reduces the amount of resonance in the filter, which in terms of a spring-mass
system works as a 1st-order energy dissipation term:

my = —ky — 2cy

This should give a better idea of why the R parameter is referred to as damping.
By further adding an external force to the spring-mass system one effectively
adds the input signal.®

3The selfoscillating state at R = 0 is a marginally stable state. As mentioned earlier, due
to the noise present in the system (such as numerical errors in a digital implementation),
we shouldn’t expect to be able to exactly hold a system in a marginally stable state. In
order to have reliable selfoscillation one usually needs to introduce nonlinear elements into
the system. E.g. by introducing the saturating behavior one would be able to lower R below
0, thereby increasing the resonance even further, without making the filter explode. So,
while selfoscillation formally appears at R = 0, it is becoming reliable at R < 0, given that
nonlinearities prevent the filter from exploding.

4Thereby the differential equation becomes formally equivalent to an SVF, but there still
is an essential difference. The state of a spring-mass system consists of a position y(¢) and a
velocity ¢(t). Changes to the system parameters will therefore directly change the kinetic and
potential energies, which can result in a sudden increase or reduction of the amplitude of the
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Resonance peak

We can find the exact position and the height of the resonance peak by looking
for the local maximum of the (squared) amplitude response. E.g. for the lowpass
amplitude response:

1 1

H . 2 — =
|Hyp(jw)| |[(jw)? + 2Rjw + 12 (1 —w?)? +4R%w?

Instead of looking for the maximum of | Hpp (jw)|? we can look for the minumum
of the reciprocal function:

|Hip(jw)| 72 = w? +2(2R? — 1)w? + 1

Clearly, |Hpp(jw)|~2 is a quadratic polynomial in w? with the minimum at
w? =1 —2R?. The resonance peak position is thus

Wpeak = /1 — 2R2

where for R > 1/4/2 (we are considering only positive values of R) there is no
minimum at w? > 0 and respectively no resonance peak. Note that the peak
thereby starts at w = 0 at R = 1/4/2 and, as R decreases to zero, moves towards
w=1.

The resonance peak height is simply the value of the amplitude response
evaluated at wpeak:

1 1
1—(1—-2R2))2+4R2(1 —2R?) 4R*+4R? —8R*
1 1

= p_im - amaom BV

|HLP(jwpeak)|2 = (

and
1

Hip(jwpear)| = ————
‘ LP(J p k)| 2RW

Thus at R = 1/v/2 the peak height is formally | Hyp( Jwpeak)| = 1, correspond-
ing to the amplitude response not having the peak yet. At R — 0 we have
|Hip (jwpeak )| ~ 1/2R. The above expression also allows us to find the value of
R given a desired peak height A. Starting from

1
A= ———— 4.7
2RV1— R? (4.0

2RV1—R2=A"1
A72
4

(R<1/V2)

we have

R*(1 - R =

—2
roryi oy

4
swinging. In comparison, in the SVF the system state consists of the “lowpass” integrator’s
state y(t) and “bandpass” integrator’s state, which according to (4.1) is y(t)/wc. In this
case changes to the filter parameters will affect the filter’s output in a more gradual way.
Particulary, according to (2.29), changes to the cutoff will not affect the output amplitude at
all.
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1+v1 - A2
2
Taking into account the allowed range of R (which is 0 < R < 1/4/2), we obtain

1—y1— A2
R= — (A>1) (4.8)
Recalling that the amplitude response of the 2-pole highpass is simply a
symmetrically flipped amplitude response of the 2-pole lowpass, we realize that
the same considerations apply to the 2-pole highpass, except that the expres-
sion for wpeak needs to be reciprocated. For the bandpass filter the amplitude

response peak is always exactly at the cutoff.

R? =

Butterworth filter

The threshold value R = 1/ v/2 at which the resonance peak starts to appear has
another interesting property. At this setting the (logarithmic frequency scale)
amplitude responses of the 2-pole lowpass and highpass are shrunk horizontally
two times around the cutoff point, as compared to those of 1-poles (the phase
response is transformed in a more complicated way, which is of little interest to
us here). This is a particular case of a Butterworth filter. Butterworth filters
will be discussed in a generalized form in Chapter 8, but we can also show this
shrinking property explicitly here. Indeed, for R = 1/1/2 we have

2 2
32—1—\/5-5—&—1’ 2‘1—w2+j\/§~w‘ =(1-w?)?+2°%=

s=jw

:1—|—w4:|1+jw2‘2:|1+s|2

s=jw?
Now, the substitution w <« w? corresponds to the two times shrinking in the
logarithmic frequency scale: logw <« 2logw. Thus, for the lowpass 2-pole we
have

1 1
2 4+V2-5+1 1+s

s=jw s=jw?

and for the highpass filter we have

82 S

242 5+1 1+s

s=jw s=jw?

The readers can refer to Fig. 8.13 for the illustration of the shrinking effect.
Since for R < 1/ V/2 the amplitude response obtains a resonance peak, the
Butterworth 2-pole filter is the one with the “sharpest” possible cutoff among
all non-resonating 2-poles.

4.3 Poles

Solving s2 4+ 2Rs 4+ 1 = 0 we obtain the poles of the filter at

:—R:I:\/R27—= —-R+VR?2 -1 if|R‘21
P1.2 “R+jVI-RE if-1<R<1
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Thus, the poles are located in the left semiplane if and only if R > 0. As with
1-poles, the location of the poles in the left semiplane is sufficient and necessary
for the filter to be stable.>

For |R| <1 the poles are located on the unit circle

(Rep)? + (Imp)* = (—R)* + (V1 - R?)* =1

This also implies that R is equal to the cosine of the angle between the negative
real axis and the direction to the pole (Fig. 4.8).

IH]SA

Figure 4.8: Poles of a resonating 2-pole filter (w. = 1).

As R is getting close to zero, the poles are getting close to the imaginary
axis. By definition of a pole, the transfer function is infinitely large at the
poles, which means it is also having large values on the imaginary axis close to
the poles. This corresponds to the resonance peak appearing in the amplitude
response. At R = 0 the poles are located right on the imaginary axis and the
filter selfoscillates.

At |R| > 1 the poles are real and mutually reciprocalzi

(-R—VR2—1)-(-R+VR?—1) =1

(Fig. 4.9). The filter thus “falls apart” into a serial combination of two 1-pole
filters:
1 1 1

H = = .
Le(s) $24+2Rs+1 s—p1 s—po

5Later we will discuss the transient response of the SVF and the respective effects of the
poles position on the stability.

6 Actually, the poles are mutually reciprocal at any R (since their product should be equal
to the constant term of the denominator). For complex poles the reciprocal property manifests
itself as conjugate symmetry of the poles, since the poles are lying on the unit circle and the
reciprocation does not change their absolute magnitude.
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s s 1
H; = = .
Be(s) s$24+2Rs+1 s—p1 s—p2
s? s s
HHP(S) = =

$24+2Rs+1  s—p1 S—po

where p1p2 = 1.7 These 1-pole filters become visible in the amplitude responses
at sufficiently large R as two different “cutoff points” (Fig. 4.10).

IHlSA

pip2 =1

Figure 4.9: Poles of a non-resonating 2-pole filter (w, = 1).

|H(jw)|,dB I I Y
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wCI/S wlc 8(:% Zu

Figure 4.10: Amplitude response of a non-resonating 2-pole low-
pass filter.

7Of course the same decomposition is formally possible for complex poles, but a 1-pole
filter with a complex pole cannot be implemented as a real system.
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Resonance redefined

The pole positions can give us another way of defining the point where we
consider the resonance to appear. Previously we have found that the resonance
peak appears at R < 1/v/2. However, the amplitude response peak is only one
manifestation of the resonance effect. Another aspect of resonance is that, as we
shall see later, the transient response of the filter contains sinusoidal oscillation,
which occurs whenever the poles are complex. Therefore, using the presence of
transient oscillations as the alternative definition of the resonance, we can say
that the resonance occurs when R < 1.

Similarly to R = 1/v/2, the threshold setting R = 1 has a special property.
At this setting both poles are located at s = —1 and the transfer function of the
2-pole lowpass becomes equal to the transfer function of two serially connected

1-pole lowpasses:
1 (1
s24+2s+1 \s+1

while the transfer function of the 2-pole highpass becomes equal to the transfer
function of two serially connected 1-pole highpasses:

52 s\’
2425+1 <s+1>
This means that at this value of R the (decibel-scale) amplitude responses of
the 2-pole lowpass and highpass are stretched vertically two times compared to

those of the 1-pole lowpass and highpass (Fig. 4.11), and the same holds for the
phase responses (Fig. 4.12).

|H(jw)|,dB 4
0
_6 =+
I
I
|
124+ |
|
I
I
S8+ !
wc/8 We 8wc w

Figure 4.11: Amplitude response of the 2-pole lowpass filter at
R =1 (solid line) compared to the amplitude response of the 1-
pole lowpass filter (dashed line).

Non-unit cutoff

If w. # 1 then the transfer function denominator becomes s? + 2Rw.s + w? (or
(s/we)? + 2Rs/w. + 1, if no simplifications are performed on the entire transfer
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arg H(jw) |

0_

—7/21

WC/S We 8wc

EV

Figure 4.12: Phase response of the 2-pole lowpass filter at R =
1 (solid line) compared to the amplitude response of the 1-pole
lowpass filter (dashed line).

function) and the formula for the poles becomes

we-(~R+VR2—1) if|R|>1
e (CREVEETT) - 4.9
P12 =we - ( VR - 1) {wc.(Rj:j\/W) if—léRél( )

The formula (4.9) can be obtained either by directly solving the quadratic equa-
tion or by noticing that the cutoff substitution s < s/w,. scales the poles ac-
cording to p < pw.. Complex poles are therefore located on the circle of radius
we (Fig. 4.13), while real poles have a geometric mean equal to w. (Fig. 4.14).
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Figure 4.13: Poles of a resonating 2-pole filter (w. # 1).
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Im s a
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Figure 4.14: Poles of a non-resonating 2-pole filter (w. # 1).

Transfer function in terms of poles

Writing the lowpass transfer funtion in terms of poles we have for w, = 1

1 1 1
HLP(S) = =

1

242Rs+1 s—p s—ps  S2— (p1+pa)s+1

and for an arbitrary w. respectively

2

Hup(s) = g = o

$2 4+ 2Rw.s +w? 52— (p1 +p2)s+ pip2

Respectively
—(p1 +p2) = 2Rw.
pip2 = wf

from where

We = /P1P2

po _Pitp2_ (p1tp)/2

2w, \/P1P2

In terms of w; = —p; and ws = —ps the same turns into

w1 +wa = 2ch

Wi = wf
and

We = y/W1W2

(4.10a)
(4.10Db)

(4.11a)

(4.11b)

(4.12a)



4.4. DIGITAL MODEL 109

2
p=witw  (ntw)/ (4.12b)

2w, J/wiwg
Notice that thereby w, is a geometric mean of the 1-pole cutoffs, and R is a
ratio of their arithmetic and geometric means. Equations (4.12) can be used to
represent a series of two 1-poles with given cutoffs by an SVF.2

Pole cutoff and damping

A pair of complex poles of an SVF must be a conjugate pair, therefore we have
[p1] = |p2|, Rep1 = Repy and Imp; = —Impy. The equations (4.10) in this
case turn into
—2Rep, = 2Rw
S, (n=12)

|pn| = We
These relationships motivate the introduction of the notion of the “associated
cutoff and damping” of an arbitrary pair of conjugate poles p and p*, where we
would have

—2Rep = 2Rw,
) ) (n=1,2)
p|® = w?
and
we = |p|
_ —Rep (TL: 1,2) (4.13)
|p|

(Fig. 4.13 can serve as an illustration).

This idea is particularly convenient, if we imply that a particular high-order
transfer function is to be implemented as a cascade of 2-poles (further discussed
in Section 8.2), in which case (4.13) gives us ready formulas for the computation
of the cutoff and damping of the respective 2-pole. Also, unless the high-order
transfer function is having coinciding complex poles, the separation of complex
poles into pairs of conjugate poles is unambiguous.

The same can be done for real poles, if desired, where we can use (4.11)
instead of (4.13) but this would work only under the restriction that both poles
are having the same sign (Fig. 4.14 can serve as an illustration).g Also the
grouping of such poles into pairs can be done in different ways.

Sometimes the same terminology is also convenient for zeros. Even though
formally it is not correct, since zeros are not directly associated with a cutoff or
damping, it is sometimes handy to treat a pair of zeros as roots of a polynomial
s2 + 2Rw.s + w?.

4.4 Digital model

Skipping the naive implementation, which the readers should be perfectly capa-
ble of creating and analyzing themselves by now, we proceed with the discussion
of the TPT model.

8 Apparently, (4.12) defines only the denominator of the SVF’s transfer function. The
numerator would need to be computed separately.

9 Apparently @) can be used all the time, regarless of whether the poles are complex
or real. It’s just that in case of complex poles we have simpler and more intuitive formulas
(4.13).
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Assuming g€+ s, instantaneous responses for the two trapezoidal integrators
one can redraw Fig. 4.1 to obtain the discrete-time model in Fig. 4.15.

—> yup[n] —> yep[n]
z[n] - e+ s | g6+ s | yLp[n]
2R
d=

Figure 4.15: TPT 2-pole multimode state-variable filter in the in-
stantaneous response form.

Picking yp as the zero-delay feedback equation’s unknown'® we obtain from

Fig. 4.15: B
yap = = — 2R(gynp + s1) — g(gynp + 51) — 52

from where
(1 +2Rg + 92) yup = T — 2Rs1 — gs1 — s2
from where
T — (2R +g)s1 — s2
1+ 2Rg + g2
Apparently (4.14) has the form (3.37), where the total instantaneous gain of

the zero-delay feedback loop in Fig. 4.15 is G = —(2Rg + ¢*) and thus the
instantaneously unstable case occurs when the denominator of (4.14) is negative.
However, as long as ¢ > 0 and R > —1, the denominator of (4.14) is always

positive:

142Rg+¢*>>1+2-(-1)-g+¢>=(1-¢)*>0

thus under these conditions the filter in not becoming instantaneously unstable.
Using ygp we can proceed defining the remaining signals in the structure,
in the same way as we did for the 1-pole in Section 3.9. Assuming that we are
using trasposed direct form II integrators (Fig. 3.11), s, are the states of the 2~
elements in the respective integrators and g = w.7T/2 (prewarped). Therefore
by precomputing the values 1/(1+2Rg+g?) and 2R+ g in advance, the formula
(4.14) can be computed in 2 subtractions and 2 multiplications. What remains
is the processing of both integrators. A transposed direct form II integrator
can be computed in 1 multiplication and 2 additons. Thus, the entire SVF
processing routine needs 4 multiplications and 6 additions/subtractions:

// perform one sample tick of the SVF
HP := (x-glxsl-s2)*d; // gl=2R+g, d=1/(1+2Rg+g~2)

10The state-variable filter has two feedback paths sharing a common path segment. In order
to obtain a single feedback equation rather than an equation system we should pick a signal
on this common path as the unknown variable.
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vl :
v2 :

vi+sl; si1 :
v2+s2; s2 :

BP+vl; // first integrator
LP+v2; // second integrator

gxHP; BP :
g*BP; LP :

If we are not interested in the highpass signal, we could obtain a more optimal
implementation by solving for ygp instead:

ysp = g(x — 2RyBp — gysP — S2) + S1

(1+2Rg + g°)ysp = g(x — 52) + 51
gz — s2) + s1

14+2Rg+g
This gives us:

// perform one sample tick of the SVF BP/LP

BP := (gx(x-s2)+sl1)*d; // d=1/(1+2Rg+g~2)

vl := BP-sl1; sl := BP+vl; // first integrator

v2 := g*BP; LP := v2+s2; s2 := LP+v2; // second integrator

This implementation has 3 multiplications and 6 additions/subtractions.
If we need only the BP signal, then we could further transform the expres-
sions used to update the integrators:

// perform one sample tick of the SVF BP
BP := (gx(x-s2)+sl1)*d; // d=1/(1+2Rg+g~2)
BP2 := BP+BP; sl := BP2-sl; // first integrator
v22 := gxBP2; s2 := s2+v22; // second integrator

That’s 3 multiplications and 5 additions/subtractions.

4.5 Normalized bandpass filter

By multiplying the bandpass filter’s output by 2R:

2Rs

Hepa(s) =28 (5) = 5o pe 1

(4.15)
we obtain a bandpass filter which has a unit gain (and zero phase response) at
the cutoff:
2Rj _1

J2H2Rj+1
For that reason this version of the 2-pole bandpass filter is referred to as a
unit-gain or normalized bandpass. Fig. 4.16 illustrates the amplitude response.

The normalized bandpass has a better defined passband than the ordinary
bandpass, since here we can define the frequency range where |Hpp; (jw)| ~ 1 as
the passband. Notably, in Fig. 4.16 one observes that the width of the passband
grows with R. At the same time from Fig. 4.6 one can notice that the width
of the band where the bandpass phase response is close to zero also grows with
R. Thus, the phase response of the normalized bandpass filter is close to zero
in the entire passband of the filter, regardless of R.!!

Hgpi1(j) =

1 This can be confirmed in a more rigorous manner by the fact (which we establish in
Section 4.6) that the frequency response of the 2-pole normalized bandpass filter can be
obtained from the frequency response of the 1-pole lowpass filter by a frequency axis mapping.
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\H(jw)|,dB A |
R=5 | R=01
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N
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Figure 4.16: Amplitude response of a 2-pole unit gain bandpass
filter.

Rewriting (4.4) in terms of the normalized bandpass we get
Hyp(s) + Hgpi(s) + Hup(s) = 1

that is
x(t) = yrp(t) +yspi(t) + yup(t)

Topology

Notice that the unit gain bandpass signal can be directly picked up at the output
of the 2R gain element as shown in Fig. 4.17.

—oe(t) el
(0 [ T )
ig 2R
N

D=

yBp1(t)

Figure 4.17: State-variable filter with a normalized bandpass out-
put.

If the damping parameter is to be modulated at high rate, rather than
multiplying the bandpass output by 2R, it might be better to multiply the
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filter’s input by 2R:

*)l>—> HBP(S)

2R

The reasoning is pretty much the same as for positioning the cutoff gains before
the integrators or for preferring the transposed (multi-input) filters for modal
mixing: we let the integrator smooth the jumps or quick changes in the signal.
This will be given for granted if we use the transposed version of Fig. 4.17.

Instead of using the transposed version, we could inject the input signal into
the Fig. 4.17 filter structure as shown in Fig. 4.18. However, by multplying
the input rather than the output by 2R we have not only changed the “BP”
output signal to normalized bandpass, we have also changed the amplitudes of
the LP and HP outputs. Notably, Fig. 4.18 is essentially the transposed version
of Fig. 4.17, except for the relative placement of the second integrator and an
invertor.

— yBpr1(t)

(1) @

2R

<

Figure 4.18: Normalized bandpass state-variable filter with pre-
filter 2R gain.

Prewarping

The standard application of the bilinear transform prewarping technique implies
that we want the cutoff point to be positioned exactly at w. on the digital
frequency axis. However with the normalized bandpass filter the positioning
of the left and right transition band slopes is more important than the exact
positioning of the cutoff. At the same time, the damping parameter doesn’t
seem to have much (or any) vertical effect on the amplitude response, mainly
controlling the distance between the slopes. Thus we have two degrees of control
freedom (the cutoff and the damping) which we could attempt to use to position
the two slopes as exactly as possible. Instead of developing the corresponding
math just for the normalized bandpass filter, though, we are going to do this in
a more general manner in Section 4.6.
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4.6 LP to BP/BS substitutions

The 2-pole unit gain bandpass response can be obtained from the lowpass re-
sponse 1/(1+ s) by the so-called LP to BP (lowpass to bandpass) substitution:

1 s+st

§— —-

R 2

We will also occasionally refer to the LP to BP substitution as the LP to BP
transformation, making no particular disctinction between both terms.

Since s and 1/s are used symmetrically within the right-hand side of (4.16),
it immediately follows that the result of the substitution is invariant relative
to the LP to HP substitution s « 1/s. Therefore the result of the LP to BP
substitution has an amplitude response which is symmetric in the logarithmic
frequency scale.

Using s = jw, we obtain

(4.16)

. 1 jw+1/jw
TR
or
1 w—w?
CeRTTT

(4.17)

Instead of trying to understand the mapping of w to w’ it is easier to understand
the inverse mapping from w’ to w, as explicitly specified by (4.17). Furthermore,
it is more illustrative to express w’ in the logarithmic scale:

’

1 elnw _ e—lnw/

w:E~f:§sinhlnw’ ifw>0
1 Injw'| _ ,—In|w| 1
w:fﬁ~%:f§sinhln|w’| ifw<0
Thus 1
W=z sinh (sgnw’ - In |w']) (4.18)

Since In |w’| takes up the entire real range of values in each of the cases w > 0
and w < 0 and respectively, so does sinh(sgnw’ - In [w']),

W €(0,+00) <= w € (—o0,+00)
W € (—00,0) <<= weE (—00,+00)
This means that the entire range w € (—o0,400) is mapped once onto the
positive frequencies w’ and once onto the negative frequencies w’. Furthermore,
the mapping and its inverse are strictly increasing on each of the two segments
w >0 and w < 0, since dw/dw’ > 0. The unit frequencies w’ = +1 are mapped
from w = 0.

Since we are often dealing with unit-cutoff transfer functions (w. = 1), it’s
interesting to see to which frequencies w/, the unit cutoff is mapped. Recalling
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that the entire bipolar range of w is mapped to the positive range of w’, we need
to include the negative cutoff point (w. = —1) into our transformation. On the
other hand, we are interested only in positive w’, since the negative-frequency

range of the amplitude response is symmetric to the positive-frequency range
anyway. Under these reservations, from (4.18) we have:

1
= sinhlnwé =41

from where Inw!, = + sinh ™! R, or, changing the logarithm base:

sinh™' R

log, w!, = + 05

Note that the above immediately implies that the two points w/, are located at
mutually reciprocal positions.

The distance in octaves between the two w! points can be defined as the
bandwidth of the transformation:

2 . _1
A= m sinh R (419)

Since the points w’. are mutually reciprocal, they are located at +A/2 octaves
from w = 1.
Inverting (4.19) we can obtain the damping, given the bandwidth A:

A-In2  28/2_274/2
B 2

R = sinh (4.20)

Frequency axis warping and parameter prewarping

An important consequence of the fact that the LP to BP substitution can be
seen as a mapping of the w axis is that the only effect of the variation of the R
parameter is the warping of the frequency axis. This means that (like in the bi-
linear transform) the amplitude and phase responses are warped identically and
the relationship between amplitude and phase responses is therefore preserved
across the entire range of w.

If LP to BP substitution is involved, the resulting frequency response has
two points of interest which are the images w] of the original point at wy = 1,
which often is the cutoff point of the original frequency response.!? Given a
digital implementation of such LP to BP substitution’s result, we can prewarp
the R parameter of the substitution in such a way that the distance between the
w} points in the digital frequency response is identical to the distance between
those in analog frequency response.

Indeed, given the original value of R, we can use (4.19) to compute the
distance A between the w{ points. We know that the points are positioned
at A /2 octaves from w = 1, or, if the substitution result has its own cutoff
parameter, from w.. That is

Wy = w, - 2TA/2

12We are using w; and w instead of previously used w/ and w. notation for the respective
point, since we are going to need w. to denote the substitution result’s cutoff.
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So, these are the frequencies at which the unit frequency’s image points would
be normally located on an analog filter’s response and where we want them to
be located on the digital filter’s response. If w] are the points on the digital
frequency response, then by (3.10) the corresponding analog points should be

located at
3 = plwh) = i (we - 2472)

At unit cutoff @, the points & would have been mutually reciprocal. If the
cutoff is not unity, then it must be equal to the geometric mean of @j:

Do = \/,u (we - 28/2) - pi (we - 278/2)
while the bandwidth is simply the logarithm of the ratio of @}:

w2
A = log, u (wc ) 27A/2)

Given A, we obtain R from (4.20).

So, we have obtained the prewarped parameters @, and R, which can be used
to control a bilinear transform-based digital implementation of an LP to BP
substitution’s result, thereby ensuring the correct positioning of the wj points.
Particularly, treating the normalized bandpass filter as the result of LP to BP
substitution’s application to a 1-pole lowpass 1/(1 + s), we could prewarp the
bandpass filter’s parameters to have exact positioning of the —3dB points on
the left and right slopes (since these are the images of the 1-pole lowpass’s unit
cutoff point).

In principle, any other two points could have been chosen as prewarping
points, where the math is much easier if these two points are located symmet-
rically relatively to the cutoff in the logarithm frequency scale. We will not go
into further detail of this, as the basic ideas of deriving the respective equations
are exactly the same.

Poles and stability

The transformation of the poles and zeros by the LP to BP transformation can
be obtained from
S, +Sl71

1
= 4.21
7 T3 (4.21)

S =

resulting in
s’ =Rs+VR?s2 -1

Regarding the stability preservation consider that the sum (s’ + 1/s') in
(4.21) is located in the same complex semiplane (left or right) as s’. Therefore,
as long as R > 0, the original value s is located in the same semiplane as its
images s’. which implies that the stability is preserved. On the other hand,
negative values of R “flip” the stability.

Topological LP to BP substitution

As for performing the LP to BP substitution in a block diagram, differently from
the LP to HP substitution, here we don’t need differentiators. The substitution
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can be performed by replacing all (unit-cutoff) integrators in the system with
the structure in Fig. 4.19, thereby substituting 2Rs/(s®> + 1) for 1/s, which is
algebraically equivalent to (4.16 E

2R

J]
J]

Figure 4.19: “LP to BP” integrator.

LP to BS substitution

The LP to BS (lowpass to bandstop) substitutionﬁ is obtained as a series of
LP to HP substitution followed by an LP to BP substitution. Indeed, applying
the LP to BP substitution to a 1-pole highpass, we obtain the 2-pole notch
(“bandstop”) filter. Therefore, applying a series of LP to HP and LP to BP
substitutions to a 1-pole lowpass we also obtain the 2-pole notch filter.
Combining the LP to HP and LP to BP substitutions expressions in the
mentioned order gives an algebraic expression for the LP to BS substitution:
1 s+st

-t (4.22)

1

S
The bandwidth considerations of the LP to BS substitution are pretty much
equivalent to those of LP to BP substitution and can be obtained by considering
the LP to BS substitution as an LP to BP substitution applied to a result of
the LP to HP substitution.

The block-diagram form of the LP to BS substitution can be obtained by
directly implementing the right-hand expression in (4.22) as a replacement for
the integrators. This however requires a differentiator for the implementation
of the s term of the sum.

4.7 Further filter types

By mixing the lowpass, bandpass and highpass outputs one can obtain further
filter types. We are now going to discuss some of them.

Often it will be convenient to also include the input signal and the normalized
bandpass signal into the set of the mixing sources. Apparently this doesn’t
bring any new possibilities in terms of the obtained transfer functions, since the
input signal can be obtained as a linear combination of LP, BP and HP signals.
However the mixing coefficients might look simpler in certain cases. One can

3For a differentiator, a similar substitution structure (containing an integrator and a dif-
ferentiator) is trivially obtained from the right-hand side of (4.16).

14 Notice that BS here stands for “bandstop” and not for “band-shelving”. The alternative
name for the substitution could have been “LP to notch”, but “LP to bandstop” seems to be
commonly used, so we’ll stick to that one.
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also go further and consider using different topologies implementing a given 2-
pole transfer function. Such topologies could differ not only in which specific
signals are mixed, but also whether certain mixing coefficients are used at the
input or at the output, whether transposed or non-transposed SVF is being
used, etc. We won’t go here into addressing this kind of detail, however the
discussion of the topological aspects of the normalized bandpass in Section 4.5
could serve as an example.

Band-shelving filter

By adding/subtracting the unit gain bandpass signal to/from the input signal
one obtains the band-shelving filter (Fig. 4.20):

2RKs
s2+2Rs+1

As with 1-pole shelving we can also specify the shelving boost in decibel:

Gap = 20log;o(K +1)

HBs(S) =1+K- HBPl(S) =1+ QRKHBP(S) =1+

[H(jw)l,dB 4 !

+12 1

+6 1

-12 +

-18 +

|
wc/8 We 8(4-)(:

v

Figure 4.20: Amplitude response of a 2-pole band-shelving filter
for R =1 and varying K.

The immediately noticeable problem in Fig. 4.20 is that the bandwidth of
the filter varies with the shelving boost K. A way to address this issue will be
described in Chapter 10.

Low- and high-shelving filters

Attempting to obtain 2-pole low- and high-shelving filters in a straightforward
fashion:

Hys(s) =1+ K-Hip(s)  Hus(s)=1+ K- Hup(s)



4.7. FURTHER FILTER TYPES 119

we notice that the amplitude responses of such filters have a strange dip (for
K > 0) or peak (for K < 0) even at a non-resonating setting of R = 1 (Fig. 4.21).
This peak/dip is due to a steeper phase response curve of the 2-pole lowpass
and highpass filters compared to 1-poles. A way to build 2-pole low- and high-
shelving filters, which do not have this problem, is described in Chapter 10.

|H(jw)|,dB , !
|
+6 i
i
|
0 |
|
i
|
-6+ 1
|
|
i
-12 I
i
|
|
-18 + :
wC/S We 8wc w
Figure 4.21: Amplitude response of a naive 2-pole low-shelving
filter for R = 1 and varying K.
Notch filter
At K = —1 the band-shelving filter turns into a notch (or bandstop) filter
(Fig. 4.22):
s2+1
H; =1-H, =1-2RH =
n(s) BP1(s) RHgpp(s) = 5 5p7
Allpass filter
At K = —2 the band-shelving filter turns into an allpass filter (Fig. 4.23):
52 —2Rs+1
=1- =1-4 il M .
HAP(S) 2HBP1(S) RHBP(S) 32 T oRs+ 1 (4 23)

It is not difficult to show that for purely imaginary s the absolute magin-
tudes of the transfer function’s numerator and denominator are equal and thus
|[Hap(jw)| = 1.

We could also notice that the phase respose of the 2-pole allpass is simply
the doubled 2-pole lowpass phase response:

1 —2Rjw — w?
rg——————— =

14+ 2Rjw — w?
= arg(l — 2Rjw — w?) — arg(1l + 2Rjw — w?) =

arg Hap(jw) = a
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|H (jw)| »

0.5

R=5

0 f
wc/8 We 8"‘)6
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Figure 4.22: Amplitude response of a 2-pole notch filter. The
amplitude scale is linear.

arg H(jw) a

I!
I
I
R=5 !
|
I

—27

wc/8 We ch w
Figure 4.23: Phase response of a 2-pole allpass filter.
= —2arg(1l + 2Rjw — w?) = 2arg Hyp(jw) (4.24)

Thus the allpass phase response has the same symmetry around the cutoff point

and the damping parameter has a similar effect on the phase response slope.
At R > 1 the 2-pole allpass can be decomposed into the product of 1-pole

allpasses:

S — Wi sfw27wlfs w2 — 8§

S+ wq . S + wo - wl—&-s'wg—i—s

HAP(S) =

where w,, = —p,. At R = 1 we have w; = wy = 1 and the filter turns into the

squared 1-pole allpass:
2 2
s—1 1-—s
H = =
ar(s) (s—i—l) (1—|—s>
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Peaking filter

By subtracting the highpass signal from the lowpass signal (or also vice versa)
we obtain the peaking filter (Fig. 4.24):

2

1—s
s24+2Rs+1

HpK(S) = HLP(S) — HHP(S) =

|H(JW)|7 ab ,

+12 4

v

wc/8 We 8(*)6 w
Figure 4.24: Amplitude response of a 2-pole peaking filter.

The peaking filter is a special kind of bandshelving filter. However, as one
can see from Fig. 4.24, the bandwidth of the filter varies drastically with R,
which often may be undesired. A “properly built” bandshelving filter allows to
avoid this problem. This topic is further discussed in Chapter 10.

Arbitrary 2-pole transfer functions

It’s easy to see that the state-variable filter can be used to implement any 2nd-
order stable differential filter. Indeed, consider the generic 2nd-order transfer
function ,
b28 + b1$ + bo
H(s) = <
s+ ai1s+ag

where we assume ag > 0.5 Then

His) bas? + bys + by bys? 4+ bys + by
s) = - _
52 4 22,aﬁ1ao Jaos +/ag® 80T 2hwes + Wl

151f ag = 0, this means that either one or both of the poles of H(s) are at s = 0. If ag < 0
this means that we are having two real poles of opposite signs. Both situations correspond to
pretty exotic unstable cases.
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_p 52 b1 WeS bo w? _

T P24 2Rwes +w? | we 52+ 2Rwes+w? | w? $2+2Rwes +w?
b b

= by Hpp(s) + jHBP(S) + JZHLP(S)

where we introduced w. = \/ag and R = a1 /w..

4.8 Transient response

In the transient response analysis of the state-variable filter we will concentrate
on the lowpass output. The bandpass and highpass can be obtained from the

lowpass using (4.1):

YBP = YLP/We (4.25a)
yup = UBp/we = fiLp/w; (4.25Db)

Using (4.10) we rewrite (4.3) in terms of poles, obtaining

§— (p1+ p2)y + p1p2 = p1p2x (4.26)

where y = yp. Let!S

up =Y = p2y (4.27a)

uz =Y —p1y (4.27b)
Therefore

U =Y — p2y

Uz =Y —p1y
and

(U 4 t2) — (prur + pauz) = (2§ — (p1 + p2)Y) — ((p1 + P2)y — 2p1p2y) =
= 2§ — 2(p1 + p)2)y + 2p1p2y (4.28)

Noticing that the last expression is simply the doubled left-hand side of (4.26)
we obtain an equivalent form of (4.26):

(i1 + 02) — (prur + pauz) = 2p1pax (4.29)

Splitting the latter in two halves we have:
111 — P1U1 = p1p2x (430&)
Uy — pauy = P1P2& (4.30b)

Adding both equations (4.30) back together, we obtain (4.29), which is equiva-
lent to (4.26). This means that if u; and wuy are solutions of (4.30) then using
(4.27) we can find y from u; and wus, which will be the solution of (4.26).

16The substitution (4.27) can be obtained, knowing in advance the transient response form
y = C1eP1t + CyeP2t and expressing ePnt via y and 7. Alternatively, it can be found by
diagonalizing the state-space form.



4.8. TRANSIENT RESPONSE 123

Now, each of the equations (4.30) is a Jordan 1-pole with input signal p; pax.
Applying (2.22) we obtain

t
un<t>::7hzanepnt+fp1p2jf e Ia(r)dr  (n=1,2)
0

or, for z(t) = X (s)e*, we have from (2.23):
Un (t) = Hp(s)x(t) + (un(0) — Hy(5)2(0)) P! = ugn (t) + wpn (t) (4.31)

where ip
1P2
Hp(s) = ——
§—DPn
and where wug,(t) and wuy,(t) denote the steady-state and transient response
parts of u,(t) respectively. Expressing y via u,, from (4.27) we have
U1 — U2

y= (4.32)
P1— P2

For the steady-state response we therefore obtain from (4.31):

Ug1 — Ug2 _ Hl(S) — HQ(S)

ys(t) = z(t) = H(s)x(t
() P1 — D2 P1— D2 ®) (8)a(?)
where
pip2 _ ppa
His) = Hi(s) = Ha(s) _ s—p1 s—ps _
pP1 — P2 pP1— P2
_ _Pip2 (s—p2) —(s—m) _
p1—p2 8% — (p1 +p2)s + pipes
P1P2 w?

= 4.33
s2 — (p1 + p2)s + p1pas $2 4+ 2Rw, + w? ( )

is the familiar 2-pole lowpass transfer function. The steady-state response y,(t)
is therefore having the same form H(s)xz(t) for a complex exponential z(t) =
X (s)e®t as in case of the 1-pole filter. For signals of general form we respectively
obtain the same formula (2.20a) as for 1-poles.

For the transient response we have

= = -
_ 9(0) = p2y(0) = Hi(s)2(0) e 9(0) = p1y(0) = Ha(s)x(0) e _
P1— P2 P1— P2
_ 9(0) = p2(y(0) = Gr(8)2(0) e 9(0) —pr(y(0) — Ca(9)2(0)) e
pP1— P2 P1— P2

(4.34)

where we introduce the ordinary (except that p,, may be complex) 1-pole lowpass
transfer functions
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Provided Rep;2 < 0 we are having a sum of two exponentially decaying
terms. Since y(0) = y5(0) + y(0), the initial value of this sum is y(0) =
y(0) — ys(0), the same as in the 1-pole case, so we’re having an exponentially
decaying discrepancy between the output signal and the steady-state response.
However the decaying is now being “distributed” between two exponents eP?
and eP2!. Also notice that while in the 1-pole case the decaying was only affected
by the initial state y(0), in the 2-pole case y(0) is also a part of the initial state
and therefore also affects the decaying shape. Apparently, y(0) is the state of
the second (“lowpass”) integrator of the SVF, while, according to (4.25a), y(0)
is essentially the state of the first (“bandpass”) integrator.

At Repj 2 > 0 the transient response grows infinitely and the filter explodes.

Steady-state response

In regards to the choice of the steady-state response, there is a similar ambiguity
arising out of evaluating the inverse Laplace transform of H(s)X (s) to the left
or to the right of the poles of H(s). We won’t specifically go into the analysis
of this situation for the real poles occurring in the case |R| > 1. Complex poles
occurring in the case |R| < 1 deserve some specical attention.

Apparently Rep; = Reps in this case, and we wish to know how much does
the inverse Laplace transform change when we switch the integration path from
Re s < Rep, to Res > Rep,. By the residue theorem this change will be equal
to the sum of the residues of H(s)X(s)e* at s = p; and s = p, respectively,
which is

Res H(s)X (s)e® + Res H(s)X(s)e*" = bz (X (p1)eP*t — X (p2)eP?")
s=p1 s=p2 p1— D2
(4.35)

(where we have used (4.33)). That is we are again obtaining the terms which
already exist in the transient response and the integration path choice only
affects the amplitudes of the transient response partials, as long as we are staying
within the region of convergence of X (s).

The case of coinciding poles requires a separate analysis which can be done
as a limiting case R — +1. The respective discussion is occurring later in this
section. Even though we don’t specifically address the question of evaluation of
the inverse Laplace transform in the steady-state response there, it should be
clear what the principles would be.

Continuity

Since the input signal of an SVF passes through two integrators on the way to
the lowpass output, the lowpass signal should not only always be continuous but
should also always have a continuous 1st derivative. Therefore the appearance
of §(0) besides y(0) in the transient response expression must have somehow
taken care of that. Let’s verify that this is indeed the case.

Evaluating (4.34) at t = 0 using we obtain

9(0) — p2y(0) — Hi(s)z(0) ~ (0) — p1y(0) — Hy(s)z(0) _
P1 — P2 P1— P2

- =) o)~ y0) - H(s)2(0) = 9(0) — 4.(0)
P1 — P2

yt(O) =
= y(0)
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where we have used (4.33). Evaluating the derivative of (4.34) at t = 0 we
obtain

9(0) — p2y(0) — Hi(s)z(0) 9(0) — p1y(0) — Ha(s)z(0)

yt(o):pl — D2 =
P1 — P2 b1 — P2
. —p1H1(s) + p2Hso(s
_y(0)+ P1 1( ) P2 2( ) p1p2x(0) —
P1— P2
—h1 P2
=(0) + S—pP1 S—DP2 - p1pox(0) =
P1 — P2
. (=p1)(s — p2) — (—p2)(s — p1) P1P2
=y(0) + : z(0) =
©) P1— D2 (s —=p1)(s —p2) ©
2
. pip2 - S . w*s
= 4(0) — 0) =5(0) — ———"_2(0) =
5(0) 52— (p1 +p2)8+p1pzz( ) =900) 32—1—2ch+ng( )
2
w
=0 - ——— . sX st = ¢(0) — 75(0
10~ g o X0 =00 —in(0)

which confirms our expectations.

Complex vs. real poles
If p1,2 are complex we have

epnt tRepn

=e - (cos(tIm py,) + jsin(tImpy,))

The mutual conjugate property of poles will ensure that the two terms of (4.34)
are mutually conjugate as well, therefore the addition result is purely real and
has the form

t Rep1

y(t)=a-e ccos (|Impy| -t + ) =

=a-eeP2 . cos(|Tmpy| -t + ) =

=a-e ™t cos (wcx/l —R?2-t+ ap) (4.36)

The transient response therefore is a sinusoidal oscillation of frequency |Im p,|
decaying (or exploding) as e’ ®eP». Fig. 4.25 illustrates.

For purely real poles the transient response contains just two real exponents
of the form eP~?, thereby having no oscillations. However, it can still contain

one “swing” at certain combinations of the amplitudes of the transient partials
ePrt and eP?! (Fig. 4.26).

Strong resonance case

The decay speed of the transient response oscillation (4.36) gets slower as R
decreases, which leads to an increased perceived duration of the transient in
the output signal. Therefore at high resonance settings a transient in the input
signal will produce audible ringing at resonance frequency, even if the steady-
state signal doesn’t contain it.
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Yt (t) I} -

y(0)—ys(0) ~

Figure 4.25: Transient response of a resonating 2-pole lowpass filter
(dashed line depicts the unstable case).

Ye(t) &

y(0)—ys(0)

)
.

Figure 4.26: Transient response of a non-resonating 1-pole lowpass
filter (for the case of a single zero-crossing).

A pretty characteristic and easy to analyse case occurs if we suddenly switch
off the filter’s input signal. At this moment the steady-state response instanta-
neously turns to zero and (4.34) turns into

9(0) =p2y(0) =~ e 9(0) =p1y(0) i

plt) = £ S ot DS o
P1— P2 P1— P2
_ 90 —piy(0)  pe  90) —p1y(0) e _
27 Im p; 275 Impy

_ 90 =piy(0) e 90) = p1y(0)

2jImp, 2j* Im py
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— 92Re (Memt> e (Mem>

Therefore
§(0) — piy(0) .
t) = yslt t) = 0+ y(t) = Re [ Tt L0 2 em
y(0) = 0206+ ) = 0+ (1) = e (LD

Unless both y(0) = 0 and ¢(0) = 0, the signal y(¢) will have a non-zero ampli-
tude and according to (4.36) we are having a sinusoid of frequency w.v'1 — R?
decaying as e~ fiwet,

The opposite situation of a signal being turned on is a kind of a dual case
of turning a signal off. Indeed, let x¢(t) be some infinitlely long (that is t €
(—00,00)) steady input signal and let yo(t) be the respective output signal.
Assuming that the filter is stable and that the initial time moment was at
t = —o0, by any finite time moment ¢ the transient response component of yq(t)
has decayed to zero, and yo(t) consists solely of the steady-state response. Let

zo(t) ift<0
w)_{o() i
0 ift>0

be another infinitely long signal decribing the case of the signal xo(t) being
turned off and let y; () be the respective output signal. The signal x;(t) contains
a transient at ¢ = 0, thus y; (¢) contains a non-zero transient response component
for t > 0. The case of z((t) being turned on is respectively described by

0 ift <0

2o(t) = xo(t) — x1(t) = {xo(t) ift>0

and we let y2(t) denote the corresponding output signal. Since the system is
linear, the output signals are related in the same way as the input signals:

ya(t) = yo(t) — y1(t)

However yo(t) doesn’t contain any transient response, therefore the only tran-
sient response present in yo(t) is coming from y;(¢), simply having the opposite
sign.

The effect of the transient response is particularly remarkable if the input
signal is a sinusoid of the same frequency w.v'1 — R? as the transient response.
First considering the case of turning such sinusoid off we take

xo(t) = ain cos(weV'1 — R? -t + ¢in)

zo(t) ift<0
xl(t)_{o() i
0 ift>0

We must have the same sinusoid at the output:

Yo(t) = aous cos(wev/1 — RZ - t + Qout)

() = Aout €08(wev'1 — R? -t 4 vout) ift<0
= age” vt L cos(wev/1— RZ -t + ;) ift >0
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where the transient response’s amplitude and phase a; and ¢; may differ from
the steady-state response’s aoyy and @oyt due to the additional factor e~ Fwet
appearing in the signal. However from the requirement of continuity of y;(t)
and 71 (¢) at t = 0 we may conclude that a; — aous and ¢ — @out for R — 0.

Now let’s consider the case of turning the signal on. We let xo(t) = zo(t) —
x1(t). Since we already know that y2(t) = 0 for ¢ < 0, we are interested only in
y2(t) for t > 0 where we have

Y2(t) = yo(t) — w1 (t) =

= Qout 08(We V' 1 — R2 -t + pour) — aze” " cos(wev/1 — R2 -t + ;)

Since at R ~ 0 we have a; = aout and @y = @out, we may in this case rewrite
the above as

Yo (t) = (1 — e Bt L gy cos(wev/1 — R2 -t + pout) (R=~0)

That is the sinusoid in the output signal is exponentially fading in as 1 —e
Effectively the transient response is suppressing the steady state signal in the
beginning and then slowly lets it fade in (Fig. 4.27).

—Rw,t

y(t) &

Figure 4.27: Initial suppression of the steady-state signal at w =
weV'1 — R? by the transient response.

Selfoscillation

At R = 0 the transient response oscillates at a constant amplitude, the frequency
of the oscillation being w, and coinciding with the infinitely high peak of the
amplitude response. Thus, if in the absence of the input signal the system
is somehow in a non-zero state, it will stay in this state forever, producing a
sinusoid of frequency w.. Such state of oscillating without an input signal is
referred to as selfoscillation.

At R < 0 the transient response turns into an infinitely growing signal,
while the oscillation frequency becomes lower than w,. according to (4.36). In
nonlinear filters at —1 < R < 0 the growing amplitude of the oscillating transient
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response will be limited by the saturation, which thereby prevents the filter
from exploding. In either case, apparently it is the transient response which is
responsible for the selfoscillation of the filter.

We can therefore refer to —1 < R < 0 as the selfoscillation range of the
filter. The boundary R = 0 at which the selfoscillation appears may be referred
to as selfoscillation point.z

At the selfoscillation point the poles of the system are located right on the
imaginary axis and we can “hit” them with an input sinusoidal signal of fre-
quency w.. Since H(+jw.) = oo, the steady-state response H(s)X(s)e** be-
comes infinite too and we need a different choice of the steady-state response
signal.

A real sinusoidal signal of frequency w. consists of two complex sinusoidal
signals of frequencies +w.. Each of these two signals hits the respective complex
pole of the system at p; 2 = £jw.. As we should recall from the discussion in
Section 2.15, when a system pole p is hit by an input e”’, the output of the
system consists of a linear combination of partials e”* and teP!, where we cannot
unambigously select the steady-state response part. From two conjugate poles
p1 and py we'll get a linear combination of eP'! and teP'! and another one of
eP2? and teP2!. After these signals are further combined by (4.32) we'll get a
real signal of the form

y(t) = ay - cos(wet + 1) + ag - t cos(wt + @2)

Thus, the output signal is a sinusoid of frequency w,. with the amplitude asymp-
totically growing as a linear function of time.'® Clearly, this is a marginal case
between the sinusoidal output stabilizing with time if R > 0, as e.g. shown in
Fig. 4.27, and exponentially exploding if R < 0.

Coinciding poles

A special situation occurs if R = £+1 and thus p; = p2. The denominator p; —ps
therefore turns to zero, but we can treat this as a limiting case of R — +1. Let
p1,2 =p =+ A (where p1 2 — p and A — 0). Noticing that

— GQ(S) — —
S§—p §—p

we can replace G, (s) in (4.34) with —p/(s — p) before taking the limit:
9(0) = p2(y(0) — F5(0)) 9(0) = p1(y(0) — F5(0))

Gl(S) —

u(t) = et — et =
P1 — D2 b1 — D2
) eP1t _ opat —p _p26p1t —|—p1€p2t
=y0) ———+ (y(O) — x(O)) e (4.37)
P1— P2 s—p P1— P2

In the first term of (4.37) we have

eplt _ epgt eAt _ e—At .
— ,ep —

pL—p2 2A B

17The other boundary R = —1 is hardly ever being reached, therefore we won’t introduce a,
special name for it.

18Notice that as the ratio of the amplitudes of the two sinusoids changes, the phase of their
sum (which in principle is a sinusoid of the same frequency but of a different amplitude and
phase) will slightly drift.
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At A 1Pt — sinh At
o 2A¢ B

and in the second term respectively

(p—D)ed + (p+ A)e”

tePt — teP?! (A —0)

_p2ep1t +p1€p2t B

= _ . ept =
P1— D2 2A
At _ At At | At
inh At
= —psmAt - teP' 4+ cosh At - eP' — —pteP" + P! (A —0)

and (4.37) at A =0 can be rewritten as

w0 =3(0)- 1+ (30) - -

= (40 - ) e+ (50 -5+ (50 - Za0)) ) -1

—-Pp Pty oty
px(0)>~(—pt6 +ef”)

§—p §—=D

Thus, in the case of p; = py the terms contained in the transient response are
having the form eP? or teP?.

The change (4.35) in the inverse Laplace transform in the steady-state re-
sponse as we take the integral to the left or to the right of the poles of H(s)
respectively becomes

Res H(s)X(s)e + Res H(s)X(s)e*' ~
s=p+A s=p—A

2

~ P (p+A)t _ A=A
o (X +2)e X(p— A)elr=2))

2A
X W+ X (p)ter” + X' (p)e?” + X (p)te”
2
=p* (X'(p)e? + X (p)te’) (A —0)

where we have used I'Hopital’s rule.!® Thus, the change is again solely in the
amplitudes of the transient response partials.

It is important to realize that the different form of the transient response
components at R = +1 doesn’t imply that the filter behavior is abruptly
switched at this point. The switching of the mathematical expression is solely
due to the limitations of the mathematical notation, but doesn’t correspond to
a jump in any of the signals.

The same result could have been obtained formally by introducing the helper
variables u; and us differently:?

up =19y — py

9More rigorously speaking, we have used I'Hépital’s rule as a short way to express the
following: we expand X (p £ A) and e(PEA)t into Taylor series with respect to A, followed by
expanding the respective products and cancelling the terms containing A with the denomi-
nator. One also could expand just X (p + A) into Taylor series with respect to A and then
convert e(PE2)t into sinh and cosh in the same way as in the transient response derivation.
20T his corresponds to using Jordan normal form in the state space representation.
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U =Y
(where p = p; = po) thereby obtaining the equations

. 2
Uy —puy =pr

Uy — pug = Uy

which can be solved using 1-pole techniques. Since us is the input signal for u,
we have a serial connection of 1-poles, building up a Jordan chain. As we should
remember from the discussion of Jordan chains in Section 2.15, the transient
response will consist of the partials of the form e?! and teP*. However, due to a
completely different substitution of variables, we wouldn’t have known, whether
the output is changing in a continuous way as R crosses the point R = 1. On
the other hand, obtaining the result as a limiting case, as we did earlier, gives
an answer to that question.

Bandpass and highpass

Notice that (4.25) can be applied separately to steady-state and transient re-
sponses (in the sense that the results will still give correct separation of the
signal into the steady-state and transient parts). Indeed, e.g. applying (4.25a)
to a complex exponential yi,p = Y (s)e*" we obtain

ULp/we = sY (8)e Jw, = yLp - 8/we

which matches Hpp(s) = s/w. - Hpp(s). Therefore yrp/w., when applied to a
lowpass steady-state response yr,ps(t), will give bandpass steady-state response,
etc.

This means that the transient response for the bandpass and highpass signals
can be obtained by differentiating the lowpass transient response according to
(4.25), resulting in a sum of the same kind of exponential terms eP1t and eP2! (or
eP! and teP! in case p; = pa). We won’t write the resulting expressions explicitly
here.

SUMMARY

The state-variable filter has the structure shown in Fig. 4.1. Contrarily to the
ladder filter, the resonance strength in the SVF is controlled by controlling the
damping signal. The multimode outputs have the transfer functions

2

S
e () = o oRs 4 1

S
Hep(s) = s24+2Rs+1

1
Hvp(s) = s2+2Rs+1

and can be combined to build further filter types.
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Chapter 5

Ladder filter

In this chapter we are going to discuss the most classical analog filter model:
the transistor ladder filter. The main idea of this structure, which is to create
resonance by means of a feedback loop, is encountered in many other filter
designs, some of which we are also going to discuss. We will be referring to the
class of such filters as simply ladder filters.:

5.1 Analog model

The most classical example of a ladder filter is transistor ladder filter, which
implements a 4-pole lowpass structure shown in Fig. Qi The structure in
Fig. 5.1 is not limited to transistor-based analog implementations. Particularly,
there are many implementations of the same structure based on OTAs (oper-
ational transconductance amplifiers). The difference between transistor- and
OTA-based ladders is, however, lying in the nonlinear behavior, which we are
not touching at this point yet. The linear aspects of both are identical.

The LP; blocks denote four identical (same cutoff) 1-pole lowpass filters
(Fig. 2.2). The k coefficient controls the amount of negative feedback, which
creates resonance in the filter. Typically k£ > 0, although k& < 0 is also sometimes
used.

(1) LP, F LP, P LP, P LP, ’—»—> y(t)

k

g
T

Figure 5.1: Transistor (4-pole lowpass) ladder filter.

LQuite unfortunately, there is already another class of filter structures commonly referred
to as “ladder filters”. Fortunately, this class is not so widely encountered in the synth filter
context, on the other hand “transistor ladder” is also a commonly used term. Therefore we’ll
stick with using the term “ladder filters” for the flters based on a resonating feedback loop.

2A widely known piece of work describing this linear model is Analyzing the Moog VCF
with considerations for digital implementation by T.Stilson and J.Smith.

133
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Let
1

1 + s
be the 1-pole lowpass transfer function. Assuming complex exponential x and
Yy we write

Hl(S)

y = Hi(s) (x—ky)
from where
y(1+ kH{(s)) = Hi(s) -«
and the transfer function of the ladder filter is

1

y Hi(s) [(EDE 1
() x 1+ kH{(s) 1+k@ k+ (14 s)* (5.1)

At k = 0 the filter behaves as 4 serially connected 1-pole lowpass filters.
The poles of the filter are respectively found from

E+(1+s)*'=0

giving
s=—1+4(—k)¥/*
where the raising to the 1/4th power is understood in the complex sense, there-
fore giving 4 different values:
+1+4j

§=— — It/ .
=Sk (k > 0) (5.2)

(this time &'/ is understood in the real sense). Thus there are 4-poles and we
can also refer to this filter as a 4-pole lowpass ladder filter.

At k = 0 all poles are located at s = —1, as k grows they move apart in 4
straight lines,all going at “45° angles” (Fig. 5.2). As k grows from 0 to 4 the
two of the poles (at s = —1+ %kl/‘l) are moving towards the imaginary axis,
producing a resonance peak in the amplitude response (Fig. 5.3). At k = 4 they
hit the imaginary axis:

1+ 14)
Re(—1+—=4Y%) =0
(7

and the filter becomes unstable.?
In Fig. 5.3 one could notice that, as the resonance increases, the filter gain at
low frequencies begins to drop. Indeed, substituting s = 0 into (5.1) we obtain

1
HO) =177

This is a general issue with ladder filter designs.

3This time we will not develop an explicit expression for the transient response, since it’s
getting too involved. Still, the general rule, which we will develop in Section 7.7, is that the
transient response is always a linear combination of partials of the form eP»* (and t”eP»t in
case of repeated poles), where p, are the filter poles. Respectively, as soon as some of the
poles leave the left complex semiplane, the filter becomes unstable.
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ImSA s

v

Re s

-12

v

WC/S ch
Figure 5.3: Amplitude response of the 4-pole lowpass ladder filter
for various k.

5.2 Feedback and resonance

Before we continue with discussing more practical aspects of the ladder filter,
we’d like to make one important observation considering the resonance peaks
created by the ladder filter feedback.

In Fig. 5.3 we can see that, similarly to the 2-pole case, the resonance fre-
quency is approaching the filter cutoff frequency as the filter approaches selfos-
cillation at £ = 4. This is a manifestation of a more general principle concerning
ladder filters as such. Consider a general ladder filter in Fig. 5.4, where G(s) de-
notes a more or less arbitrary structure, whose transfer function is G(s). Notice
that the feedback in Fig. 5.4 is not inverted.
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(1) O G(s) y()

Figure 5.4: Structure of a generic ladder filter.

The transfer function of the entire structure is therefore

G(s) 1

H(s) = = .
) = T=hee) ~ s =k (5:3)
and the poles are defined by the equation
G ls)=k (5.4)

That is at k = 0 the poles of H(s) are the zeros of G=1(s) (the latter obviously
simply being the poles of G(s)). As k begins to deviate from zero, the solutions
of (5.4) will move in the s-plane, usually in a continuous fashion. E.g. for the
4-pole lowpass ladder (Fig. 5.1) we had G~'(s) = (s +1)* and (5.4) takes the
form (s +1)* = —k, where we take —k instead of k because of the inverted
feedback in Fig. 5.1.

The value of k at which the filter starts to selfoscillate should correspond
to some of the poles being located on the imaginary axis. At this moment the
infinitely high resonance peak in the amplitude response is occurring exactly
at these pole positions. Denoting a purely imaginary pole position as jw, we
rewrite (5.4) for such poles as

G l(jw) =k

or

kG(jw) =1 (5.5)

We can refer to (5.5) as the selfoscillation equation for a feedback loop. This
equation implies that selfoscillation appears at the moment when the total fre-
quency response across the feedback loop kG(jw) exactly equals 1 at some
frequency w. That is the total amplitude gain must be 1, and the total phase
shift must be 0°.

This is actually a pretty remarkable result. Of course it is quite intuitive that
selfoscillation tends to occur at frequencies where the feedback signal doesn’t
cancel the input signal, but rather boosts it. And such boosting tends to be
strongest at frequencies where we have a 0° total phase shift across the feedback
loop. However, what is quite counterintuitive, is that selfoscillation can appear
(as k is reaching the respective threshold value) only at such frequencies.i

Therefore for £ > 0 the selfoscillation appears at frequencies where the phase
response of G(s) is 0°. For k < 0 the selfoscillation appears at frequencies where

4As k continues to grow into the unstable range, the frequencies of the exploding (or still
selfoscillating, if the filter is nonlinear) sinusoidal transient response partials can change, since
the imaginary part of the resonating poles can change as the poles move beyond the imaginary
axis.
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the phase response of G(s) is 180°. The respective value of k can be found from
(5.5) giving

1
k= - 5.6
G(jw) (56)
or, rewriting (5.6) in terms of the amplitude response of G(s):
[T (5.7)
|G(jw)l '

where we take the plus sign if the phase response of G(s) at w is 0° and the
minus sign if the phase response of G(s) at w is 180°.

The just discussed effects are the reason that we used negative feedback in
the 4-pole lowpass ladder filter. We want the resonance to occur at the filter’s
cutoff. The phase response of a single 1-pole lowpass at the cutoff frequency
is —45°, respectively the phase response of a chain of four 1-poles is —180°,
exactly what we need for the resonance peak, if we use negative feedback.

At the same time, the amplitude response of a 1-pole lowpass at the cutoff
is |1/(1 + j)| = 1/v/2, respectively the amplitude response of a chain of four
1-poles is (1/v/2)* = 1/4. According to (5.7), the infinite resonance is attained
at k=1/(1/4) = 4.

At w = 0 a chain of four 1-pole lowpasses will have a phase shift of 0°, while
the amplitude response at w = 0 is 1. Therefore, in Fig. 5.1 the “selfoscillation”
at w = 0 will occur at £k = —1. However the amplitude response peak at w = 0
hardly can count as resonance.

5.3 Digital model

A naive digital implementation of the ladder filter shouldn’t pose any problems.
We will therefore immediately skip to the TPT approach.

Recalling the instantaneous response of a single 1-pole lowpass filter (3.29),
we can construct the instantaneous response of a serial connection of four of
such filters. Indeed, let’s denote the instantaneous responses of the respective
1-poles as f, (&) = g€ + s, (obviously, the coefficient g is identical for all four,
whereas s,, depends on the filter state and therefore cannot be assumed identi-
cal). Combining two such filters in series we have

f2(f1(8) = g(g€ + s1) + s2 = ?E + gs1 + 52
Adding the third one:
fs(f2(f1(8))) = 9(g*E + gs1 + s2) + s3 = g°E + g°s1 + gsa + 53

and the fourth one:

Fa(fs(f2(f1(9)))) = 9(°€ + g°s1 + gs2 + s3) =
=g¥ 4+ Ps1+g%so+gss+sa =GE+ S

where

G=g



138 CHAPTER 5. LADDER FILTER

S = g%s1 + g*s2 + gs3 + s4

Using the obtained instantaneous response G¢ + S of the series of 4 1-poles, we
can redraw the ladder filter structure as in Fig. 5.5.

z[n] Ge+ S ——y[n]

k

L
N

Figure 5.5: TPT 4-pole ladder filter in the instantaneous response
form.

Rather than solving for y, let’s solve for the signal u at the feedback point.
From Fig. 5.5 we obtain

u=z—ky=x—k(Gu+5S)

from where
x—kS
= 5.8
"TI1TkG (5:8)
We can then use the obtained value of u to process the 1-pole lowpasses one
after the other, updating their state, and computing y[n] as the output of the
fourth lowpass.

Apparently the total instantaneous gain of the zero-delay feedback loop in
Fig. 5.5 and in (5.8) is —kG. As we should recall from the discussion of 1-pole
lowpass filters, 0 < g < 1 for positive cutoff settings. Respectively 0 < G < 1
and the filter doesn’t become instantaneously unstable provided k& > —1.

5.4 Feedback shaping

We have observed that at high resonance settings the amplitude gain of the filter
at low frequencies drops (Fig. 5.3). An obvious way to fix this problem would be
e.g. to boost the input signal by the (1+k) factor.i However there’s another way
to address the same issue. We could “kill” the feedback for the low frequencies
only by introducing a highpass filter into the feedback path (Fig. 5.6). In the
simplest case this could be a 1-pole highpass.

The cutoff of the highpass filter can be static or vary along with the cutoff
of the lowpasses. The static version has a nice feature that it kills the resonance
effect at low frequencies regardless of the master cutoff setting, which may be
desirable if the resonance at low frequencies is considered rather unpleasant
(Fig. 5.7).

In principle one can also use other filter types in the feedback shaping. One
has to be careful though, since this changes the total phase and amplitude re-
sponses of the feedback path, thus the frequency of the resonance peak and the

5We boost the input rather than the output signal for the same reason as when preferring
to place the cutoff gains in front of the integrators.
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LP, P LP, F LP, P LP, F»—> y(t)

Figure 5.6: Transistor ladder filter with a highpass in the feedback.
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Figure 5.7: Amplitude response of the ladder filter with a static-
cutoff highpass in the feedback for various lowpass cutoffs.

value of k at which selfoscillation is reached may be changed. E.g., quite coun-
terintuitively, inserting a 1-pole lowpass into the feedback path can destabilize
an otherwise stable filter.

In order to establish and analyse the latter fact mathematically, we’d need
to find the total amplitude response across the feedback loop at the point where
the total phase shift is 180°. Let Hi(s) = 1/(1 + s) be the underlying 1-pole
lowpass of the ladder filter and let Hy(s) = 1/(1 + s/wey) be the lowpass in
the feedback, with a generally speaking different cutoff w.;. The 180° point is
found from the equation

1
4arg Hi(jw) + arg H¢(jw) = 4 ar — +ar - =
g Hy(jw) + arg Hy (jw) 81T 8 T ooy

= —4arctanw — arctan =-7 (5.9)

Wef

where we have used (2.8). The equation (5.9) looks a bit daunting, if having
an analytic solution at all. Fortunately, we don’t actually need to know the
frequency of the 180° point, it would suffice to know the respective amplitude
responses.

Let ¢1(w) be the negated phase response of Hi(s):

¢1(w) = —arg Hy (jw) = arctanw > 0 Yw

Expressing w as a function of ¢ we have w = tan ¢;. Respectively, expressing
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the amplitude response as a function of the (negated) phase response we have

. 1 1
A=Wl = T = rtazgr o (210

Thus, the total amplitude response of the four 1-poles in the feedforward path

of the ladder filter is )

(1+ )
and the total phase response of the feedforward path is 4.
Since (5.10) is cutoff-independent, it also holds for Hy(s):

Al(w) =

A =cospy

where Ay = |Hy(jw)l|, ¢y = —arg Hy(jw). Now let wg be the (unknown to us)
solution of (5.9), that is the total phase shift at wg is 180°. In terms of the just
introduced functions ¢;(w) and ¢y (w) equation (5.9) can be rewritten as

4p1(wo) +¢f(wo) = (5.11)

Since pf(w) > 0 Yw, the 180° phase shift is achieved earlier than without the
feedback filter, that is wg < 1 (whatever the value of wy is).

Computing the total amplitude response of all five 1-pole lowpasses at wy
we have

™ w
A Ay () = cost ) cos o) = cos® (= 2 ) o gy
Considering only the first factor we have
TR\ 2 A
COS4<I ﬁ)_ 1+cos(§—?> B 1+sm?
4 4/ 2 - 2

(where we dropped the argument wp, understanding it implicity). Respectively
1 2
A} Ap = 1 (1+sin%> - CoS Py (w = wp) (5.12)

Fig. 5.8 contains the graph of (5.12). The interpretation of this graph is like
follows. Suppose the feedback lowpass’s cutoff w.; is very large (w.; — +00).
In the limit the feedback lowpass has no effct and

1
wp=1 @p(wo) =0 Ap(wo) =1 A‘ll(wo)Af(wo) =1 (for wep = +00)

As we begin to lower w.s back from the infinity, the value of ¢;(wg) grows
from zero into the positive value range. The graph in Fig. 5.8 plots the total
amplitude response of the five 1-pole lowpasses in the feedback loop against the
growing ¢r(wp). We see that the amplitude response grows for quite a while.
As long as it is above 1/4, the filter will explode at k = 4. The zero amplitude
response at ¢y = m/2 corresponds to w.y = 0, where the extra lowpass is fully
closed, thus the entire feedback loop is muted.



5.5. MULTIMODE LADDER FILTER 141

AtAf

A~ =

S

5 w/2  Pf

Figure 5.8: Total amplitude response of the four feedforward low-
pass 1-poles plus the feedback lowpass 1-pole at the 180° phase
shift point, plotted against the phase shift by the feedback 1-pole.

At wey = 1 (equal cutoffs of all 1-poles) from (5.11) we have ¢f(wo) =
¢1(wo) = m/5. In Fig. 5.8 one can see that this is the “most unstable” situation
among all possible w.f.

In comparison, if we had a 1-pole highpass in the feedback, then we would
have arg Hy(jw) > 0 and respectively ¢s(w) < 0 Vw. Therefore the 180° point
would be shifted to the right: wy > 1. Therefore A}(wg) < A}(1) < 1/4, while
Af(w) < 1 Vw, thus the total amplitude response ATA; at the 180° point would
decrease and the filter won’t become “more unstable” than it was before the
introduction of the extra highpass filter.

5.5 Multimode ladder filter

Warning! The multimode functionality of the ladder filter is a somewhat special
feature. There are more straightforward ways to build bandpass and highpass
ladders, discussed later in this chapter.

By picking up intermediate signals of the ladder filter as in Fig. 5.9 we obtain
the multimode version of this filter. We then can use linear combinations of
signals y,, to produce various kinds of filtered signal.®

Suppose k = 0. Apparently, in this case, the respective transfer functions

6 Actually, instead of yg we could have used the input signal « for these linear combinations.
However, it doesn’t matter. Since yg = = — ky4, we can express x via yg or vice versa. It’s just
that some useful linear combinations have simpler (independent of k) coefficients if yo rather
than z is being used.
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Figure 5.9: Multimode ladder filter.

associated with each of the y, outputs are

1
Hy(s) = ——— =0,....,4 5.13
O e @ ) (513)
If k£ # 0 then from
1
Hy(s) = —————
) = ATy
using the obvious relationship H,,11(s) = H,(s)/(s + 1) we obtain
(1+s)tm
Hy(s) =~ 5.14
= e (5.14)

4-pole highpass mode

Considering that the 4th order lowpass transfer function (under the assumption
k = 0) is built as a product of four 1st order lowpass transfer functions 1/(1+ s)

1

) = iy

we might decide to build the 4th order highpass transfer function as a product
of four 1st order highpass transfer functions s/(1 + s):

g4

(14 9)4

HHP (S) =

Let’s attempt to build Hyp(s) as a linear combination of H,(s). Apparently,
a linear combination of H,,(s) must have the denominator k + (1 + s)%, so let’s

instead construct

g4

B k4 (1+s)4

which at k& = 0 will turn into s*/(1 + s)*. We also have Hyp(co) = 1 while the
four zeros at s = 0 provide a 24dB/oct rolloff at w — 0, thus we are still having
a more or less reasonable highpass. In order to express Hyp(s) as a sum of the
modes we write

Hpyp(s) (5.15)

st ag(L+ )t +ar(1+8)° +az(l+ )% +as(1+s) + aq
E+(1+s)* k4 (14 s)
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that is
st=ag(l+s)* +a1(1+5)°+as(14+5)2%+as(1+s)+ay

We need to find a, from the above equation, which generally can be done by
equating the coefficients at equal powers of s in the left- and right-hand sides.
However, for the specific equation that we’re having here we could do a shortcut
by simply formally replacing s + 1 by s (and respectively s by s — 1):

(s — 1)* = ags* 4+ a18® + ags® + azs + aq
from where immediately
aozl,a1=—4,a2:6,a3:—4,a4:1

The amplitude response corresponding to (5.15) is plotted in Fig. 5.10.

|H(jw)|,dB I
|
|
O —+
6+
12+
|
|
|
-18 + :
wcl/8 L‘JC 85“)0 ZU
Figure 5.10: Amplitude response of the highpass mode of the lad-
der filter for various k.
4-pole bandpass mode
A bandpass filter can be built as
§2
H, =—— 5.16
Bp(s) K+ (1+s)t (5.16)

The two zeros at s = 0 will provide for a —12dB/oct rolloff at low frequencies and
will reduce the —24dB/oct rolloff at high frequencies to the same —12dB/oct.
Notice that the phase response at the cutoff is zero:

B -1 1

S k+ 1+t 4—k

Hpp(j)

The coefficients are found from
s2=ag(l+s)* +a1(1+5)°>+as(145)%+as(1+s)+ay
(s —1)% = ags* + a15® + ass® + azs + a4

The amplitude response corresponding to (5.16) is plotted in Fig. 5.11.
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Figure 5.11: Amplitude response of the bandpass mode of the lad-
der filter for various k.

Lower-order modes

Recalling the transfer functions of the modal outputs y,, in the absence of the
resonance (5.13), we can consider the modal signals y, and their respective
transfer functions (5.14) as a kind of “n-pole lowpass filters with 4-pole reso-
nance”.

“Lower-order” highpasses can be build by considering the zero-resonance
transfer functions

Hugp(s) = sV (s 1)4NgN
HPAS) = (s+1)N  (s+1)4
which for k& # 0 turn into
(s + 1) NN
e () = v T

In a similar way we can build a “2-pole” bandpass

s s+1)2%s

Hee(s) = gy = ((s—:— 1))4 (k=0)
s+1)%s

Hgp(s) = kz(—l—z;l—zl)‘l (k#0)

Other modes

Continuing in the same fashion we can build further modes (the transfer func-
tions are given for k = 0):

3-pole bandpass, 6/12 dB/oct

3-pole bandpass, 12/6 dB/oct
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1)* 4+ Ks?
M band-shelving

(s+1)°
(z4+_1;4 notch
((85:11))42 notch
(s2 +2Rs + ;Z 1 gi —2Rs +1)° 2 notches, neutral setting R = 1
(fj&l 2-pole lowpass + notch
(1(_;_11_/1'9)22‘34 2-pole highpass + notch
w 2-pole bandpass + notch

etc. The principles are more or less similar. We are trying to attain a desired
asymptotic behavior at w — 0 and w — +oo by having the necessary orders and
coefficients of the lowest-order and highest-order terms in the numerator. E.g.
by having s? as the lowest-order term of the numerator we ensure a 12dB/oct
rolloff at w — 0, or by having s* as the highest-order term we ensure H(co) = 1.
The notch at w = 1 is generated by placing a zero at s = £j. The 2-notch version
is obtained by explicitly writing out the transfer function of a 4-pole multinotch
described in Section 11.3.

5.6 HP ladder

Performing an LP to HP transformation on the lowpass ladder filter we ef-
fectively perform it on each of the underlying 1-pole lowpasses, thus turning
them into 1-pole highpasses. Thereby we obtain a “true” highpass ladder fil-
ter (Fig. 5.12). Obviously, the amplitude response of the ladder highpass is
symmetric to the amplitude response of the ladder lowpass (Fig. 5.13).

(1) HP, P HP, P HP, P HP, ’—»—> y(t)

k

L
T

Figure 5.12: A “true” highpass ladder filter.

The instantaneous gain of a 1-pole highpass is complementary to the instan-
taneous gain of the 1-pole lowpass:

g 1

1—- <2 —
1+4+g 1+g¢
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Figure 5.13: Amplitude response of the 4-pole highpass ladder filter
for various k.

where ¢ = w.T/2. Thus the instantaneous gain of a single 1-pole highpass
is varying within the range (0,1) and so does the gain of the chain of four
highpasses: 0 < G < 1. Therefore, 4-pole highpass ladder doesn’t get instanta-
neously unstable for k£ > —1.

5.7 BP ladder

In order to build a “true” 4-pole bandpass ladder, we replace only half of the
lowpasses with highpasses (it doesn’t matter which two of the four 1-pole low-
passes are replaced). The total transfer function of the feedforward path is
thereby

82 S S

(L+s)t ~ (19?2 (149
where each of the s/(1+s)? factors is built from a serial combination of a 1-pole
lowpass and a 1-pole highpass:

s s 1
(1+s8)2 1+s 1+s

Apparently s/(1 4+ s)2 = s/(1 + 2s + s%) is a 2-pole bandpass with damping
R =1 and a serial combination of two of them makes a 4-pole bandpass. The
frequency response of s/(1+ s)? at w = 1 is 1/2, that is there is no phase-shift.
Respectively the frequency response of s2/(1+ s)* at w = 1 is 1/4, also without
a phase shift. Therefore we need to use positive rather than negative feedback
(Fig. 5.14), the selfoscillation still occuring at k = 4, the same as with lowpass
and highpass ladders.

Noticing that the filter structure is invariant relative to the LP to HP trans-
formation, we conclude that its amplitude response must be symmetric (around
w = 1) in the logarithmic frequency scale (Fig. 5.15).

The question of instantaneous instability is more critical for the bandpass
ladder, since the feedback is positive. The instantaneous gain of a lowpass-
highpass pair is a product of the instantaneous gains of a 1-pole lowpass and a
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(1) LP, P HP, P LP, P HP, ’—»—> y(t)

k

A
T

Figure 5.14: A “true” bandpass ladder filter.
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Figure 5.15: Amplitude response of the 4-pole bandpass ladder
filter for various k.

1-pole highpass:
g 1
1+g 14g
(where g = w.T/2). It’s not difficult to verify that the maximum gain of this
pair is attained at g = 1 and is equal to 1/4. The maximum instantaneous gain
of two of these pairs is therefore 1/16, and thus the instantaneously unstable
case doesn’t occur provided k < 16.

Bandwidth control

Using (5.3) and the fact that the frequency response of /(1 + s)* at w = 1
is 1/4 we obtain the frequency response of the 4-pole bandpass ladder at the

cutoff
1

H() = —
Therefore, by multiplying the output (or the input signal) of the 4-pole bandpass
ladder by 4 — k we can turn it into a normalized bandpass, where the bandwidth
is controlled by varying k.
There is another way, however. Recall that the normalized 2-pole bandpass
(4.15) is an LP to BP transformation of the 1-pole lowpass 1/(1 4+ s). At the
same time,

1 s S s

2s
T+s 14s (1482 1425+

1
T2 1425+ s2
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is simply a halved version of (4.15) taken at R = 1 and therefore is an LP to BP
transformation fo the halved 1-pole lowpass 1/2(1+s). This means that Fig. 5.14
can be replaced by Fig. 5.16 which in turn is an LP to BP transformation of
Fig. 5.17.

1/2 1/2

x(t)

Figure 5.16: 4-pole bandpass ladder filter expressed in terms of
normalized 2-pole bandpasses.

1/2 1/2

k

g
N

Figure 5.17: LP to BP transformation applied to this structure
produces the 4-pole bandpass ladder in Fig. 5.16.

We don’t even specifically care to analyse the structure Fig. 5.17. What is
important is that the damping parameter of the LP to BP transformation con-
trols the transformation bandwidth and thereby the bandwidth of the bandpass
ladder in Fig. 5.16. Thus, introducing the damping control into the normalized
2-pole bandpasses in Fig. 5.16 we can control the bandpass ladder’s bandwidth
by simply varying the damping parameter of the underlying 2-pole bandpasses.

At the same time we still have the k parameter available, which we still can
use to control the bandwidth of the normalized bandpass (Fig. 5.18). Thus, k
and R provide two different ways of bandwidth control, resulting in somewhat
different amplitude response shapes (Fig. 5.19 Z

Obviously, normalized 2-pole bandpasses with damping control could be im-
plemented using an SVF'. If nonlinearities are involved, however, using TSK/SKF
2-pole bandpasses might be a better option. Since we didn’t introduce the latter
yet, we need to postpone the respective discussion. We will return to this ques-
tion, however, in the discussion of 8-pole bandpass ladder in Section 5.9, where
the bandwidth control via the 2-pole bandpass damping will be a particularly
desired feature compared to being somewhat academic in the case of a 4-pole
bandpass.

"In principle, k and R have very similar effects. Fundamentally, they both affect the band-
width and the resonance peak height. In Fig. 5.18 their effect on the resonance peak height is
compensated, the compensation for k£ being the 4 — k gain at the output, the compensation
for R being embedded into the normalized bandpasses. By removing the normalization from
the bandpasses we effectively introduce the 1/R? gain into the feedback, and the damping R
thereby will control the resonance peak height too.



5.8. SALLEN-KEY FILTERS 149

1/2 1/2 4—k

Figure 5.18: 4-pole normalized bandpass ladder filter expressed in
terms of normalized 2-pole bandpasses.

|H (jw)|,dB 4
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-6+

-12 +

18+
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Figure 5.19: Amplitude response of the 4-pole normalized bandpass
ladder filter in Fig. 5.18 for two different combinations of k and R
resulting in comparable bandwidths.

5.8 Sallen—Key filters

In this section we are going to introduce two special kinds of 2-pole bandpass
ladder filters, the Sallen-Key filter and its transpose.® They are important
because of their nonlinear versions, since, as linear digital 2-pole filters go, the
SVF filter could be sufficient for most applications, and it also provides probably
the best performance among different TPT 2-poles.

For now we shall develop the linear versions of these filters. The Sallen—Key
filter is more famous than its transpose, but we’ll start with the transpose, for

the sake of a more systematic presentation of the material.

Transposed Sallen—Key (TSK) filters

Attempting to build a 2-pole lowpass ladder filter (Fig. 5.20) we don’t end up
with a useful filter.

8Despite essentially being bandpass ladder filters, the Sallen-Key filter and its transpose
can be (and are) used to deliver lowpass and highpass responses as well.
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x(t) LPy | LPy | (1)

k

g
~JT

Figure 5.20: 2-pole lowpass ladder filter (not very useful).

Indeed, the transfer function of this filter is
1
Hs)=—F—
() E+(1+s)?
and the poles are respectively at

s=—-1+vV—k=-1+jvVk (k>0)

Interpreting these pole positions in terms of 2-pole cutoff and damping (which
we can do using (4.13)), we obtain

W = ‘—113'\/%‘ =Vithk
~Re (=14 V) )

T VI

Thus, firstly, there is coupling between the feedback amount and the effective
cutoff of the filter. Secondly, as k grows, R stays strictly positive, thus the filter
poles never go into the right semiplane (and, as with the 4-pole ladder filter,
this would be quite desired once we make the filter nonlinear). So, all in all, not
a very useful structure.

A similar situation occurs in an attempt to use two 1-pole highpasses instead
of two 1-pole lowpass in the same structure (the readers may wish verify this
on their own as an exercise).

This result is no wonder, considering that the transfer function of a chain
of two 1-pole lowpasses is 1/(1 + s)?, with the phase response being 0° only
at w = 0 and being 180° only at w = oo (for the highpasses the situation is
opposite, we have 180° only at w = 0 and 0° only at w = oo, which doesn’t
make a big difference for our purposes). Thus we don’t get a good resonance
peak at any finite location. This however hints at the idea that we might still
try to build a 2-pole bandpass ladder filter from a chain of a 1-pole lowpass and
a 1-pole highpass, as the total phase shift at the cutoff would be 0° in this case:

1 s
1+s 1+s
The respective structure is shown in Fig. 5.21. Notice that we don’t invert the

feedback.
Computing the transfer function of this filter we have

(L+ )

__J 1

(14452 2

s=j s=j

s
(1+9)? s s
H(s) = = =
() 1— " (1+s8)2—ks s24+(2-k)s+1
(1+s)2
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x(t) LPy [{ HPy |y (1)

b
~J

k

Figure 5.21: 2-pole bandpass ladder filter.

The obtained expression is identical to the transfer function of a 2-pole bandpass
filter with a damping gain 2R = 2 — k. That is, the filter in Fig. 5.21 is pretty
much the same as a linear 2-pole SVF bandpass, at least from the frequency
response perspective. Notice that k = 0 corresponds to the resonance-neutral
setting (R = 1) while k = 2 is the self-oscillation point (R = 0). As we should
remember from the 4-pole bandpass ladder discussion, the maximum possible
instantaneous gain of the lowpass-highpass pair is 1/4, therefore under the condi-
tion £ < 4 the TPT implementation of Fig. 5.21 doesn’t become instantaneously
unstable.

It might seem that we have failed to construct a 2-pole lowpass filter using
the above approach, but in fact with a slight modification we can obtain one
from the bandpass filter in Fig. 5.21. Let’s replace the 1-pole highpass with a
1-pole multimode with highpass and lowpass outputs (Fig. 5.22).

Lp
(1) LP ’—> MM y1(t)
! e y(t)

1

<

k

Figure 5.22: 2-pole bandpass ladder filter with an extra output
mode.

Obviously, the signal y(t) is not affected by this replacement. Let’s find out
what kind of signal is y1(¢). In order to simplify the computation of the transfer
function of the entire structure at y;, consider first the transfer functions of the
1-pole multimode filter used in isolation:

1 S
Hip(s) = 1+s Hup(s) = 1+s

or, for complex sinusoidal signals of the form e*t

Yip(s) = 1i3X(s) Yip(s) = 1j_SX(s)

st

where X (s)e®! is the input signal of the multimode 1-pole and Yip(s)e®t and

Yip(s)e®! are the respective output signals. This means that
YHP (S)

YLP (S) = T
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Therefore a similar relationship exists between the outputs y; (¢) and y(t) of the

filter in Fig. 5.22:
Y (s
Yi(s) = —i )

and there is the same relationship between their respective transfer functions

_H(s) _ 1 s B 1
s s 824+ (2-k)s+1 24+ (2—-k)s+1

Hl(s)

where H(s) the the transfer function for the signal y;(¢) in respect to the input
signal z(t). Therefore y;(t) is an ordinary 2-pole lowpass signal with damping
gain 2R =2 — k.

Thus we have obtained a multimode 2-pole ladder filter with the lowpass and
bandpass outputs. We redraw the structure in Fig. 5.22 once again as Fig. 5.23
to reflect what we have just found out about this structure.

LP
1P (1)
i
el
~J
k

Figure 5.23: Transposed Sallen-Key (TSK) filter.

The structure in Fig. 5.23 happens to be a transpose of the Sallen—Key
filter, therefore we will refer to it as the transposed Sallen-Key (TSK) filter.?
The transfer functions of the TSK filter are, as we have found out:

1
2+ (2-k)s+1

Hyp(s) =

s
2+ (2—-k)s+1

A 2-pole highpass output mode cannot be picked up in a straightforward way,
but can be obtained with some extra effort. Let’s also turn the first lowpass into
a multimode (Fig. 5.24). It is not difficult to realize that the transfer function
for the signal at the LP output of MM;,, which is simultaneously the input
signal of MMy, is

HBP (8) =

1\ ! s+1
Hyntave (s) = Hep(s) - (8+ 1> TSP+ 2 —k)s+1

respectively for the signal at the HP output of MM, we have

(s+1)s
$2+(2-k)s+1

Hyivianp(s) = s - Hunvarpe(s) =

9The author has used the works of Tim Stinchcombe as the information source on the
Sallen—Key filter. The idea to introduce TSK filters as a systematic concept arose from
discussions with Dr. Julian Parker.
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Thus we obtain

(s+1)s B s B
(2—Fk)s+1 s2+(2—-k)s+1

Hup(s) = Hynianp (s) — Hep(s) = o
2+ (2-k)s+1

=P t
N 4 yup(t)
B ¢
z(t) MMy, VI yLp(t)
1b

LP TP ysp(t)

1

N

k

Figure 5.24: Fully multimode TSK filter.

Alternative representations

Recall that 1-pole highpass signal can be obtained as the difference of the 1-pole
lowpass filter’s input and output signals:

1
G|

1+s _1+s

Then we can replace the multimode 1-pole in Fig. 5.23 by a 1-pole lowpass,
constructing the highpass signal “manually” by subtracting the lowpass output
from the lowpass input (Fig. 5.25). A further modification of Fig. 5.25 is formally
using negative feedback (Fig. 5.26)

LP, ’—»

> yrp(1)

ysp(t)

Figure 5.25: TSK filter (alternative representation).

Highpass TSK filter

Let’s take the filter in Fig. 5.21 and switch the order of lowpass and highpass
1-pole filters (Fig. 5.27). Since this doesn’t change the transfer function of
the entire chain of 1-poles, the filter output stays the same, it is still a 2-pole
bandpass.
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x(t) LP, LP; > yrp(t)

Figure 5.26: TSK filter (alternative representation, negative feed-

back form).
x(t) HP, ’—> LP,; ’%«—> y(t)
b
~J
k

Figure 5.27: 2-pole bandpass ladder filter with a different order of
1-pole lowpass and highpass filters.

Turning the 1-pole lowpass into a multimode we obtain the structure in
Fig. 5.28. It’s not difficult to see that the signal at the other output of the
multimode is a 2-pole highpass one. Therefore, in order to distinguish between
the filters in Figs. 5.23 and 5.28 we will refer to the former more specifically as
a lowpass TSK filter and to the latter as a highpass TSK filter. If necessary, we
can add the lowpass output, using a way similar to Fig. 5.24.

HP
——————ynpr(t)
z(?) HP }—> MM, P ysp (1)
pd
~J
k

Figure 5.28: Highpass TSK filter.

The highpass versions of Fig. 5.25 and Fig. 5.26 could have been built by
performing transformations of Fig. 5.28 similarly to how we did with Fig. 5.23.
However it’s easier just to apply the LP to HP substitution (s <« 1/s) to
Figs. 5.25 and 5.26.

Sallen—Key filter (SKF)

We could take the structure in Fig. 5.27 and convert the 1-pole highpass filter
into a tranposed multimode 1-pole (Fig. 5.29). By doing this one obtains a
transpose of Fig. 5.23 which is (apparently) called Sallen—Key filter or shortly
SKF. If necessary, the highpass input can be added, turning Fig. 5.23 into a
transpose of Fig. 5.24.

If instead we take the structure in Fig. 5.21 and convert the lowpass into a
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LP
l‘Lp(t)
rpp(t) Hp MM, ’—> LP y(t)
g
NN
k

Figure 5.29: Sallen—Key filter.

transposed multimode 1-pole, we can obtain the structure in Fig. 5.30. In order
to distinguish between Fig. 5.29 and Fig. 5.30, we will, as we did with their
transposes, refer to the structure in Fig. 5.29 more specifically as a lowpass
Sallen-Key filter and to the structure in Fig. 5.30 as a highpass Sallen-Key
filter. The lowpass input can be added to the highpass SKF using the transposed
version of the idea of Fig. 5.24.

HP

THP (t)
IBP (t)

MM, HP, y(t)

LP

A
N
k

Figure 5.30: Highpass SKF.

The transposed versions of Fig. 5.25 and Fig. 5.26 make alternative repre-
sentations of the lowpass SKF. E.g. by transposing the structure in Fig. 5.25 we
obtain the one in Fig. 5.31.

:ch(t) LP1 LP1 ————> y(t)

(=< %—
IBpP (t)

Figure 5.31: Sallen—Key filter (alternative representation).

MIMO Sallen—Key filters

By turning both 1-poles in Fig. 5.27 into multimodes we’ll obtain a MIMO
(multiple input multiple output) Sallen-Key filter, as illustrated in Fig. 5.32.

Note that the labelling of the inputs and outputs zpp, zup, yLp, yup is
thereby formal. The actual transfer functions are defined for signal paths from
a given input to a given output:
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LP HP
zrp(t) MMy, MMy, yup(t)
xup(t) P P yLp(t)
e
~0
k

Figure 5.32: MIMO Sallen—Key filter (HP-LP).

yLp yup
rp | 2-pole lowpass  2-pole bandpass
xgp | 2-pole bandpass  2-pole highpass

By putting the feedback path around lowpass-highpass chain rather than
lowpass-highpass, Fig. 5.32 is turned into Fig. 5.33.

HP LP
MM, MM},

LP HP

yLp(t)

THP (t)
yup(t)

ILp (t)

e
T
k
Figure 5.33: MIMO Sallen-Key filter (LP-HP).

Allpass TSK/SKF

Consider again the 2-pole bandpass ladder filter structure in Fig. 5.21. Suppose
that we use 1-pole allpasses (1 — s)/(1 + s) instead of low- and highpass filters.
We also use negative, rather than positive feedback, although this is more a
matter of convention. The result is shown in Fig. 5.34, where we also prepared
the modal outputs.

— Yo(t) — y1(t)
x(t) T AP, | AP, ya (t)

e
~
k

Figure 5.34: 2-pole ladder filter based on allpasses (not so useful).
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The transfer function of the main output is

Has) (}I‘Z)Q sy

2 2 —
1+k<1+s) (I+s)?+k(1—5)
B (1-35)? 1 (1-3)2
- 2 _ - ’ 1—
Q+k)s2+2(1—k)s+(1+k) 1+k 52+21+I;5+1

which is not exactly a 2-pole allpass transfer function. The denominator of H (s)
however looks pretty usable, it’s a classical 2-pole transfer function denominator
with damping R = (1 — k)/(1 + k).

The transfer functions at the other two outputs can be obtained by “reverse
application” of the transfer functions of the 1-pole allpasses to Ha(s):

C(1-s\7" 1 (1+ )(173)
Hl(s)(us) )=

2+2 Zs+1
1—-s\ " 1 1+ 5)2
Hol) = (1+s) ) = : I)c

1—
82+2m8+1

We can try building the desired transfer function

1-— k
2
H(S)78272R8+1 5 _21 P +1
24+ 2Rs+1 1— k
1+ k

as a linear combination of Hy(s), Hi(s) and Ha(s):
aoHo(s) +a1Hi(s) + azHa(s) = H(s)

Noticing that the denominators of Hy(s), Hi(s), Ha(s) are all identical to the
desired denominator already, we can discard the common denominator from the
equation and simply write:

(1+s)? (1+s)(1—s) (1-s5?2 4, 11—k
R I v I Y

ag
or
ao(142s+5%) +ar(1 —s*) +ax(1 —25+5%) = (1+k)s* —2(1 —k)s + (1 + k)

From where ag = k, a1 =0, as = 1. Thus

1—k
52—21 ks—|—1

H(s) = Ho(s) + kHa(s) = - ;
5242 s+1

1+k

and the corresponding structure is shown in Fig. 5.35.1°'1 The main idea of
this structure is very similar to the one of a TSK filter with some “embedded”
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(1) T AP, P AP, }—x y(t)

Figure 5.35: Allpass TSK filter.

modal mixture. For that reason we can refer to the filter Fig. 5.35 as a allpass
TSK filter, or we could call it a 2-pole allpass ladder filter.
The 2-pole damping parameter R is related to k via

R=(1-k)/(1+k)

k=(1-R)/(1+R)
so that for k = —1... + oo the damping varies from 400 to —1. The stable
range R = +o00...0 corresponds to k = —1...1.

Transposing the structure in Fig. 5.35 we obtain the structure Fig. 5.36
which for obvious reasons we will refer to as an allpass SKF.

k
S
1
2(t) —— APy [ AP, > y(t)
k
<
<

Figure 5.36: Allpass SKF.

5.9 8-pole ladder

Connecting eight 1-pole lowpass filters in series instead of four we can build an
8-pole lowpass ladder filter (Fig. 5.37).
The transfer function of the 8-pole lowpass ladder is obviously
1

Hs) = k4 (1+s)8

101t is easy to notice that this structure is very similar to the one of a multinotch filter with
some specific dry/wet mixing ratio.

HThe same structure can be obtained from a direct form II 1-pole allpass filter by the
allpass substitution 271 « (1 — 5)2/(1 + s)2. Tt is also interesting to notice that, applying
the allpass substitution principle to the structure in Fig. 5.35, we can replace the series of the
two 1-pole allpass filters in Fig. 5.35 by any other allpass filter, and the modified structure
will still be an allpass filter.



5.9. 8-POLE LADDER 159

(%) 8 x LP, )—»—> y(t)

k

g
AN

Figure 5.37: 8-pole lowpass ladder filter.

and the pole positions are defined by
E+(1+s)®=0
giving
s=—1+(—k)'/®
where (—k)'/® is understood in the multivalued complex root sense:

(_k)1/8 _ ‘k|1/8€ja

where
T+ 2mn

8

The main difference from the 4-pole ladder lowpass, besides the steeper cutoff
slope, is that the 180° phase shift by the chain of 1-pole lowpasses is no longer
occurring at the cutoff. Instead, the phase response of the lowpass chain at
the cutoff is 360°. In order to find the frequency at which 180° phase shift is

occurring we need to solve
1 8
ar = -7
E\ 11w

arg(l + jw) =7n/8 or arg(l+ jw) =37/8

that is

(apparently the values 57/8 an larger cannot be attained by arg(1 + jw)). This
gives
w=tanm/8 or w=tan3n/8

The value of tan7/8 can be easily found using the formula for the tangent of

double angle:

2tan «
tan 20 = ————
1 —tan® «

where letting o = 7/8 we obtain
2tan7m/8
1—tan?7/8
2tan7/8 = 1 — tan? 7/8
tan® /8 + 2tan7/8 — 1 =0

w=tan7/8 = V2 — 1~ 0.4142
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For tan 37 /8 we can use the formula for the tangent of the complementary angle:

1
tanm/8 2 -1

Thus the resonance peak can occur at w = tan(r/4 +7/8) = /24 1. Let’s find
the values of k at which the respective poles hit the imaginary axis. According
to (5.7), k is the reciprocal of the amplitude amplitude response of the chain of
eight 1-pole lowpasses at the respective frequencies:

S A

= (\/1 + tan?(7/4 + 7T/8)>8 = cos ¥(m/4 £ /8)

= V24 1~24142

w = tan3n/8 = tan(w/2 — w/8) =

finally giving

wy ~ 0.4142 k1~ 1.884
wo A 2.4142 ko == 2174

Thus the selfoscillation at wy is occurring way much earlier than the one at ws.
It is very unlikely that even in a nonlinear version of this filter, which allows
going into unstable range of k, we will use k as large as 2174. It also hints
to the fact that the second resonance is way much weaker than the first one.
Therefore, for practical purposes we will simply ignore the second resonance and
say that the infinite resonance is occuring at w = v/2 —1 ~ 0.4142 at k ~ 1.884.
Fig. 5.38 illustrates the amplitude response behavior for various k.

\H(jw)|,dB A I

EV

we/8 (VZ-lwe Suwe

Figure 5.38: Amplitude response of the 8-pole lowpass ladder filter
for various k.

Considering that at & = 0 the amplitude response of a chain of eight 1-
poles at the cutoff is (1/v/2)% = 1/16, which is ca. —24dB, we could treat the
resonance frequency w = v/2 — 1 as the “user-facing” cutoff frequency instead,
and in practical implementations of the filter let the cutoff of the underlying 1-
poles equal the “user-facing” cutoff multiplied by 1/(v/2—1) = v2+1 ~ 2.4142.
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One could ask the following question: the phase response of the chain of
eight 1-poles at w = 1 is 0°, therefore why don’t we simply use positive feed-
back to create the resonance peak at w = 17 The problem is that the phase
response at w = 0 is also 0°. Since the amplitude response at w = 0 is 1, the
selfoscillation will occur already at k = 1, whereas at w = 1 it will occur only
at k=1/(1/v2)% = 16.

The instantaneously unstable range of k£ is found similarly to the 4-pole
lowpass ladder and is k < —1.

Various modal mixtures for the 8-pole lowpass ladder filter can be built in
a similar way to the 4-pole ladder filter. However the fact that the resonance
frequency is noticeably lower than the cutoff frequency of the underlying 1-poles
will affect the shapes of the resulting modal mixtures. Some smart playing
around with the modal mixture coefficients can sometimes reduce the effect of
this discrepancy.

8-pole highpass ladder

Replacing the 1-pole lowpasses with highpasses we obtain an 8-pole highpass
ladder filter (Fig. 5.39). As we already know from the discussion of the 4-pole
highpass, it essentially the same as lowpass except for the s < 1/s substitution.
The instantaneously unstable range of & is found similarly to the 4-pole highpass
ladder and is k < —1.

x(t) 8 x HP, )—»—> y(t)

k

g
N

Figure 5.39: 8-pole highpass ladder filter.

8-pole bandpass ladder

Replacing half of the lowpasses with highpasses in Fig. 5.37 we obtain the 8-pole
bandpass ladder filter, where we shouldn’t forget that in a bandpass ladder the
feedback shouldn’t be inverted (Fig. 5.40).

(1) 4 x LP,HP, ’—»—> y(t)

k

g
N

Figure 5.40: 8-pole bandpass ladder filter.

The total gain at the cutoff of the 1-pole chain is

() |- () =5
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therefore selfoscillation occurs at k = 16. Fig. 5.41 illustrates the amplitude
response behavior at various k. Note that the amplitude response is pretty low
(particularly, for k& = 0 it peaks at —24dB), therefore additional boosting of the
output signal may be necessary in practical usage.

[H (jw)l,dB
12+
18+
24 +
_30 =+

-36 T

Qo

&

()
EV

we/8

Figure 5.41: Amplitude response of the 8-pole bandpass ladder
filter for various k& > 0.

The instantaneously unstable range of k is found similarly to the 4-pole
bandpass ladder and is k > 28 = 256.

An interesting feature of the 8-pole bandpass ladder is that at negative k
the filter obtains two resonance peaks (Fig. 5_42)2 Indeed, notice that the
phase response of the 8-pole lowpass-highpass chain is the same as the one of
the 8-pole lowpass chain:

st 1

ag(

M s T MBIy s

s=jw, weR

Thus we still have a 180° phase shift at w = V2 +1.
The amplitude response of a single lowpass-highpass pair at w = v2 + 1 is

s V2+1 1 1

(1+ 9)2 T1r (V212 (2FED+(V2E1) 22

s=j(V2%1)

therefore selfoscillation occurs at k = —(2v/2)? = —64.

8-pole bandpass ladder with bandwidth control

The occurence of two resonance peaks in an 8-pole bandpass ladder at k < 0
motivates the introduction of the possibility to control the distance between
these two peaks. In Section 5.7 we have introduced two different approaches
to control the 4-pole bandpass ladder’s bandwidth. Apparently, the approach
using the k parameter is not good for our goal here, since we don’t want to affect

12In nonlinear versions of this filter this can generate a particularly complex sound, as the
two resonance peaks and the input signal fight for the saturation headroom.
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|H(jw)|,dB ,

24 +

230 +

-36 +

42 +

-48 +

i I
EV

wcl/8 (V2 - 1w,

Figure 5.42: Amplitude response of the 8-pole bandpass ladder
filter for various k£ < 0.

¢ (V2 +1)we Bwe

the amplitude response shape in the vertical direction. Also, from Fig. 5.42
it seems that the variation of k in the negative range has little effect on the
actual bandwidth. On the other hand, the approach using the damping of the
underlying 2-pole bandpasses looks much more promising.

Representing the 8-pole bandpass ladder in terms of normalized 2-pole band-
passes (Fig. 5.43) we notice that it is an LP to BP transformation of the filter
in Fig. 5.44. The filter in Fig. 5.44 is essentially the same as the ordinary 4-pole
lowpass ladder (Fig. 5.1), except that

- the feedback is positive, so that selfoscillation at w = 1 occurs at some
negative value of k

- the output signal amplitude and the feedback amount are 16 times lower,
thus selfoscillation at w = 1 doesn’t occur at k = —4 but at £k = —64
(which matches the already established fact of selfoscillation of Fig. 5.40
and equivalently Fig. 5.43 at k = —64).

Therefore by controlling the bandwidth of the LP to BP transformation, we will
control the distance between the resonance peaks in Fig. 5.42.

x4 times

Figure 5.43: 8-pole bandpass ladder filter expressed in terms of
normalized 2-pole bandpasses.
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x4 times
rT T T T T T T ml
| 1/2 |
(1) : LP, : y(t)
[ [
- - - - - _ _ _
k
e
NN

Figure 5.44: 4-pole lowpass ladder filter with positive feedback and
additional gains of 1/2. The LP to BP substitution applied to this
filter produces the filter in Fig. 5.43.

Since the resonance peak in Fig. 5.44 is occurring at w = 1, the formula
(4.20) expresses R in terms of the distance between the two images of this peak
after the LP to BP transformation. Therefore we can directly use the formula
(4.20) to control the distance between the resonance peaks in Fig. 5.43. The
prewarping techniques described in Section 4.6 also apply, thereby allowing us
to achieve the exact positioning of the resonance peaks (in the limit & — —64).

There is an important question concerning the choice of the specific topology
for the normalized bandpasses BPn. Of course, the most obvious choice would
be to use an SVF. This should work completely fine in the linear case. In a
nonlinear case, however, we might want to use a different topology. Particularly,
we might want that at R = 1 our controlled-bandwidth topology becomes fully
identical to Fig. 5.40 (therefore obtaining the sound, which is identical to the
one of the structure in Fig. 5.40 even in the presence of nonlinear effects).

Assuming that Fig. 5.40 implies interleaved 1-pole low- and highpasses (as
shown in Fig. 5.45), a good solution is provided by the TSK/SKF filters. E.g.
considering the structure in Fig. 5.21 (which is essentially the TSK filter from
Fig. 5.23), we can notice that at k& = 0 it becomes fully equivalent to a sin-
gle lowpass-highpass pair. This suggests that we could use this structure to
construct a halved normalized bandpass (Fig. 5.46), where expressing the TSK
feedback k in terms of damping R we have k = 2(1 — R). Note that at R =1
not only the feedback path in Fig. 5.46 is disabled, but also the output gain
element R is becoming transparent. Using the halved normalized bandpass in
Fig. 5.46, we could reimplement Fig. 5.45 as Fig. 5.47.

5.10 Diode ladder

In the diode ladder filter the serial connection of four 1-pole lowpass filters (im-
plemented by the transistor ladder) is replaced by a more complicated structure
of 1-pole filters (implemented by the diode ladder). The block diagram of the
diode ladder is shown in Fig. 5.48, while the diode ladder filter adds the feed-
back loop around that structure, feeding the fourth output of the diode ladder
into the diode ladder’s input (Fig. 5.49).
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x4 times
- - - - - - - = 1
| |
z(t) : LPy ’—> HP, : y(t)

| |
- - - - - _ _ __ _

k

e
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Figure 5.45: Fig. 5.40 implemented by interleaved 1-pole low- and
high-passes.

(1) LPy | HP; o> (1)

R

b
~J

2(1 — R)

Figure 5.46: Halved normalized TSK bandpass.

x4 times

Figure 5.47: 8-pole bandpass ladder filter expressed in terms of
halved normalized TSK bandpasses.

It is instructive to write out the 1-pole equations implied by Fig. 5.48:

i =we((x+y2) —y1)
g2 = we((y1 +y3)/2 — y2)

Ys = wc((yQ +ya)/2 — y3)
Ja = we(y3/2 — ya)

(5.18)

In this form it’s easier to guess the reason for the gain elements 1/2 used in
Fig. 5.48, they perform the averaging between the feedforward and feedback
signals. However this averaging in (5.18) and Fig. 5.48 is not done fully consis-
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LP; @ LP, n—)%—)b—)LPl >—>[>—>LP1

1/2 1/2 1/2

(1) y1(t) Yya(t) y3(t) ya(t)

Figure 5.48: Diode ladder.

Y4
|

Figure 5.49: Diode ladder filter.

tently. It would have been more consistent to have no 1/2 gain element at the
input of the fourth lowpass, rather than of the first one:
i =we((z+y2)/2 — 1)
U2 = we((y1 +y3)/2 — y2)
js = we((y2 +ya) /2 — ys)
s = we(ys — ya)

(5.19)

in which case the first lowpass would take (x + y2)/2 as its input, the second
lowpass would take (y; + y3)/2 as its input, the third lowpass would take (y +
y4)/2 as its input, and the fourth lowpass would take y3 as its input. However,
(5.18) is a more traditional way to implement a diode ladder filter. Anyway, the
difference between (5.18) and (5.19) is actually not that large, since (as we are
going to show below) they result in one and the same transfer function,

The more complicated connections between the 1-pole lowpasses present in
the diode ladder “destroy” the frequency response of the ladder in a remarkable
form, which, is responsible for the characteristic diode ladder filter sound.’
Generally, the behavior of the diode ladder filter is less “straightforward” than
the one of the transistor ladder filter.

Transfer function

We are going to develop the transfer function for the diode ladder in a gen-
eralized form (Fig. 5.50), where H,(s) denote blocks with respective transfer
functions. In the case of Fig. 5.48 and (5.18) we would have

G(s)
2

130ne could argue that the characteristic sound of diode ladder filters is due to nonlinear
behavior, however the nonlinear aspects do not show up unless the filter is driven hot enough.

Hy(s) = G(s) Hy(s) = Hs(s) = Hy(s) = (5.20)
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while in the case of (5.19) we would respectively have

Hl(S) = HQ(S) = H3(S) = GéS) H4(S) = G(S) (5.21)
where )
G(s) = T (5.22)
PRI Wt B A0 W o B B e
z(t) y1(t) Yya(t) y3(t) ya(t)

Figure 5.50: Generalized diode ladder in transfer function form.

Assuming complex exponential signals e%!, for the Hy(s) block we have
Ys = Hyys

(where Hy is short for Hy(s)), therefore

L= (5.23)
H, Y4 = Y3 .

For the Hjs(s) block we have

ys = H3(y2 + ya)

Substituting (5.23) we have

1
= H
H4y4 3(y2 + y4)

HL?AZ/AL = Y2 + Ya
1— Hsy
Hsy
where H34 is a short notation for H3Hy.
For the H(s) block we have

Ya = Y2 (5.24)

Y2 = Ha(y1 +y3)
Substituting (5.23) and (5.24) we have

1— Hsy 1
= H. —
Ha, Ya 2 (yl + o y4>
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1— Hsy 4 1
Hoss Ya =41 H, Ya
1—- Hsy — H.
H374 23 y4 = yl (5.25)
234

For the H;(s) block we have
v = Hi(z +y2)

Substituting (5.24) and (5.25) we have

1—H34—H23 1_I—I34
—_— = H
Hyss Ya 1|2+ Ho M

34
1— Hsy —Hz:sy4 . 1 —H34y4
Hig3y Hsy
1— Hsy — Hog — H12(1 — H3a)
Ya =
Hig34
1 —Hyo — Ho3 — H3y + Hiy234
Ya =
Hig34
H
A(s) =2 = 1234 (5.26)

1 — Hyg — Hoz — Hzy + Hi23s

where A(s) is the diode ladder’s transfer function. It is easy to see that sub-
stituting (5.20) or (5.21) into (5.26) gives identical results, therefore transfer
functions arising out of (5.18) and (5.19) are identical. Formula (5.26) also
gives one more hint at the reason to use a 1/2 gain with all 1-poles except the
first or the last one, as in this case we get unit amplitude response at w = 0:

Since we are specifically interested in Fig. 5.48, let’s write its transfer func-
tion in a more detailed form. Substituting first (5.20) and then (5.22) into (5.26)
we have

G*/8 B 1 B

1-G2+G4/8 8G4—-8G2+1
1 1

8(1+8)4—8(1+s)2+1 Ty(s+1)

A(s) =

(5.27)

where Ty (z) = 8z* — 82% 4 1 is the fourth-order Chebyshev polynomial.'* The
poles of A(s) are therefore found from s + 1 = z, or s = —1 4+ x,, where
xn € (—1,1) are the roots of the Chebyshev polynomial Ty(x):

1i1
27 2V2

14 Although the denominator of A(s) is a Chebyshev polynomial, this has nothing to do
with Chebyshev filters, despite the name.

Ty =
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Therefore the poles of A(s) are purely real and located within (—2,0):

1 1

Since the poles of A(s) are located on the negative real semiaxis and there are
no zeros, |A(jw)| is monotonically decreasing to zero on w € [0,4+00). Thus
A(s) is a lowpass.'®

In Section 2.16 we have seen that two linear systems sharing the same trans-
fer function are equivalent as long as the only modulation which is happening is
the cutoff modulation. Therefore, as long as our implementation is purely linear,
we could replace the complicated diode ladder feedback system in Fig. 5.50 with
simply a serial connection of four 1-poles, whose cutoffs are defined by (5.28).1¢
Further details of replacement of the diode ladder by a series of 1-poles can be
taken from Section 8.2 where general principles of building serial filter chains
are discussed.

The transfer function of the diode ladder filter is obtained from (5.27) giving

A 1 1 1
H = = = =
(s) 1+kA  k+A"1 kE4+T414s) 81+s)*—81+s)?+1+k
(5.29)
The corresponding amplitude response is plotted in Fig. 5.51.
|H(jw)|,dB , I
:
I
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|
1 k - 16 1 »
we/8 We 8we w

Figure 5.51: Amplitude response of the diode ladder filter for var-
ious k.

The poles of the diode ladder filter, if necessary, can be obtained by solving
8(1+s)* —8(1+s)*+1+k=0

which is a biquadratic equation in (1 + s).

15The amplitude response of A(s) can be seen in Fig. 5.51 at k = 0.

16Note that such replacement only gives a correct modal output y4, which is the one we
usually need. Other modal outputs, if needed at all, would have to be obtained in a more
complicated way by combining the output signals of the 1-poles.
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In regards to the multimode diode ladder filter, notice that the transfer
functions corresponding to the y,(t) outputs are different from the ones of the
transistor ladder, therefore the mixing coefficients which worked for the modes
of the transistor ladder filter, are not going to work the same for the diode
ladder.

Resonance

In order to obtain the information about the resonating peak, we need to find
frequencies at which the phase response of A(s) is 0° or 180°. Therefore we are
interested in the solutions to the equation

Im(8(1+s)* —8(1+s)>+1) =0  where s = jw, w € R
Substituting jw for s we have

Im(8(1+s)* —8(1+s)? + 1) = 8Im((1 + jw)* — (1 + jw)?) =
=Im((1 - w?+2jw)?* — (1 -’ + 2jw)) =4(1 — w*)w — 2w =0

The solution w = 0 is not very interesting. Therefore we cancel the common
factor 2w obtaining
2(1 —w?) =1

and therefore 1

V2

Now, in order to find the selfoscillation boundary value of k we need to find the
frequency response of A(s) at w = 1/v/2. Substituting s = j/v/2 into (5.27)
and using (5.6) we have

w==

k:8(1+s)4—8(1—|—s)2+1:8<1+j§>4—8(1+\j§>2+1=

=8(;+jx/§)2—8<;+j\/§>+1=
:8(—Z+j\@>—8<;+j\/§>+1=1—14—4:—17

Now, since we are already having negative feedback in Fig. 5.48, the selfoscilla-
tion occurs at k = 17.

Note that the amplitude response in Fig. 5.51 is matching the above analysis
results.

TPT model

Converting Fig. 5.48 to the instantaneous response form we obtain the structure
in Fig. 5.52. From Fig. 5.562 we wish to obtain the instantaneous response of
the entire diode ladder. Then we could use this response to solve the zero-delay
feedback equation for the main feedback loop of Fig. 5.49.

The structure in Fig. 5.52 looks a bit complicated to solve. Of course we
could always write a system of linear equations and solve it in a general way,
e.g. using Gauss elimination, but this has its own complications. Therefore we
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’% g&+sa

T n Y2 Y3 Ya

Figure 5.52: Diode ladder in the instantaneous response form.

Figure 5.53: Diode ladder in the nested instantaneous response
form.

would rather like to see if we somehow could still use the approach of nested
zero-delay feedback loops, as we have been doing with other filters until now.

Introducing the nested systems, as shown in Fig. 5.53 by dashed lines, we
can first treat the innermost system which has input y, and outputs y3 and y4.
The equations for this system are

ys = g(y2 +ya) + 53
Y4 = gys + S4

Solving for y3, we obtain

g gsa+ 83
17g292+ - = g23Y2 + S23

where go3 and sg3 are new variables introduced as shown above. Since g€ + s,
denote 1-pole lowpasses with halved input signals, 0 < g < 1/2. Respectively
0 < g% < 1/4 and thus the zero-delay feedback loop doesn’t get instantaneously
unstable. The range of go3 is

Yz =

oy 12 1/2 2
0<92=7" 05 <T_(1/22 " 34" 3

Going outside to the next nesting level we have
Y2 = g(y1 +y3) + 52 = gys + gy1 + s2 = g(gasy2 + s23) + gy1 + s2
Solving for ys:

o g gs23 + S2
= Y1+
1 —gga3 1 —gga3

Y2 = g12Y1 + S12



172 CHAPTER 5. LADDER FILTER

where 0 < ggag < 1/2-2/3 = 1/3, thus the zero-delay feedback loop doesn’t get
instantaneously unstable. The range of g1o is

_ g /2 12 1/2 3
0<912_1—9923<17}.g_1—1/3_2/3_4
2 3

Going outside to the outermost level we have
y1 =29(x +y2) + 51 =29y2 + 29z + s1 = 29(g1291 + 512) + 297 + 51

Solving for y;:

2g n 2gs12 + 51

= T = go1% + So1
1—2gg12 1—2gg12 g

Y1

where 0 < 2gg12 < 2-1/2-3/4 = 3/4, thus the zero-delay feedback loop doesn’t
get instantaneously unstable. The range of go; is

2g 1 1 1

< = = =14
1-2g9912 | _, 3 1-3/4 1/4
4

0< go1 = 1

2

Introducing for consistency the notation y4 = gys + s4 = g34y3 + S34, We
obtain the instantaneous response for the entire ladder

Ya = G34Y3 + S34 =
= g34(g23y2 + S23) + S34 = g34923Y2 + (934523 + 534) = g2y + S24 =
= g24(g12y1 + 812) + 824 = g24g12Y1 + (924512 + S24) = g1aY1 + 514 =
= 914(901Z + S01) + 514 = 9149017 + (914501 + 514) = GoaT + S04

it’s not difficult to realize that

3 21
= 4.—.—. — =1
0 < goa = g01912923934 < 13 3
Now gp4 is the instantaneous gain of the entire diode ladder. Respectively the
total gain of the of the zero-delay feedback loop in Fig. 5.49 is —kgo4 and thus
the feedback doesn’t get instantaneously unstable provided k& > —1.

SUMMARY

The transistor ladder filter model is constructed by placing a negative feedback
around a chain of four identical 1-pole lowpass filters. The feedback amount
controls the resonance.

The same idea of a feedback loop around a chain of several filters also results
in further filter types such as 8-pole ladder, diode ladder and SKF/TSK.



Chapter 6

Nonlinearities

The filters which we were discussing until now were all linear. Formally this
means that if we consider a filter as an operator, this operator is a linear one.
Practically this meant that the structures of our filters were consisting of gains,
summators and integrators. However, filters used in synthesizers often show no-
ticeably nonlinear behavior. In terms of block diagrams, introducing nonlinear
behavior means that we should add nonlinear elements to the set of our block
diagram primitives.

Nonlinear filters have more complicated behavior and are capable of produc-
ing richer sound than the linear ones. Usually they exhibit complex overdriving
effects, when driven with an input signal of a sufficiently high level. Another
special feature of many nonlinear filters is their ability to increase the resonance
beyond a formally infinite amount, entering the so-called self-oscillation.

6.1 Waveshaping

We just mentioned that in order to build non-linear filters we need to introduce
nonlinear elements into the set of our block diagram primitives. In fact we are
going to introduce just one new type of element, the waveshaper:

2(t) —= f(z) y(t)

A waveshaper is simply applying a given function to its input signal, and sends
the respective function value as its output signal:

y(t) = f(x(t))

The function f(z) can be any “reasonable” function, e.g. f(x) = |z| or f(z) =
sinz etc.

Usually the function f cannot vary with time, that is, the function’s pa-
rameters, if it has any, are fixed. E.g. if f(z) = sinaz, then a is usually fixed
to some particular value, e.g. a = 2, which doesn’t vary. Often, this is just a
matter of convention. e.g. the waveshaper sin ax can be represented as a serial
connection of a gain element and the waveshaper itself:

o(t) ——>— (@) (0
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in which case the waveshaper itself is time-invariant.

Still, if necessary, it’s no problem for the waveshaper to contain time-varying
parameters, as long as the time-varying parameters are “externally controlled”
(in the same way how e.g. filter cutoff is controlled). That is, the waveshaper’s
parameters cannot depend on the values of the signals within the block diagram.
If one needs the parameter dependency on the signals of the block diagram, then
one should consider such dependencies as additional inputs of the nonlinear
element and we end up with a multi-input element of the block diagram. It is
no problem to use such elements, but normally we should not refer to them as
waveshapers, since commonly, waveshapers have one input and one output.

In order to be representable as a function of the input signal, a waveshaper
clearly shouldn’t have any dependency on its own the past. That is waveshaper
is a memoryless element.

6.2 Saturators

The probably most commonly used category of waveshapers is saturators. There
is no precise definition of what kind of waveshaper is referred to as saturator,
it’s easier to give an idea of what a saturator is by means of example.

Bounded saturators
One of the most classical saturators is the hyperbolic tangent function:
y(t) = tanh z(¢) (6.1)

(Fig. 6.1). Even if the input signal of this saturator is very large, the output
never exceeds +1. Thus, this element saturates the signal, which is the origin
of the term saturator.

Ay

Figure 6.1: Hyperbolic tangent y = tanh z.

Other saturators with shapes similar to the hyperbolic tangent include:

y =sinarctanz = x/v/1 + a2 (6.2a)
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(1 - 4) if <2
=7 (1= lzl/4) 1 ol < (Parabolic saturator) (6.2b)
sgn x if |z| > 2
y=xz/(1+ |z|) (Hyperbolic saturator) (6.2¢)

(this list is by no means exhaustive). Is is not difficult to see that the values of
the hyperbolic tangent (6.1) and the saturators (6.2) do not exceed 1 in absolute
magnitude. That is, their ranges are bounded. We are going to refer to such
saturators as bounded-range saturators or simply bounded saturators.

From the four introduced saturation functions the parabolic saturator (6.2b)
stands out in that the full saturation is achieved at |z| = 2, whereas for other
shapes it’s not achieved at finite input signal levels. Thus, the range of (6.2b)
is [—1, 1], therefore being compact. We will refer to such saturators as compact-
range monotonic saturators.

Another important distinction of the parabolic saturator is that it has three
discontinuities of the second derivative (at z = 0 and * = £2) and the hy-
perbolic saturator has one discontinuity of the second derivative (at z = 0).
Even though such discontinuities are not easily visible on the graph, they af-
fect the character of the saturator’s output signal. Usually such discontinuities
are rather undesired, as they represent abrupt irregularities in the saturator’s
shape, so it’s generally better to avoid those.! A common reason to tolerate

derivative discontinuities in a saturator, though, is performance optimization.

Transparency at low signal levels

A property commonly found with saturators is that at low levels of input signals
the saturator is transparent: f(z) = z for z = 0. Equivalently this condition
can be written as

f(0)=0

fl(o)=1
Visually it manifests itself as the function’s graph going at 45° through the
origin. Clearly, all the previously introduced saturators have this property.
The property (6.3) is not really a must, but it’s quite convenient if the
saturators have it, particularly for the analysis of system behavior at low signal
levels. For that reason it’s common to represent a non-unit derivative at the
origin via a separate gain. Given a saturation function f(z) such that f(0) =0
but f/(0) # 1 we introduce a different saturation function f(z) such that f(0) =
0 and f'(0) = 1. E.g. we can take

(6.3)

so that ~
fl@) = f(0)f(x)
The coefficient f/(0) is then represented as a separate gain element.
£(0)
z(t) —= f(z) y(t)

ISometimes the effect created by discontinuities is explicitly being sought after, e.g. in a
rectification waveshaper f(z) = |z|.
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Apparently this representation is not available if f'(0) = 0, however in such cases
the saturator effectively breaks the connection at low signal levels, working as
a zero gain.

Saturators with f(0) # 0 can be represented by separation of the value f(0)
into a DC offset signal:

flz) = f(0) + f()

which is treated as another input signal with a fixed value f(0):

Unbounded saturators

Sometimes we want saturation behavior, but do not want a hard bound on the
output signal’s level. One function with this property is inverse hyperbolic sine:

y=sinh 'z =1In (x + Va2 + 1) (6.4)

(Fig. 6.2) While having the usual transparency property (6.3), it is not bounded.
The asymptotic behavior of the hyperbolic sine is similar to the one of the
logarithm function:

-1
sinh™"  ~ sgnz - In |2x| xr — 00

Another saturator with a similar behavior can be obtained as an inverse of
y = x(1 + |x|), which is
2x

Y= —7r—
14+ +/1+ |4z

behaving as \/m at x — oo.

Such kind of waveshapers are also referred to saturators, even though the
saturation doesn’t have a bound. We will refer to them as unbounded-range or
unbounded saturators.

Apparently, unbounded saturators represent a weaker kind of saturation
than bounded ones. The weakest possible kind of saturation is achieved if y
grows as a linear function of z at x — oo. Such saturators can be built by
introducing a linear term into the saturator’s function. Given a saturator f(x)
where f(x) can be any of the previously discussed saturators, we build a new
saturator by taking a mixture of y = f(z) and y = x:

(6.5)

y=(1-a)f(z)+ax 0<a<l) (6.6)

where we needed to multiply f(z) by 1 — a to keep the transparency property
(6.3) (provided it was holding for f(x)). Apparently y ~ ax for 2 — co. We
can refer to such saturators as asymptotically linear saturators. The previously
discussed saturators such that y = o(x) for z — oo can be respectively referred
to as slower-than-linear saturators.
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Figure 6.2: Inverse hyperbolic sine y = sinh ™! z.

Soft- and hard-clippers

One special but important example of a saturator is the hard clipper, shown in
Fig. ﬁi In contrast, we will be referring to all previously discussed saturators

as soft clippers.®

Figure 6.3: Hard clipper.

2 Apparently, hard clipper is a compact-range saturator.

3There doesn’t seem to be a universally accepted definition of which kinds of saturators are
referred to as soft clippers, and which aren’t. E.g. the set of soft clippers could be restricted
to contain only bounded saturators. In this book we will understand the term soft clipper in
the widest possible sense.
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Saturation level

The previously introduced bounded saturators (6.1) and (6.2) were all saturating
at y = £1. But that is not always desirable. Given a bounded saturator f(x)
with the saturation level y = 1 we can change the saturation level to y = +L
by simultaneouly scaling the = and y coordinates:

y(t) = L- f(z/L) (6.7)

(Fig. 6.4). The simultaneous scaling of x and y preserves the transparency
property (6.3).

2 Y
1o y = 2tanh(z/2)
1NN o y=tanhe
N I R
__________________ 7 +-1
+-2

Figure 6.4: Changing the saturation level.

Saturator as variable gain

Sometimes it is useful to look at saturators as at variable gain elements. E.g.
we can rewrite y = tanh z as

tanh
y =tanhz =z - ar; a =g(z)-x (6.8)

The graph of the function g(z) = 222 js shown Fig. 6.5. Thus

glx) =1 for z ~ 0 (6.9a)
~1

/|7 for x — o0 6.9b)

That is at low signal levels the saturator is transparent, at high signal levels is
reduces the input signal’s amplitude by a factor of approximately 1/|z|. Ap-
parently, this kind of behavior is shown by all bounded saturators. Unbounded
saturators give a similar picture, as long as they are slower than linear. For
asymptotically linear saturators, such as (6.6), we have g(z) — « instead.
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AQ(I)

19
———/1\
4 -3 -2 1 o 1 2 3 4 =z

tanh
Figure 6.5: g(z) = e

6.3 Feedback loop saturation

In the ladder filter and its variations, such as 4-pole and 8-pole ladders and
SKF/TSK filters, the resonance is implemented by means of a feedback loop.
By this we mean that when the feedback loop is disabled (by setting the feedback
gain to zero), there is no resonance, and the resonance amount is increased by
increasing the amount of the feedback (thus e.g. the SVF filter doesn’t fall into
this category). With such filter structures, when the feedback amount goes
above a certain threshold (e.g. k = 4 for the 4-pole lowpass ladder or k = 2 for
the SKF) the filter becomes unstable and “explodes” (the filter’s state and the
output signal indefinitely grow). By putting a saturator anywhere within such
feedback loop we can prevent the signals in the feedback loop from the infinite
growth, making the filter stable again.

Feedforward path saturation

One of the common positions for the feedback loop saturator is in the feed-
forward path right after the feedback merge point (Fig. 6.6). Given that the
saturator is a bounded one (such as tanh x), the output signal of such saturator
is guaranteed to be bounded. Since the rest of the feedforward path in Fig. 6.6
is known to be BIBO-stable (independently of the feedback setting), the output
of the filter is bounded too and thus the entire filter is BIBO-stable.

x(t) tanh | 4 x LP | y(t)
k

g
T

Figure 6.6: Ladder filter with a saturator in the feedforward path.

We could also view the saturator in Fig. 6.6 as a variable gain g (6.8).
Apparently, as the amplitude of the signal grows, the average value of g is
decreasing to zero. In those terms, the saturator is effectively reducing the
feedback gain from k to k - (g) (where (g) is the average value of g). Since at
large signal amplitudes (g) can get arbitrarily close to zero, the value of k - (g)
goes below 4, which, intuitively, prevents the filter from exploding. Unbounded
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saturators are therefore having the same effect, as long as they are slower than
linear.

With asymptotically linear saturators the filter will still explode at some
point. Assuming the saturator has the form (6.6) we have g(x) — o and thus
(9) = a and k- (g) — ak. Thus, we could expect that for something like ak < 4
the filter should not explode.

Effects of transient response

As we should remember, one possible way to look at a filter getting unstable is
that its transient response grows instead of decaying with time. Each pair of
conjugate poles p,, and p;, of the filter contributes a transient component of the
form

AePrt 4 A*ePrt = qet RePn cos(tTm p, + @)

Thus at Rep,, = 0 we have a sinusoid of frequency w = Imp,,. At Rep,, > 0 we
have the same sinusoid of an exponentially growing amplitude. This sinusoid
will be present in the filter’s output even in the absence of the input signal.f
Since at Rep, > 0 this sinusoid is self-sustaining, the filter is said to self-
oscillate. The saturator in the feedback loop prevents the self-oscillation from
infinite growth.”

Suppose the system in Fig. 6.6 is at k ~ 4, that is it is selfoscillating or at
least strongly resonating. Let

u(t) = z(t) — ky(t) (6.10)

denote the input signal of the saturator and recall the representation of a satu-
rator as a variable gain element (6.8). Then the output signal of the saturator
is

v(t) = tanhu(t) = g(u)-u = g(u)z(t) —g(wk-y(t) = gu)z(t) —k(u)y(t) (6.11)

tanh u
u

where g(u) = Comparing (6.10) to the last expression in (6.11) we
see that the effect of the saturator can be seen as the “replacing” x(t) with
g(uw)z(t) and ky(t) with k(u)y(t). Thus, k(u) = g(u)k is the new “effective
feedback amount”. Now, by increasing the amplitude of the input signal z(t)
we increase the amplitude of u(t) and thus reduce the magnitude of g(u) and
thereby reduce the effective feedback amount k, which in turn shows up as
reduction of resonance. That is, at high amplitudes of the input signal the
resonance oscillations kind of disappear.

One intuitive way to look at this is to say that the input signal and the
resonance are “fighting” for the saturator’s headroom, and if the input signal

4If the system is in the zero state, then in the absence of the input signal it will stay
forever in this state of “unstable equilibrium”. In analog circuits, however, there are always
noise signals present in the system, which will excite the transient response components,
thus destroying the equilibrium. In the digital implementation such excitations need to be
performed manually. This can be done by initializing the system to a not-exactly-zero state,
or by sending a short excitation impulse into the system at the initialization, or by mixing
some low-level noise at one or multiple points into the system. Often a very small constant
DC offset will suffice instead of such noise.

5As the saturator is effectively reducing the total gain of the feedback loop, at k = 4 the
selfoscillation will first have an infinitely small signal level, where the saturator is transparent.
Increasing the value of k further we can bring the selfoscillation to an audible level.
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has a very high level, it “pushes” the resonating component of the signal out.
On the other hand, if the input signal level is low, then the entire headroom is
taken by the resonating component which will be therefore much louder than
the input signal. There is usually some “sweet spot” in the input signal’s level,
where the fighting doesn’t kill the resonance, but results in a nice interaction
between the input signal and the resonance.

Feedback path saturation

The amount of fighting (at the same input signal level) can be decreased by
putting the saturator into the feedback path, either prior to the feedback gain
(Fig. 6.7) or past the feedback gain (Fig. 6.8).° In this case the input signal (t)
doesn’t directly enter the saturator but first goes through the four 1-pole lowpass
filters, which somewhat reduces its amplitude (depending on the signal and on
the filter’s cutoff). The difference between Figs. 6.7 and Fig. 6.8 is obviously
that in one case the effective saturation function is y = ktanh z whereas in the
other one it’s y = tanh k2. This means that in the first case the saturation level
is &k whereas in the second one it’s fixed to £1 (Fig. 6.9).

(t) 4 x LP y(t)

o

tanh

Figure 6.7: Ladder filter with a saturator in the feedback path
(pre-gain).

Figure 6.8: Ladder filter with a saturator in the feedback path
(post-gain).

The amount of fighting will also be decreased by using a weaker saturation
curve. E.g. using an unbounded saturator instead of a bounded one, in the most
extreme case having an asymptotically linear saturator. A classical example
of this approach is ecountered in the nonlinear Sallen-Key filter (Fig. 6.10).
It is an interesting observation that the sound of nonlinear Sallen-Key filter
significantly differs from the sound of nonlinear transposed Sallen—Key filter
(Fig. 6.11) since in one case the saturator’s output goes through a highpass and
a lowpass, while in the other case it goes through two lowpasses before reaching
the filter’s output.z

6Notice that, with the saturator positioned in the feedback path, at k = 0 the filter
effectively becomes linear.
7This observation was made by Dr. Julian Parker.
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Ay

+-2

Figure 6.9: Pre-gain (y = ktanhx, solid) vs. post-gain saturation
(y = tanh kz, dashed).

LP

ILp (t)
TBP (t)

MM, [— LP, | y(t)

HP

ax+ (1 —a)sinh ™ z

Figure 6.10: Sallen-Key filter with an asymptotically linear satu-

rator.
LP
t > YLP (t)
o0 t o yor (1

ar+ (1 —a)sinh™' }7

Figure 6.11: Transposed Sallen-Key filter with an asymptotically
linear saturator.

Transfer function

For systems containing nonlinear elements the complex exponentials ! are no
longer system eigensignals. That is, given an input signal of the form Ae*® the
output will not have a similar form. Therefore the idea of the transfer function
as well as amplitude and phase responses doen’t work anymore.

Still, given that the nonlinear elements satisfy the transparency condition
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(6.3), at low signal levels the nonlinearities have almost no effect and the system
is approximately linear. In that sense the transfer function stays applicable to a
certain degree and still can be used to analyse the filter’s behavior, although the
error is growing stronger at higher signal levels. Nevertheless, as a rule, qualita-
tively the filters retain their main properties also in the presence of saturators.
The lowpass filters stay lowpass, bandpass filters stay bandpass etc.

6.4 Nonlinear zero-delay feedback equation
The introduction of the nonlinearity in the feedback path poses no problems

for a naive digital model. In the TPT case however this complicates the things
quite a bit. Consider Fig. 5.5 redrawn to contain the feedback nonlinearity

(Fig. 6.12).
[ —

Figure 6.12: Nonlinear TPT ladder filter in the instantaneous re-
sponse form.

Writing the zero-delay feedback equation we obtain
u=x — k(Gtanhu + S) (6.12)

Apparently, the equation @ is a transcendental one. It can be solved only
using numerical methods. Also, the linear zero-delay feedback equation had
only one solution, but how many solutions does (6.12) have? In order to answer
the latter question, let’s rewrite (6.12) as

(x — kS) —u = kGtanhu (6.13)

If k > 0 then v(u) = kG tanh u is a nonstrictly increasing function of u,* while
v(u) = (x — kS) — u is a strictly decreasing function of u. Thus, (6.13) (and
respectively (6.12)) has a single solution (Fig. 6.13). At k < 0 we also typically
have one solution (Fig. 6.14) unless kG > —1, in which case (6.13) has three
solutions Fig. 6.15. Fortunately, kG > —1 corresponds to instantaneously un-
stable feedback, and thus normally we are not so much interested in this case
anyway. However, if needed, one could use the concept of the instantenous
smoothing to find out the applicable solution among the three formal ones.

Having found the zero-delay equation solution u, we proceed in the usual
way, first letting u through the tanh waveshaper and then letting it through the
1-pole lowpasses (denoted as G¢ + S in Fig. 6.12), updating the 1-pole states
along the way and ultimately obtaining the value of y.

Now we are going to discuss some possible approaches for finding u. This
discussion is by no means exhaustive and the reader is advised to consult the
literature on numerical methods for further information.

8Recall that for a series of 1-pole lowpasses (which G¢ + S denotes in Fig. 6.12) 0 < G < 1.
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A v
kG tanhu
0 u
Figure 6.13: The solution of (6.13) for k£ > 0.
L U
kG tanhu \
0 u

Figure 6.14: The solution of (6.13) for —1 < kG < 0.

6.5 Iterative methods

Fixed-point iteration

Starting with some initial value ©v = wg we compute iteratively the left-hand
side of (6.12) from the right-hand side:

Unt1 = ¢ — k(Gtanhu, + 5) (6.14)
and hope that this sequence converges quickly enough.” Intuitively, the conver-

gence gets worse at larger absolute magnitudes of kG, that is at high cutoffs
(large G) and/or high resonance values (large k). Conversely, it gets better as

9In a realtime situation it would be a good idea to artificially bound the number of iterations
from above.



6.5. ITERATIVE METHODS 185

QV

kG tanh u

Figure 6.15: Solutions of (6.13) for kG < —1.

the sampling rate increases (since G becomes smaller in this case). Generally,
the convergence fails for |[kG| > 1.

The process defined by (6.14) has a strong similarity to the naive approach
to time discretization. Indeed, for the frozen values of G and S one can treat
Fig. 6.12 as stateless zero-delay feedback system (Fig. 6.16). And then we simply
implement this system in the naive way by introducing a unit delay at the
point of the signal u (Fig. 6.17) and letting this system run for some number of
discrete-time ticks. This is a bit like oversampling of the instantaneous feedback
loop part of the system.'?

Figure 6.16: Zero-delay feedback equation (6.12) as a stateless zero-
delay feedback system.

So, it is as if we introduce a “nested” discrete time into a single tick of the
“main” discrete time. This suggests a natural choice of the initial value of u
for (6.14), namely, taking the previous value of u (that is the value from the
previous sample of the “main” discrete time) as the iteration’s initial value ug.

Under the consideration of the concept of the instantaneous smoothing (in-
troduced in Section 3.13), the interpretation in Fig. 6.17 also suggests a way to

100f course this is not exacty oversampling, because the state of the system (manfesting
itself in the S variable) is frozen.
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Figure 6.17: Interpretation of the equation (6.14) as an “oversam-
pled” naive discrete-time model of the stateless feedback loop in
Fig 6.16.

improve the convergence of the method by introducing a smoother into the feed-
back loop of Fig. 6.17. In a practical implementation such smoother can be a
naive 1-pole lowpass, like in Fig. 6.18, which effectively lowers the total feedback
gain from kG to a smaller value.!! However, even though such smoother may
improve the convergence at high kG, obviously it can deteriorate the conver-
gence in good situations. Particularly at k£ = 0 the iteration process is supposed
to immediately converge, however in the presence of the lowpass smoother it
will converge exponentially instead.

x LP; F)

Figure 6.18: Using a 1-pole lowpass smoother to improve conver-
gence of signals in Fig. 6.17.

Newton—Raphson iteration

A very popular approach in practical DSP is Newton—Raphson method, which
is based on the idea of linearization of the function around the current point w,
by the tangent line. Instead of solving (6.13) we solve

(x — kS) — upy1 = kG (tanhu, + (Uny1 — up) tanh’ u,) (6.15)

for u,+1 to obtain the next guess and repeat the iteration (6.15) until it con-
verges. Fig. 6.19 illustrates the idea.

HClearly, the smoother will not help in the instantaneously unstable case, occurring when
kG < —1.
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Figure 6.19: Newton-Raphson method: linearization by the tan-
gent line.

The textbook version of Newton-Raphson method is formulated in terms
of searching for a zero-crossing of a function (Fig. 6.20). By subtracting the
left-hand side of (6.13) from the right-hand side we obtain the equation

f(u) =u+k(Gtanhu+S) —x=0 (6.16)
Respectively, the iterations are generated by solving

Fun) + (Ungr — un) f'(un) =0 (6.17)

Apparently (6.15) and (6.17) (and respectively Figs. 6.19 and 6.20) are equiva-
lent, both giving
fun) un + k(Gtanhu, + S) — x
Unp+1 = Up — 7 = Up — D)
f'(un) 1+ kG/ cosh” u,
Cup t k(Gtanhu, +5) —x
14 kG(1 — tanh® u,,)

:un

Newton—Raphson method converges very nicely in almost linear areas of
f(u), the convergence getting worse as f(u) becomes more nonlinear. As with
fixed-point iteration, the convergence deteriorates at large |kG|, as the predic-
tion error of u,, increases.'?

As in the fixed-point iteration method, the value of u from the previous
sample tick is a natural choice for the iteration’s initial value as well. This
choice usually leads to fast convergence if the new solution lies close to the
value of u on the previous sample. However in excessive situations (such as high
cutoff and/or high input signal frequency) the old solution could lie within the
right-hand side saturation range of tanh u (that is u > 0) and the new solution
could lie within the left-hand side saturation range of tanhw (that is u < 0).

12There are a number of tricks which can be employed to improve the convergence of
Newton—Raphson, but even those might not help in all situations. The specific tricks can be
found in the literature on numerical methods and fall outside the scope of this book.
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Figure 6.20: Texbook version of Newton—Raphson method (note
that the aspect ratio of the graph is not 1:1)

The solution search by Newton-Raphson iterations will need to traverse both
“knees” (areas of higher curvature) of tanh along the way, which usually has
a negative impact on the convergence. The neutral choice of © = 0 as initial
value might somewhat improve this worst-case scenario, while simultaneously
deteriorating the convergence in “nice” situation.

Other, more advanced approached to the choice of the initial point may be
used. Often one uses Newton—Raphson to refine the result of another method,
so that the initial point is alredy sufficiently close to the true solution.

There is also some freedom of the choice of the variable to solve for. E.g. in
Fig. 6.19 we could have been solving for v instead of . This means that we are
having

v=(x—kS)—u
v = kGtanhu

from where
u=(xr—kS)—wv
u = tanh™ ' (v/kG)
and (6.13) turns into
(x — kS) — v = tanh ™" (v/kG)

In this specific case v is hardly a better choice compared to u. For one we have
a division by zero if k = O.E Worse, one could see in Fig. 6.19 that v, 11 is
located above the horizontal asymptote of kG tanh u, which means that we are
getting outside of the domain of tanh ™! (v/kG). And even if we’re not outside of
the domain, there still could be large precision losses when evaluating tanh ™! at
points close to £1. The convergence speed is likely to be affected too. Therefore
a good choice of the variable to solve for is important.

13Taking © = tanhu as the unknown to solve for addresses the division by zero issue, but
the other issues are similar to the choice of v = kG tanh u.



6.5. ITERATIVE METHODS 189

Bisection

Newton—Raphson method usually converges better than fixed-point iteration,
but the potential convergence problems of the former can be difficult to predict.
Often there can be good ways to address the convergence issues in Newton—
Raphson method, but it might be worth it to have an alternative approach,
which is not suffering from such issues at all.

From Fig. 6.13 we could notice that for £ > 0 we are looking for an inter-
section point of a monotonically decreasing straight line with a (nonstrictly)
monotonically increasing curve. Therefore, if we somehow initially bracket the
solution point of (6.13) we can search for it using bisection.

Given the bracketing range u € [a,,b,] we take the middle point wu,; =
(an + by)/2 and compare the values of the left- and right-hand sides of (6.13)
at u,41. Depending on which of the two sides has a larger value, we take
either [ty 41, bn] OF [@n, Uny1] as the new bracketing range (a1, bp41]. Fig. 6.21
illustrates.

\Un |
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I
I
N ! kG tanhu
! —
I
I
I
0 | .
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!
J = (2
i+ I N
oo &
S N
| <
I
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I

Figure 6.21: Bisection method.

Obviously the size of the bracketing range halves on each step and we re-
peat the procedure until the bracketing range becomes sufficiently small. The
convergence speed therefore doesn’t depend on values of filter’s parameters or
signals and the iteration is guaranteed to converge. However we need to be able
to somehow find the initial bracketing range [ag, by].

Fortunately, with monotonic saturation shapes such as tanhwu this is not
very difficult. We can construct the initial bracketing range by noticing that
the graph of the function v = kG tanh u lies between v = 0 and v = kG sgnu
(Fig. 6.22).

With unbounded saturators such as inverse hyperbolic sine one needs to get
slightly more inventive. One possible idea is shown in Fig. 6.23. This however
doesn’t work for k < 0. In that case we could reuse the approach of Fig. 6.22
by taking a vertically offset version of (6.5) as a bound on sinh~ ' u (Fig. 6.24).
The intersection on v = (x — kS) — u with this bound can be found by solving
a quadratic equation (more on this in Section 6.7). Obviously, the same idea
works for k > 0 too.
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Figure 6.22: Initial bracketing for bisection.
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Figure 6.23: Initial bracketing for bisection in the case of an un-
bounded saturator and £ > 0. First we find the right bracket b
and then use v = kG sinh ™! b to find the left bracket a.

If nothing else helps to find the initial bracketing range for a (monotonic)
nonlinearity f(u), one could simply start at some point, such as e.g. the zero-
crossing of v = (x —kS) —u, determine the direction of other bracket by compar-
ingv = (x—kS)—uto kG- f(u) and then take steps of progressively increasing
size (exponential increasing of steps is usually a good idea) until the comparison
result of v = (z — kS) —u and kG - f(u) flips.

Even though bisection method guarantees convergence, the convergence speed
might be a bit too low for our purposes. Let’s assume that the magnitude order
of the signals in the filter is 10° and let’s assume that the length of the initial
bracketing segment [ag, by] has about the same order of magnitude. Then, to
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Figure 6.24: Initial bracketing for bisection in the case of f(u) =
sinh ™' w and k < 0.

reach a —60dB SNR!* corresponding to the order of magnitude of 1073, we’ll
need about 10 iterations. This might be a bit too expensive for a realtime audio
processing algorithm on modern computers.'®

6.6 Approximate methods

We might also attempt to find a rough approximate solution of (6.12) without
running an iterative scheme. Having found u, we would simply pretend it’s a
true solution, and proceed as usual in the zero-delay feedback solution scheme,
sending u through the tanh waveshaper and further through the 1-pole low-
passes, updating their state along the way. Several approximation approaches
seem to be in (more or less) common use:

Linearization at zero. At small signal levels the nonlinearity is almost trans-
parent:
tanhu ~ u

Hoping that our signal level is “sufficiently small”, whatever that means,
we could replace tanh u by u and solve the resulting linear equation:

u=1z—k(Gu+5S)

Note that this is equivalent to one step of Newton—Raphson with u = 0
as the initial guess.

4 Treating the error in the numerically computed solution as noise, we can define the signal-
to-noise ratio (SNR) as the ratio of the absolute magnitudes of the error and the signal,
expressed in decibels.

15Whether this is too expensive or not depends on a number of factors. E.g. in Newton—
Raphson method we needed to compute both tanh u and tanh’ w. With the hyperbolic tangent
function we were quite fortunate in that the derivative of the function is trivially computable
from the function value (tanh’ u = 1—tanh? u) and thus doesn’t create significant computation
cost. Had the derivative computation been expensive, the computation cost of 10 iterations
of bisection could have been comparable to 5 iterations of Newton—Raphson.
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Linearization at operating point. Hoping that the signals within the filter
do not change much during one sample tick, we replace tanh u with its
tangent line at the current point:

tanhu ~ tanhu_1 + (u —u_;) - tanh’ u_,

where u_1 is the value of u at the previous discrete time moment. This is
equivalent to one step of Newton—Raphson with u_; as the initial guess.
Usually this approximation provides a better result, however in the exces-
sive (but not so unusual) situations of high cutoff, high feedback amount
and/or high signal frequencies this can work worse than the linearization
at zero. Thus, the linearization at zero might provide a better “worst case
performance”.

Linearization by secant lineﬁ On the graph of tanhu we draw a straight
line going through the origin (0, 0) and the operating point (u_1,tanhu_1)
and use this line as our linearization to obtain the value of u. Being a
mixture of the previous two approaches, in moderately excessive situations
this could work better than the linearization at the operating point, but
at more excessive settings could work worse than the linearization at zero.
The readers are however encouraged to gain their own experience and
judgement in the choice of the initial guess approach.

All the above quick approximation approaches share the same idea of replac-
ing the nonlinearity with a straight line. In that regard it is important that we
have chosen to solve for the signal u at the saturator’s input, so that the signal
obtained through the approximation is then really sent through the nonlinear-
ity before reaching the 1-poles and the output. One can view this as if, after
having obtained the approximated result, we are doing one step of fixed-point
iteration.z Had we instead chosen to solve for the signal at the saturator’s
output, the results would have been more questinable. Particularly, in the case
of linearization at zero there would have been no difference to the linear case
whatsoever.

The above approximation approaches work reasonably well with saturation
type of nonlinearities. Obviously, the error increases as kG becomes larger and
thus the system becomes “more non-linear”. Notably, GG, being monotonically
growing in respect to w.T', decreases as the sampling rate grows, thus the ap-
proximation error is smaller at higher sampling rates.

6.7 2nd-order saturation curves

It is possible to avoid the need of solving the transcendental equation by using
a saturator function which still allows analytic solution. This is particularly
the case with second-order curves, such as hyperbolas. E.g. f(z) = tanhz can
be replaced by f(z) = x/(1 + |z|) (which consists of two hyperbolic segments),
thereby turning (6.13) into:

u

(CL‘—kS)—u:kG1+|u|

(6.18)

16Proposed for usage in the zero-delay feedback context by Teemu Voipio.
17This is a particular case of a more general idea, where we would use the result obtained
by one of the above approximations as an initial point for an iterative algorithm.
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The inverse of f(x) = sinhz can be replaced by the inverse of f(z) = z(1+ |z|),
consisting of two parabolic segments.

In order to solve (6.18), which graphically is an itersection between the lines
v=(xr—kS)—uand v=FkG- f(u) (same as in Figs. 6.13, 6.14, 6.15), we first
need to find out, whether the intersection is occuring at v > 0 or u < 0 (the
case u = 0 can be included into either of the cases). Looking at Figs. 6.13 and
6.14, it’s not diflicult to realize that for kG > —1 this is defined solely by the
sign of the value which (z — kS) — u takes at u = 0. Thus (6.18) turns into

(xka)—u:kGliu if 2 — kS >0 (6.19a)
(x—kS)—u:kalfu if 2 — kS <0 (6.19D)

Each of the equations (w) is a quadratic equation in respect to u.

Choosing the appropriate one of the two solutions of the quadratic equation
is easy. E.g. for (6.19a) the choice can be made with the help of Fig. 6.25.
Taking into account the restriction x — kS > 0, we see that we should be alway
interested in the larger of the two solutions uy, us. The choice of the appropriate
solution for (6.19b) can be done using similar considerations.

Uy

(<3
Q
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Dz
S
AN
<
\ v =kGu/(1+u)
\
\ Uu
———— >
_—~~\\
AN

Figure 6.25: Choice of the solution of the quadratic equation for
f(u) =u/(14wu). The dashed line shows the graph of v = kGu/(1+
u) for kG < 0.

In solving the quadratic equation Az? — 2Bz + C = 0 one has not only to
choose the appropriate one of the two roots of the equation, but also to choose
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the appropriate one of the two solution formulas:

B++B?—- AC C
xr = =
A BF¥vB2- AC

Mathematically the two formulas are equivalent, however numerically there is a
precision loss (which may become very strong) if B v/ B2 — AC results in ad-
dition of two values of opposite sign, or, conversely, subtraction of two values of
the same sign. This consideration yields the following formulas for the solutions
of the quadratic equation:

_ B+sgnB-vVB? - AC C

T

xr =
! A T BisgnB VB2 _AC

(6.20)

2nd-order soft clippers of the most general form

We could generalize the previously used idea of turning the nonlinear zero-delay
feedback equation into a quadratic one by considering a waveshaper made of
the most general form of a second-order curve y = f(z) defined byE

®(z, f(2)) = ®(,y) = ax® — 2bwy + cy* — 2pr — 2qy +7 =0 (6.21)

Equation (6.21) has 6 parameters and 5 degress of freedom. After subtituting
the nonlinearity (6.21) into (6.13), the equation (6.13) turns into

@(u’(m—:g)—u>:0

or, equivalently,

E*G?au? — 2kGbu((x — kS) — u) + c((x — kS) — u)?—

6.22
— 2k*G?pu — 2kGq((x — kS) — u) + K*G*r =0 (6.22)

Obviously, (6.22) is a quadratic equation in respect to w. Particularly, under
the “typical soft clipping curve” conditions

f0)=0 f(0)=1 f(oo)=1 f'(00)=0 (6.23)
equation (6.21) turns into a family of hyperbolas: with a single parameter:

291 — 1
y12 v —azy+ar—y=0 (6.24)

Y1
Four of five freedom degrees in (6.21) has been taken by the conditions (6.23).
The fifth remaining degree is represented by the parameter y;, which is the
value'® of y that the curve has at = 1 (Fig. 6.26). A reasonable choice for
the range of y; is [0.5,1], where at y; = 0.5 we obtain the already familiar
y=xz/(1+x) curve, at y; = 1 the curve (6.24) turns into a hardclipper.

18We use the implicit form, because the explicit form has some ill-conditioning issues. Be-
sides, in order to solve (6.13) for the specific second-order shaper function f(x), we will need
to effectively go from explicit to implicit form during the algebraic transformations of the
resulting equation anyway, thus using the explicit form wouldn’t have simplified the solution,
but on the contrary, would have made it longer.

19More precisely, one of the two values.
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Figure 6.26: A family of soft clippers generated by (6.24) for y; =
0.5, y1 = 0.7829 and y; = 0.9. The two dashed curves above
the line y = 1 are the second (unused) branches of the respective
curves (the second branch for y; = 0.5 is not visible because it is
outside the picture boundaries). The thin dashed curve close to
the main branch of the curve for y; = 0.7829 is the hyperbolic
tangent y = tanh x.

By making the odd extension of the curve:

@) ifz>0
fext(x)_ {_f(_(p) 1f1'§0

we obtain a proper soft clipping saturator shape, where we should remember to
pick the appropriate branch of the curve, when solving the quadratic zero-delay
feedback equation (6.22).

This time the selection of the appropriate solution of the quadratic equation
is still simple for £ > 0, where we can just pick the larger of the two solutions w1,
u, however for k£ < 0 it becomes more complicated (Fig. 6.27). From Fig. 6.27
one can see that our choice of the larger or smaller of the two solutions is
switched once when kG changes sign and once again when the oblique asymptote
of kG - f(u)* goes at —45°, thereby becoming parallel to to the line v = (z —
kS) — u.2!

201t can be shown, that f(u) ~u- ((2y1 — 1)/3,/%)71 at u — oo which defines the steepness
of the asymptote.

21Tn the previously discussed case f(u) = u/(1 +u) we didn’t have a switch between larger
and smaller solutions. But f(u) = u/(1 4 u) is a limiting case of (6.24) at y1 — 0.5, so why
is there no switch? It turns out that both switches occur simultaneously at kG = 0 (since
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By writing out the expressions for the solutions of the resulting quadratic
equation, one could see that, if we define the choice of the solution in terms of
the choice of the plus or minus sign in (6.20) in front of /B2 — AC' (which is
actually what we care about), then the solution is switched only when kG = 0,
at which moment B2 — AC = 0 and respectively both solutions become equal
to each other. The (negative) value of kG, at which the oblique asymptote
of kG - f(u) goes at —45°, doesn’t correspond to another solution switch but
solely to the unused solution disappearing into the infinity from one side and
reappering from the other.

Figure 6.27: Choice of the solution of the quadratic equation for
f(u) which is a member of the family of hyperbolas (6.24). Solid
line corresponds to kG > 0, dashed lines correspond to two differ-
ent values of kG < 0.

Other 2nd-order saturators

Apparently, mixing in a linear component (6.6) into a saturator defined by (6.21)
still can be expressed in the general form (6.21), thus the zero-delay feedback
equation is still quadratic equation and we can use the same solution techniques.

Instead of using hyperbolas, we could also use parabolas, such as the one in
(6.5) or its mixture with a linear term. Ellipses, having finite support in terms

the oblique asymptote of f(u) becomes vertical), and thus we simply always choose the larger
solution.
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of both x and g, are not lending themselves for this kind of usage, unless used
in a piecewise approximation, which we discuss later.

6.8 Tabulation

Tabulation is one of the standard ways of reducing the computation cost of
functions. Instead of computing the function using some numerical method
(which might be too expensive) we store function values at certain points in a
lookup table. To compute the function value in between the points, interpolation
(most commonly linear) is used.

Tabulation is worth a dedicated discussion in the context of nonlinear zero-
delay feedback equations, because in this case it can be combined with the
bisection method in a special way, making this combination more efficient. Also
the same ideas provide a general framework for applying piecewise saturation
curves in a zero-delay feedback context, even if the number of segments is so
low that using a real table is not practical.

Imagine the saturator function in Fig. 6.13 was represented by tabulation
combined with linear interpolation, which effectively means that we are having
a piecewise-linear function f(u) (Fig. 6.28). In order to solve (6.13) we first
would need to determine the applicable segment of f(u). Having found the
linear segment we just need to solve a linear zero-delay equation.

AU

kG - f(u)

:V

Figure 6.28: The solution of (6.13) for a piecewise-linear saturator.

From Fig. 6.28 is should be clear that the bisection method for a piecewise-
linear curve can be implemented by simply comparing the values of v = (z —
kS) —u and v = kG - f(u) at the breakpoints wu,, thereby sparing the need
for linear interpolation. We would start with some initial bracketing of the
breakpoint range n € [L, R] and then compare the two curves at the breakpoint
in the middle of the range up; (where M = (L 4+ R)/2, rounding the result of
division by 2 up or down, if necessary). Depending on the comparison outcome
we pick either [L, M] or [M, R] as the next range. We repeat until we are left
with a single segment, and then simply solve the linear zero-delay feedback
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equation.f

The very first and very last linear segments will require special care, because
they do not go from one table point to the other, but extend from the outermost
entries of the table to u = +0o. We can either assume that they horizontally
extend from the first and last points in the table, or store their slope separately.

As a very simple example of the just introduced concepts we could consider
a hard clipper

1 fz>1
flx)=<qx f-1<z<1
-1 ifxa<-—1

(Fig. 6.29). We don’t need a real table to store the breakpoints, but the same
ideas apply. First comparing v = (x — kS) —uw and v = kG - f(u) at u =1 we
find out whether the intersection occurs in the right-hand saturation segment
u > 1. If not, then we perform the same comparison at u = —1, thereby finding
out whether the intersection occurs in the left-hand saturation segment v < —1.
Otherwise the interesection occurs in the middle segment —1 < u < 1.2.

A

kG - f(u)

QV

Figure 6.29: The solution of (6.13) for a hard clipper.

The tabulation approach is not limited to piecewise-linear segments. We
could e.g. use the 2nd-order segments of the form (6.21). Since the latter have 5
degrees of freedom, we could use 4 of those to specify the values of the function
and its first derivative at the segments ends (like we would do for a Hermi-
tian interpolating segment and like we did for (6.24)) and use the 5th degree of
freedom e.g. to minimize the remaining error. In fact, in Section 6.7 we have

22Note that the described binary search process doesn’t rely on the regular spacing of
breakpoints u, along the u axis. This suggests that we might use an irregular spacing, e.g.
placing the breakpoints more densely in the areas of higher curvature. Irregularly spaced
breakpoints might complicate the initial bracketing a bit, though.

23Treating the hard clipper as a piecewise-linear shaper is just a demonstration example. For
a hard clipper shape it might be simpler and more practical to simply perform a linearization
at zero (thereby treating the hard clipper as a fully transparent shaper f(u) = u) to find u.
As the very next step after that is sending u through the hard clipper, at the output of the
hard clipper we will get the true value, as if we properly solved the equation @))
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done exactly this, building a piecewise-2nd-order curve consisting of two seg-
ments joined at the breakpoint at the origin. The saturator (6.2b), consisting
of four segments of an order not exceeding 2, could be another candidate for
this approach.

6.9 Saturation in 1-pole filters

The feedback in the 1-pole filter is not one creating the resonance. Therefore
the discussion from Section 6.3 does not apply and we need to address nonlinear
1-poles separately.

We are going now to discuss nonlinear 1-poles with the nonlinearity ideas de-
rived from different analog variations of the 4-pole lowpass ladder filter discussed
in Section 5.1 These nonlinear 1-pole filters, however, are of generic nature and
are therefore not limited to the usage inside 4-pole lowpass ladder filters (or
inside filters of whatever specific kind, for that matter).

Transistor ladder’s 1-pole lowpasses

The linear model of transistor ladder discussed in Section 5.1 (Fig. 5.1) is a first
level of approximation of the behavior of the respective analog structure, where
we ignore all nonlinear effects. If we wish to take nonlinear effects into account,
we could replace the underlying linear 1-pole lowpasses of the ladder filter with
nonlinear 1-pole lowpasses, the structure of such nonlinear lowpass being shown
in Fig. 6.30. In terms of the equations, (2.3) is transformed into

y=vy(to) + / we(tanhz(7) — tanhy(7)) dt (6.25)

to

The lowpass in (6.25) and Fig. 6.30 is a simple nonlinear model of the underlying

1-pole lowpass of the transistor ladder, directly arising out of the application of
124

Ebers—Moll transistor mode

Figure 6.30: A nonlinear 1-pole lowpass element of the transistor
ladder filter.

Which effect does the change from (2.3) to (6.25) have? Apparently, tanh z—
tanh y has a smaller absolute magnitude compared to x — y, the drop in magni-
tude becoming more noticeable of one or both of the signals x and y is sufficiently
high. If both  and y have large values of the same sign, it’s possible that the
difference tanhx — tanhy is close to zero, even though the difference x — y is
very large. This means that the filter will update its state more slowly than

24 A famous piece of work describing this specific nonlinear model of the transistor ladder
filter is the DAFx’04 paper Non-linear digital implementation of the Moog ladder filter by
Antti Huovilainen. Therefore this model is sometimes referred to as the “Antti’s model”.
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in (2.3). Intuitively this feels like “cutoff reduction” at large signal levels, or,
more precisely this can be seen as audio-rate modulation of the cutoff, where
the cutoff is being changed by the factor

tanh z — tanh y
rT—y

K= 0<K<1
where the equality K =1 is attained at z =y = 0.

Connecting 1-poles from Fig. 6.30 in series (Fig. 6.31) can be optimized by
noticing that we don’t need to compute the tanh of the output of the first
integrator twice (Fig. 6.32), thus sparing one tanh saturator. The entire ladder
filter thereby turns into one in Fig. 6.33.

Figure 6.31: Serial connection of two nonlinear 1-pole lowpass el-
ements from Fig. 6.30.

Figure 6.32: Optimized serial connection of two nonlinear 1-pole
lowpass elements from Fig. 6.31.

The nonlinear 1-pole in Fig. 6.33 are normally sufficient to prevent the filter
from explosion in selfoscillation range. However, obviously, there is nothing
which should stop us from introducing additional nonlinearities, such as the
ones discussed in Section 6.3, not so much as a means from preventing the
filter explosion but rather for giving additional color to the sound. Apparently
feedfoward path of Fig. 6.33 already contains many nonlinear elements, therefore
adding nonlinearities to the feedback path could make more sense. Note that
while there are good reasons to keep the saturation levels of nonlinearities in the
feedfoward path of Fig. 6.33 (especially since we are employing the optimization
from Fig. 6.32, which shares one nonlinearity between two 1-pole lowpasses),
there is much less reason to have the same saturation level (or even the same
saturation curve) for the nonlinearity in the main feedback path.

The nonlinear version of the diode ladder filter (Figs. 5.48, 5.49) is using a
similar kind of nonlinear 1-poles, resulting in a structure shown in Fig. 6.34.
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Y1 (t)

y3(t)

ya(t)

Figure 6.33: Nonlinear transistor ladder filter.

The equations (5.18) are respectively turned into:

Y1 = We (tanhx — tanh(y1 - 92))

. We

Vo= (tanh(y; — y2) — tanh(ys — y3))
. We

y3 = — (tanh(ys — y3) — tanh(ys — ya))
. We

j= (tanh(y3 —y4) — tanh y4)

(compare to (6.25)).

OTA ladder 1-poles

The same idea of the ladder filter discussed in Section 5.1 and shown in Fig. 5.1
has been often implemented in analog form using OTA (operational transcon-
ductance amplifiers) instead of transistors. This generates another kind of non-
linear 1-pole structure (Fig. 6.35).

Formally we are having a feedback loop saturator here. However this feed-
back loop is not responsible for generating the resonance, therefore the effect of
the saturator is different from the one discussed in Section 6.3. We are having
a saturator at the integrator’s input, therefore we are performing soft clipping
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- [
(t) i‘ y1(t)
ya(t)
k 4§ y3(t)
ya(t)

Figure 6.34: Nonlinear diode ladder filter.

x(t) tanh '—> y(t)

Figure 6.35: OTA-style nonlinear 1-pole lowpass.

on the speed of change of the filter’s output value, or, equivalently, we are do-
ing “soft slew limiting”. Alternatively, as shown by (6.8), this can be seen as
audio-rate cutoff modulation, the cutoff factor varying in agreement with (6.9).

Note that we have two different options for picking the highpass signal in
Fig. 6.35. We could do this either before or after the nonlinearity. In the
latter case the highpass signal will be saturated (which might be a bit over the
top, compared to the lowpass signal), in the former case we have the benefit of
preserving the relationship Hip(s) + Hup(s) = 1. This also makes the former
option look like a particulary good candidate not only for a nonlinear 1-pole
highpass (and thereby, among other things, for ladder filter structures utilising
highpasses) but also for a nonlinear allpass. Fig. 6.36 shows the respective
nonlinear 1-pole multimode.
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Figure 6.36: OTA-style nonlinear 1-pole multimode.

Saturated integration

The previously discussed ways of introduction of nonlinearities into 1-poles re-
sulted in relatively complicated nonlinear behavior of the filters. But what if
we want a simpler behavior? Let’s say we want to simply saturate the output.
Of course we simply could put a saturator at the output of the filter (Fig. 6.37)
but this doesn’t really feel like making the filter itself nonlinear.

0 [

Figure 6.37: Putting a saturator at the filter’s output.

We could try putting the output nonlinearity inside the filter’s feedback loop
(Fig. 6.38). However, comparing this to equation (2.3) we should realize that
the main effect of such nonlinearity will be that the difference x — y will be
changed to  — tanh y, leading to the capacitor in Fig. 2.1 continuing to charge
even after the output value has reached the input value. In other words, the
output will still grow even after reaching the input value. This feels more like a
mistake.

x(t) @ tanh y(t)

Figure 6.38: Saturating the integrator’s output (not really a work-
ing idea).

What we rather want is to prevent the 1-pole’s capacitor in Fig. 2.1 from
charging beyond a certain level (that is we want to prevent the integrator state
from going beyond a certain maximum). In order to achieve that in a “proper
analog way”, we will need to introduce antisaturators, which we are going to
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do later in this chapter. However we could also do a “hack” and modify the
integrator structure, introducing the saturation into its internal accumulation
process. This works particularly well with direct form I (Fig. 6.39) and trans-
posed direct form IT (Fig. 6.40) integrators. Obviously, this hack is not limited
to 1-poles, but can be applied to any structure which is based on integrators,
such as e.g. SVF.

w2

Figure 6.39: Saturating direct form I trapezoidal integrator.

weT'/2

2l ——>——r—— >l

Figure 6.40: Saturating transposed direct form II trapezoidal inte-
grator.

6.10 Multinonlinear feedback

We have seen that instantaneous responses of linear filters are linear functions
of their input, such as e.g. in (3.29). It is not difficult to realize, particularly
from the previous discussion of the solution of the nonlinear zero-delay feed-
back equation (6.12), that instantaneous response of a nonlinear filter is some
nonlinear function of its input:

y=F(z,9) (6.26)

(where we also explicitly notated the dependency on the filter’s state S, but the
dependency of F on the filter’s parameters is understood implicitly).

Consider the OTA-style 1-pole lowpass in Fig. 6.35 and imagine we build a
4-pole lowpass ladder filter (as in Fig. 5.1) from four idenitical 1-pole lowpasses
of this kind. Assuming (6.26) decribes the instantaneous response of Fig. 6.35,
we could redraw Fig. 5.1 in the instantaneous response form as Fig. 6.41.
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Figure 6.41: Nonlinear ladder filter in the instantaneous response
form.

Let u denote the signal at the input of the first 1-pole lowpass in Fig. 6.41.
The zero-delay feedback equation for the entire of Fig. 6.41 therefore becomes

u:x—k’~F(F(F(F(U,Sl),Sg),53),5’4) (627)

Intuitively we can expect F'(z,.S) to be monotonically increasing with respect to
x, thus F(F(F(F(x,51),52),53),54) should be monotonically increasing too,
and we could use most of the previously described methods of solving nonlinear
zero-delay feedback equations to solve (6.27). Theoretically.

Practically the evaluation of F(xz,S) is usually very expensive, because it
means a numerical solution of the zero-delay feedback equation for the respective
1-pole, possibly running several rounds of an iterative method. Now, if we
are going to use an iterative method to solve (6.27), these expenses will be
multiplied by the number of the “outer” iterations. Besides, if we are using
Newton-Raphson to solve (6.27) then we need not only to evaluate F'(x, S) but
also its derivative with respect to x, which further increases the computation
cost of solving (6.27).

Therefore usually such “nesting” approach, where we express the higher-
level zero-delay feedback equation in terms of the solutions of the lower-level
zero-delay feedback equations, is not very practical for nonlinear systems. In-
stead, let’s “flatten” the entire structure, and write the equation describing the
instantaneous response signals within this structure. E.g. for the 4-pole ladder
built out of 1-poles in Fig. 6.35 the flattened structure is shown in Fig. 6.42. Or,
representing the integrators by their instantaneous responses (which are fully
linear), we obtain Fig. 6.43.

Denoting the input and output signals of each of the 1-poles as x, and y,,
we write the 1-pole zero-delay feedback equations:

yn = gtanh(z, — yn) + sn
Or, since x,4+1 = y, we can denote the input of the first lowpass as yo and write
Yn = gtanh(yn—1 — Yn) + Sn n=1,...,4
Plus, we are having the global feedback loop:
Yo =z — kya
and thus we are having an equation system:

Yo = — kys
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tanh @ y(t)

Figure 6.42: Flattened OTA lowpass ladder filter structure.

y1 = gtanh(yo —y1) + s1
(y1 — y2) + s2

= gtanh(y2 — y3) + s3

ya = gtanh(ys — ys) + 54

1Yo = gtanh

We can get rid of the first equation by simply substituting its right-hand side
for yo, obtaining:
y1 = gtanh(z — kys — y1) + $1
Y2 = gtanh(yi — y2) + s2
ys = g tanh(yz — y3) + s3
ys = gtanh(ys — y4) + s4

Equation (6.28) can be written in a more concise form by introducing the vector

(6.28)

Yy = (y1 Y2 Y3 y4)T
and the vector-function of a vector argument ®:
gtanh(z — kys — y1) + s1
B(y) = gtanh(yr — y2) + s2

gtanh(ys — y3) + s3
gtanh(ys — y4) + 54

In this notation (6.28) looks simply like
y =®(y) (6.29)
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x(t) + tanh ’—> gz + 51

@%—‘ tanh ’—> gx + S2
AN

tanh ’—> gxr + 53 ’7
%—‘ tanh ’—> gx + 54 ’7,—> y(t)

Figure 6.43: Flattened OTA lowpass ladder filter structure in the
instantaneous response form.

This is our nonlinear 4-dimensional (since we are having 4 unknowns y,,) zero-
delay feedback equation.
The form (6.29) readily offers itself for fixed-point iteration. By rewriting

6.29) as

®(y) -y =0

the multidimensional form of Newton—Raphson algorithm can be used:

Yn+1 =Yn — (W(yn)> . : (q)(yn) - yn)

Also the quick approximate methods of Section 6.6 work out of the box.

The difference of solving (6.29) instead of (6.27) is that in (6.29) we are
simultaneously solving all zero-delay feedback equations in the system, thereby
not having the problem of nested iterations.

Actually, choosing the 1-pole output signals as the unknowns is not necessar-
ily the best choice. It would have been more convenient to solve for the inputs
of the integrators, so that we can directly reuse the obtained signals to update
the integrator states.?> On the other hand, e.g. for the transposed direct form
IT integrator (Fig. 3.11) one could deduce the new state from the old state and
the new output signal, thus y, also work pretty efficiently (this trick has been
used in the digital implementation of an SVF in Section 4.4). A consideration

25Tt might be a good idea to write the equation system in terms of integrator input signals
as an exercise.
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of a bigger importance therefore could be that the choice of the unknowns may
affect the convergence of the iteration scheme.

Usually for multidimensional zero-delay feedback cases the iterative methods
need to be further refined and/or a combination of different methods need to be
used to have a reliable and quick convergence of an iterative process of finding
the solution of (6.29). However, often simply using the approximate methods
of Section 6.6, will deliver reasonable results.

6.11 Antisaturators

In Section 6.9 we made some attempts to make the 1-pole lowpass filter state
saturate, the most successful attempt being the modification of the internals of
an integrator. In a real analog circuit we wouldn’t have been able to do the
same, as e.g. a capacitor, which is used as an integrator for the current, doesn’t
have “built-in saturation functionality”. Therefore different means have to be
used to achieve the integrator state’s saturation.

Diode clipper

A common trick is to shorten the 1-pole filter’s capacitor with a nonlinear re-
sistance, this resistance being high at low voltages and dropping down at high
voltages on the capacitor. That is the short path is disabled at low voltages but
progressively “turns on” at higher voltages. This can be done by using a diode
pair (Fig. 6.44). The structure in Fig. 6.44 is commonly referred to as diode
clipper.

x(t)
R

it

Figure 6.44: Diode clipper.

Using Shockley diode equation we can show that, qualitatively, the current
flowing through the diode pair is related to the capacitor voltage as

Uc

Ip = Igsinh —

D s SIIL UT

where I; and Ur are diode parameters (Fig. 6.45 provides a graph of sinh as a

reference). This current is then subtracted from the current which is charging

the capacitor, thus acting as current leakage:

U

Go=1I—1Ip=1—1I,sinh —=

Ur

(please refer to equations (2.1) for the other details of the circuit’s model).

Since I is very small, as long as Ug is below or comparable to Ur the leakage
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is negligible. As Ug exceeds Up, the current grows exponentially and quickly
stops being negligible.

2 Y

+4

+3

+2

+1
4 -3 -2 -1 1 2 3 4
T T T T 0 T T T T '1:

+-1

+-2

+-3

+—4

Figure 6.45: Hyperbolic sine y = sinh x.

In terms of the block diagram (Fig. 2.2) this current leakage can be expressed
as shown in Fig. 6.46, where we have assumed that the filter cutoff is controlled
by the resitance R rather than capacitance C' and thus the amount of the current
leakage is independent of the cutoff.

Figure 6.46: Diode clipper in the form of a block diagram.
“sinh” stands for some curve of the form “asinh(z/b)”.

The fact that the leakage current is independent of the cutoff is actually
having the opposite effect: the effects of the leakage become cutoff-dependent
and the leakage more strongly affects the filter at lower cutoffs. Particularly,
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given a constant input voltage, the stabilized output level will be larger at larger
cutoffs. For the purposes of generic application it is therefore more useful to
make the leakage cutoff-independent, as in Fig. 6.47.

Figure 6.47: Diode clipper with cutoff-independent leakage.
“sinh” stands for some curve of the form “asinh(z/b)”.

Or, using implied cutoff notation and combining the two feedback paths
into a single one, we obtain the structure Fig. 6.48. Also, in Fig. 6.47 the cutoff
parameter w, was not the true cutoff of the system, since at low signal levels the
gain of the feedback path was 1+ a/b. This made the system behave as if its
cutoff was (1+ a/b)w. and as if its input signal was reduced by (14 a/b) factor
at the same time. In Fig. 6.48 we addressed this issue by scaling the linear path
of the feedback by the factor (1 — a/b). This doesn’t change the qualitative
behavior of the system, but affects only the interpretation of the cutoff w, and
the input signal scale.

o) ——@ | )

(1—%)z+asinh% ’7

Figure 6.48: Diode clipper with cutoff-independent leakage (sim-
plified diagram).

The structure in Fig. 6.48 is a good illustration of the idea that we could
employ to introduce saturation into 1-pole lowpass filter’s state: as sinh(z/b)
grows exponentially for large signals, the term asinh(z/b) causes the negative
feedback to grow as well, thereby causing the integrator to “discharge”.

The same effect is obviously obtained by putting any other quickly growing
function of a similar shape into the feedback path of a 1-pole lowpass. Good
options for such functions are provided by the inverses of the saturator functions
introduced in Section 6.2:

_ 1. 142
_ 1. _ = ;
y=tanh™ x = 5 In 1% (inverse of (6.1))
y=x/(1—|z|) (inverse of (6.2¢))
y = sinhz (inverse of (6.4))
(

y=x(1+ |z|) inverse of (6.5))
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A particularly important feature of the inverses of the saturators is that, same as
with saturators, they are transparent at low signal levels, thereby not affecting
the cutoff of the filter.

We will refer to the waveshapers having an inverse saturator kind of shape
as antisaturators. Fig. 6.49 shows another version of Fig. 6.48, this time using
a simpler antisaturator.

Figure 6.49: Lowpass filter’s state saturation by using an antisat-
urator.

An antisaturator in Fig. 6.49 is having a similar effect on the filter’s state
saturation as its inverse (the respective saturator) would have had if directly
applied to a signal, or if being put in a resonating feedback path. Specifically,
using an unbounded saturator’s inverse as an antisaturator in Fig. 6.49 would
result in an unbounded saturation of the filter’s state, in the sense that by
making the amplitude of the input signal of the filter larger and larger one can
achieve arbitrarily large levels of the filter’s state. On the other hand, using
a bounded saturator’s inverse as an antisaturator (such as e.g. tanh™") would
result in bounding of the filter state, the state not being able to exceed the
saturation level.

As with saturators, adding a linear term to an antisaturator f(z) doesn’t
change its antisaturating behavior, but simply weakens it a bit further, where
we assume that the addition should be done under the same considerations of
keeping the transparency at low signal levels:

y=(1-a)f(z)+ax 0<a<l)

The antisaturator in Fig. 6.48 is a kind of a reverse example of this principle,
which can be seen as if the (otherwise fully linear and transparent) shape y = x
was modified by an addition of a non-transparent antisaturator asinh(z/b),
however the resulting curve has been made transparent again.

Antisaturation in SVF

As with 1-pole filters, the feedback in SVF is also not one creating the resonance,
respectively the discussion from Section 6.3 does not apply either, and thus we
can’t simply put a saturator into the feedback loop. Actually, the purpose of the
feedback in SVF is kind of an opposite of creating the resonance. The function
of the feedback path containing the bandpass signal is to dampen the otherwise
self-oscillating structure. This suggests the idea that if we put an antisaturator
into the bandpass signal path, this might actually do the trick of preventing the
signal levels from getting too high.

Our first attempt to do so is shown in Fig. 6.50. After thinking a bit we,
however, realize that it can’t work. Indeed, at R = 0 there is no damping signal
whatsoever, the same as without the antisaturator. Furthermore, probably the
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main reason to introduce the antisaturator into the SVF is so that we could go
into the selfoscillation range R < 0, same as we did e.g. with nonlinear 4-pole
ladder by going into the range k£ > 4. However, at R < 0 the introduced anti-
saturator doesn’t cause any damping either, quite on the opposite, it amplifies
the “antidamping” (the inverted damping signal). Obviously, putting the anti-
saturator after the 2R gain element instead of putting it before doesn’t change
much in this regard.

— yup(t) —> yep(l)
e
2R
D=

Figure 6.50: An attempt to introduce an antisaturator into an SVF
(not really working).

We could get a bit smarter and connect a saturator in parallel with the 2R
gain element (Fig. 6.51). This now does the job of saturating the signals, as
the damping feedback signal will grow exponentially at large levels of ygp, no
matter what the value of R is. However now the effective gain of the damping
feedback path (at low signal levels, where sinhxz &~ z) is 2R+ 1, rather than 2R.

The latter problem is fixed in Fig. 6.52. In this structure, at the neutral
setting of R = 1 the entire damping signal goes through the antisaturator. This
exactly matches the same situation in our first attempt in Fig. 6.50 (and is
the reason for the separation of the multiplication by 2 into an additional gain
element). As R gets away from 1, we send some of the damping signal through
the parallel linear path, still keeping the total gain of the damping path equal
to 2R at low signal levels.

The antisaturator in Fig. 6.52 effectively makes the state of the first inte-
grator saturate. This might result in the feeling that the level of the bandpass
signal ygp becomes too low. Therefore, instead one could pick the bandpass
signal from ygps output, where the antisaturator has increased the level of ygp
back. The ygp1 output provides the normalized bandpass signal.

Note that ygp + ysp1 + yrp = z, as for the linear SVF.

Zero-delay feedback equation with antisaturators

The introduction of antisaturators raises some new considerations for the solu-
tion of the zero-delay feedback equation. We will use the nonlinear 1-pole in
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Figure 6.51: A second attempt to introduce an antisaturator into
an SVF (works better, but R does no longer directly correspond
to damping).

— yup(t) — ysp(t)

ny]
|
—_
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+ yp/ (t)

ysp1(t)
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Figure 6.52: An SVF with antisaturator.

Fig. 6.49 as a demonstration example, however it will also be more instructive
to consider an inverse hyperbolic tangent (Fig. 6.53) instead of a hyperbolic sine
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as an antisaturator.

Ay

RV

Figure 6.53: Inverse hyperbolic tangent y = tanh™' z.

Introducing the instantaneous response gx + s for the integrator in Fig. 6.49
and replacing sinh with tanh™! we obtain Fig. 6.54. Writing the zero-delay
feedback equation for Fig. 6.54 we obtain

y=g(z—tanh 'y) +s (6.30)

(1) grts ()

tanh ™!

Figure 6.54: Lowpass filter with a tanh™! antisaturator in the
instantaneous response form.

We could start solving (6.30) using the usual methods, such as the ones dis-
cussed earlier in this chapter, however notice that tanh ™" has a limited support,
being defined only on the (—1,1) range. This might create serious problems if
we somehow arrive at a value of y outside of that range. Such values of y could
appear for a number of reasons, such as e.g.:
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- from an approximate solution
- from an iterative method’s step
- from numerical errors, such as roundoffs.?®

Even if we formally stay within the range y € (—1,1), we could still get out of
the range of representable values of tanh ™' y if tanh ™' y gets too large.

There are also related questions of convergence of iterative schemes, partic-
ulary of fixed point iteration. Last but not least, close to the boundaries of the
range y € (—1,1) a small numerical error in the value of y will result in a huge
error in the value of tanh ™! y, which suggests that it might be generally a bad
idea to explicitly evaluate tanh™' y at all. Similar issues also of course arise with
unbounded antisaturators, even though they are not as bad as with bounded
ones.

In order to avoid this kind of problems, we can solve for the antisaturator’s
output, rather than for the antisaturator’s input. Introducing variable u for the
antisaturator’s output signal:

uw=tanh 'y

we respectively have y = tanh v and can rewrite (6.30) in terms of u as

tanhu = g(z —u) + s

or, further rewriting it so that the linear function in the right-hand side is more
explicitly visible
tanhu = (gz + s) — gu (6.31)

Equation (6.31) looks very much like the previously discussed zero-delay feed-
back equation (6.13). However, there are still important differences. Expressing
the left- and right-hand sides of (6.31) graphically in Figs. 6.55 and 6.56, we
see that, compared to Figs. 6.13, 6.14 and 6.15, multiple solutions can occur
already for g < 0. Fortunately, in Fig. 6.54 the value of g cannot get negative,
since that would require a negative cutoff value for the integrator.

Having found u from (6.31) we can “send” it further through the feedback
loop, first finding the integrator’s input value as = — u, then updating the in-
tegrator’s state and finding y as the output value of the integrator. Note that
thereby we never explicitly evaluated tanh™! y.

For an antisaturator in the SVF (Fig. 6.52) the situation is more complicated.
We would like to solve for the antisaturator’s output ygp:, but then we would
be stuck immediately afterwards: since we don’t know the signal on the “R—1”
path, we can’t add the output signals from sinh and R — 1. Furthermore, we
would have a similar problem of not knowing yrp at the next adder (which
computes ygp1 +yLp). These problems are not unexpected, considering that we
have been solving for a point in the signal path which is not shared among all
zero-delay feedback loops in the structure.

One way around this would be to try to introduce more unknowns into the
system and solve several equations at once. However, in this specific case we

26Going out of supported range of y due to numerical errors is more likely to happen in
more complicated structures than the one in Fig. 6.54. However since we are using Fig. 6.54
as a demonstration of general principles, we should mention this aspect as well.
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tanh u

QV

Figure 6.56: The solution of (6.31) for g < 0.

could simply “send the obtained signal through the antisaturator in the reverse
direction”. That is, knowing the antisaturator’s output, we can obtain the
antisaturator’s input by evaluating sinh ™! (which is completely okay, we don’t
want to explicitly evaluate the antisaturator function because it can increase
the computation error by a huge factor, but it is no problem to evaluate its
inverse), thereby finding the value of ygp. The signal ygp is shared among all
zero-delay feedback loops and therefore is sufficient to find all other signals in
the structure.2”

The general approach of avoiding the explicit evaluation of antisaturators
but rather dealing with their inverses instead also allows us to deal with a

270f course, we should remember that we already know the output signal of the antisaturator
and not attempt to evaluate it again as sinh ygp, which was the whole point of solving for

YBp/-
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certain class of antisaturators which are not functions in the normal sense. An
example of this are compact-range monotonic saturators such as (6.2b). The
inverse of such saturator is not really a function, since it would have infinitely
many different values at » = +1 (Fig. 6.57). However we still can use it as
an antisaturator, since we never have to deal with the antisaturating function
explicitly, but are dealing with the respective saturating function instead.ﬁ

2 Y

HV

Figure 6.57: The inverse of (6.2b) is not a function in the normal
sense.

6.12 Asymmetric saturation

The saturators which we have been using so far were all having the odd symme-
try f(—x) = —f(z). A feature of all symmetric saturators is that when its input
signal amplitude is very high, the output signal basically alternates between pos-
itive and negative saturation levels f(z). If the input signal is something like a
sine or a sawtooth, the saturator would produce a square-like output. More gen-
erally, such saturators tend to produce signals containing mostly odd harmonics
(as the square wave does).

Sometimes this domination of odd harmonics can become too boringﬁ and

28Note that thereby we can even use an antisaturator which is an inverse of hard clipper.
29More likely so for a “standalone” saturator being used as an overdrive effect, rather than
for a saturator used in a complicated feedback loop structure in a filter.
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asymmetric saturation might be desired. Simply adding an offset to the satura-
tor’s input (or, instead, performing a parallel translation of the saturator curve
by “sliding” it through the origin, to keep the property f(0) = 0) works only
for signals of average levels. At high signal levels the same square would be
produced for e.g. a sine or a sawtooth input.

The offset idea would have worked, though, if the offset had been somehow
made proportional to the input signal’s amplitude.?® It turns out that this
is a natural feature of a particular nonlinear 1-pole construct. Consider the
OTA-style nonlinear 1-pole in Fig. 6.36 and imagine that instead of a saturator
nonlinearity we have used the following shaper function:

2¢ ifxz>0
fz) = {x/? <0 (6.32)

(Fig. 6.58 illustrates). This would mean that whenever ygp = x — yrp > 0, the
cutoff is effectively doubled. When yup = = — yLp < 0, the cutoff is effectively
halved. Therefore the integrator state will be more “willing” to change in the
positive direction than in the negative one.

Ay

Figure 6.58: “Asymmetric cutoff” nonlinearity.

Imagine such filter receives a steady periodic signal with a zero DC offset
(meaning that the average value of the signal is zero, or, in other words, there is
an “equal amount” of signal above and below zero). And suppose this signal’s
fundamental frequency is well above the nominal cutoff of the filter. In such
case a linear lowpass filter would have performed a kind of averaging of the
input signal, thereby producing a zero output signal.?’_1 However in the case of
using the nonlinearity (6.32) the positive input values will have “more weight”
than the negative ones and the lowpass output will be nonzero.

30Clearly, by “amplitude” here we don’t mean the momentary value of the signal but rather
some kind of average or maximum.

31Formally the filter would have produced the DC offset of the signal at the output. The
fundamental and all other harmonics, being way above filter’s cutoff, would have been filtered
out.
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It should be inituitively clear that the lowpass output value will increase as
the input signal amplitude increases and vice versa (particularly it should be
obvious that in the case of the zero amplitude of the input signal the output
signal will also be zero). Therefore, qualitatively such lowpass filter works as an
envelope follower, the filter cutoff in a way controlling the envelope follower’s
response time. Respectively, the highpass output will contain the input signal
with an added (or subtracted) DC offset, such offset being approximately pro-
portional to the input signal’s amplitude. This means that if initially 50% of
the signal were above zero and the other 50% below zero, we now have changed
this ratio to something like 80% to 20%, and this effect is happening more or
less at any amplitude of the input signal.

Thus, asymmetric nonlinear shaping could be produced by the following

structure:
g

— HPy;, }—> HP,; ’—)>—> (f)x

where HPyy, is an initial lowpass, killing the DC offset which might be previ-
ously contained in the input signal, HP,; is the asymmetric nonlinear highpass,
introducing the DC offset into the signal, the signal is then boosted by the gain
g, controlling the amount of “drive”, and f(z) is a usual symmetric saturator.

The nonlinearity (6.32) has a drawback that it contains a discontinuity in
the 1st derivative at x = 0. Such discontinuity may add a noticeable amount
of new harmonic content into the signal. This effect might be desired at times,
but for now we would rather at least reduce it, if not avoiding it altogether,
as the filter’s main purpose is to introduce the DC offset into the signal. This
can be achieved by smoothing the discontinuity. E.g. we could replace (6.32)
with a hyperbola going at 45° through the origin, but having a similar to (6.32)
asymptotic behavior (Fig. 6.59).
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Figure 6.59: Replacing the nonlinearity (6.32) (Fig. 6.58) (dashed
line) by a hyperbola.

This kind of nonlinear highpass can occur easily in analog circuits, if non-
linear resistances are involved. E.g. consider Fig. 6.60. The effective resistance
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connected in series with the capacitor varies, qualitatively speaking, between
R; and a parallel connection of Ry and SRy, depending on the polarity of the
voltage over the base-emitter junction of the transistor (where § = Ig/Ip is
the emitter-base current ratio). Respectively the cutoff varies (qualitatively)
between 1/R;C and (R; + BR2)/BR1R2C. Upon a closer look, the cutoff will
vary a bit less than that, because the base-emitter voltage will somewhat reduce
the current through Rs, but qualitatively the effect is still there.

R’ Ry

Figure 6.60: Highpass filter with asymmetric cutoff.

6.13 Antialiasing of waveshaping

Aliasing

When a signal goes through a waveshaper, the waveshaping introduces addi-
tional partials into the spectrum of the signal. These partials extend into the
entire frequency range w € [0, 00) for almost any waveshaper. We can show that
in several steps.

First, let’s consider waveshapers of the form f(z) = 2™ (where n > 1),
starting with f(z) = 2%. Let z(t) be a periodic signal. Therefore it can be
represented as a sum of its harmonics:

N
z(t) = Z X, elnet
n=—N

where N can be finite or inifinity. Note that we are using complex-form Fourier
series, therefore, assuming a real x(t), we have an equal number of positive- and
negative-frequency partials. Then

N 2
n=—N

N . 2N .
= ) Xy, X, /et = Ny ednet (6.33)
ni,ne=—N n=—2N

Thus, the frequencies of partials of y(t) are all possible sums njw + now of
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frequencies of partials of x(t)ﬁ Respectively the frequencies of the partials of
y(t) vary between —2Nw and 2Nw. That is the width of the spectrum of y(t)
is twice the width of the spectrum of x(t).

For f(x) = 23 we obtain

N 3
y(t) = f(z(t) = (z(t)® = ( 3 Xnejnwt) _
n=—N

N 3N
_ E X, Xy Xns ed(nitnatng)wt _ E ynejnwt
ni,nz,n3=—N n=—3N

that is the width of the spectrum is tripled. It’s not difficult to generalize it to
an arbitrary power of x, concluding that f(z) = 2™ increases the width of the
spectrum of x(t) n times.

It should be clear by now that, if f(x) is a polynomial of order N:

f(z) =ag+ a1z + ast® + ... +anz

the highest-order term zV will expand the spectrum of z n times, while the
lower-order terms will also expand the spectrum of z(t) but not as much, thus
f(z) expands the spectrum of x(t) N times.

Now suppose f(z) is a function of a more or less general form, expandable
into Taylor series around = = 0:

0 n o

flx) = Z %x" = Zanx"
n=0 n=0

We can consider such f(z) as a polynomial of an infinite order and thus f(x)

expands the spectrum of z(t) by an infinite number of times.**

Some of the waveshapers that we were previously discussed were constructed
as piecewise functions, including e.g. a piecewise polynomial saturator (6.2b).
Would the saturator (6.2b), which consists of polynomial segments of order not
higher than 2, thereby expand the spectrum of f(z) only 2 times? It turns
out that such piecewise function waveshapers also expand the spectrum an infi-
nite number of times. Having discontinuous derivatives themselves (e.g. (6.2b
has a continuous 1st derivative, but three discontinuities of the 2nd derivative),
such waveshapers also introduce discontinuous derivatives into their output sig-
nal y(t). The presence of discontinuities in a signal’s derivative automatically
implies an infinite spectrum of the signal.3*

32Qr, if we think in terms of real-form Fourier series, where only positive-frequency partials
are present, the frequencies of partials of y(¢) are all possible sums and differences njw + now
of frequencies of partials of x(t).

331f the Taylor expansion of f(z) has a finite convergence radius, we still can make the same
argument about spectrum expansion, at least for the signals z(¢) which are small enough to
fit into the convergence radius of the Taylor series of f(z). Note that we also could expand
f(x) not around = = 0 but around some other point x = zo, making the same consideration
applicable for signals x(t) centered around = = zg.

34 A discontinuity of N-th order derivative generates harmonics rolling off as 1/nV 1. Thus
a discontinuity in a 2nd derivative generates harmonics at 1/n3. A discontiuity in the function
itself (Oth derivative) generates harmonics at 1/n (Fourier series of sawtooth and square signals
are examples of that).
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Therefore all waveshapers which we have been considering until now (as well
as most of the ones we could even think of) expand the spectrum of the input
signal an infinite number of times. This means that discrete-time waveshaping
produces aliasing.

Indeed, suppose we are given a waveshaper f(x) of a general shape, so that
it expands the spectrum of its input signal an infinite number times. And
imagine we are having a sampled signal z[n] and its corresponding continuous
bandlimited version x(t). Assuming unit sampling period 7' = 1 we can write
x[n] = z(n) Vn € Z. A direct application of a waveshaper f(z) to discrete-time
signal z[n]:

yln] = f(z[n]) (6.34)

is fully equivalent to sampling the continuous-time signal y(t) = f(z(t)), by
simply letting y[n] = y(n). However, since f(x) expands the spectrum of z(t)
infinitely, the spectrum of y(¢) is not bandlimited and simply letting y[n] = y(n)
will result in aliased frequencies contained in y[n].

Trying to use polynomial waveshapers doesn’t help much. We could defi-
nitely construct polynomial antisaturators, e.g. f(x) = 23 +x, whereas a purely
polynomial saturator could be constucted only if we know that the input signal
has a limited range, which is a pretty heavy restriction. However even 23 + x
will triple the width of the spectrum, so that we’ll need e.g. to bandlimit x(t)
to one third of the Nyquist frequency, process it by an f(z) = 22 saturator and
add the result to the unprocessed signal:

BL/3 P?@

(where BL/3 denotes a filter which bandlimits the signal to 1/3 of the Nyquist
frequency, and Lat denotes). Actually bandlimiting will introduce latency into
the signal, so we’ll need to add the same latency on the lower path

BL/3 ’—>L3

Lat

(where Lat denotes a structure which artificially introduces the same latency as
introduced by BL/3).

This idea stll doesn’t work really well, since antisaturators are normally used
in feedback loops. We can’t perform the bandlimiting inside the feedback loop,
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e.g.

because of the introduced latency. Doing it outside the feedback loop is also
problematic. For one, we’d need to bandlimit the entire signal z(t), not only
the part of it which goes through the z® shaper. This still could be done,
though, if the sampling rate is sufficiently high (at least 3 x 44.1kHz). The
other problem is that the signal inside the feedback loop will go infinitely many
times through the waveshaper. Therefore bandlimiting of the signal prior to
entering the feedback loop to 1/3 of Nyquist frequency won’t really prevent the
aliasing from happening.i5

Antialiasing

The antialiasing of waveshapers is a difficult problem, not having a universally
good solution at the time of writing this text. The only thing which is more or
less guaranteed to work is heavy oversampling.?® Unfortuntately, oversampling
introduces latency, thus, if e.g. a waveshaper is used in a filter feedback loop, we
cannot oversample locally just the waveshaper, but at least the entire feedback
loop must be oversampled.

There is however an approach®’ which reduces aliasing by a noticeable
amount, so that the same quality of sound can be achieved at lower sampling
rates than otherwise.ﬁ Suppose we are having a discrete-time signal z[n] going
through a waveshaper f(z). Instead of sending x[n] through the waveshaper in
discrete time, thereby producing the discrete time signal

y[n] = f(z[n)) (6.35)

let’s convert x[n] to continuous time by means of linear interpolation. Without
loss of generality we will consider the linear interpolating segment going between
x[0] and x[1]:

z(t) = (1 —t)z[0] + tz[1] 0<t<1 (6.36)

(where we assume unit sampling period T' = 1). Applying the waveshaper f(z)
in contnuous time to this segment we obtain

y(t) = f(z(t)) = F((1 = t)[0] + tz[1])

35However, it still might reduce the amount of aliasing.

36Higher sampling rates lead to smaller relative increments of integrator states (at the same
cutoff value in Hz). Thus, at some point higher computation precision will be required. 32
bit floats might happen to become insufficient pretty quickly, but 64 bit floats should still do
in a wide range of high sampling rates.

37The approach was proposed independently by A.Huovilainen, E.Le Bivic, Dr. J.Parker
and possibly others. The application of the approach within zero-delay feedback context has
been developed by the author.

388till, 44.1kHz would be usually insufficient and one will need to go to 88.2kHz or even
higher.
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Now we propose to compute the discrete time sample y[1] as

y[l] = /0 y(r)dr = /0 (1 =7)x[0] + 7z[1]) dr = F(wil[]li : 5[5)3]5[0]) (6.37)
where F(x) is some antiderivative of f(z), that is F'(z) = f(x). Or, more
e g (xln)) ~ Flaln — 1)

F(z|n]) — F(z[n —
yln] = /nil yir)dr = SR (6.38)

where y(t) = f(z(t)) and where z(t) is a piecewise linear continuous-time func-
tion arising out of linear interpolation of z[n]. It might seem that the averaging
of y(t) ont € [n—1,n] in (6.38) is a somewhat arbitrary operation. However, it
isn’t. In fact, such averaging can be considered as one of the simplest possible
forms of lowpass filtering the continuous-time signal, aiming to suppress the
aliasing frequencies above Nyquist.3®

The averaging (6.38) does a reasonable job of reducing the aliasing in y[n]
compared to (6.35), however it is introducing two problems: latency and ill-
conditioning.

Latency

Assuming the transparency of the waveshaper at small signal levels f(z) ~ x
we have F(z) ~ 2%/2 and (6.38) turns into

~2?n]/2 -2 n—1]/2  az[n]+xln—1]
yln] = P o e 5 (6.39)

The expression (6.39) describes a discrete time 1-pole lowpass filter with a cutoff
at half the Nyquist frequency. Indeed, let’s take the lowpass filter in Fig. 3.31.
At g = 1 (which corresponds to w.T/2 = 1, which in turn corresponds to
prewarped half Nyquist frequency w.T/2 = 7/4) we have g/(g +1) = 1/2 and
thus

v[n] = — (6.40a)
y[n] = v[n] + s[n] = M (6.40b)
s[n + 1] = y[n] + v[n] = z[n] (6.40c¢)

Combining (6.40b) and (6.40c) we obtain

z[n] + x[n — 1]

yln] = 5

which is the same as (6.39).

The lowpass filtering effect of (6.38) is actually another problem that we
didn’t mention so far. It arises out of the approximations that the method does
when converting from discrete-time signal z[n] to z(t) and back from y(t) to
y[n]. This problem is however not very noticeable at sampling rates of 88.2kHz
and higher. So, let’s concentrate on the latency introduced by (6.39).

39Similarly, linear interpolation can be interpreted in terms of continuous-time lowpass
filtering which suppresses the aliasing discrete time spectra.
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The averaging in (6.39) can be seen as a mid-way linear interpolation between
z[n] and x[n — 1] and thus intuitively one could expect that it introduces a half-
sample delay. This is indeed the case. Taking z[n] = €/*" and assuming |w| < 1,
so that the signal’s frequency is far below the cutoff of the lowpass filter (6.39),
we have

ejwn 4 ejw(n—l)

1 eIw/2 | o=iw/2
o TN (1

. 1 w . 1
=e wln—=)] -cos==e n— -
XpJ 5 5 Xp Jw 5

where cos(w/2) & 1 since w ~ 0.
It can be shown that the source of this half-sample delay is the averaging of
y(t) on [n — 1,n] done in (6.38). Taking y(t) = e/“* where |w| < 1, we have

n ) jwn _ jjw(n—1)t 1 Jjw/2 _ p—jw/2
/ eﬂ‘”dq—zkzexpjw n— - .#:
o1 jw 2 2j - w/2

) 1\ sin(w/2) ) 1 L w
= ex wln—-=— s/ = €X wilin-—-— = - sIinec — X
pJ 2 w/2 PJ 2 2

. 1
/2 exp jw (n— 2)

(where sincz = S22 s the cardinal sine function). Thus (6.39) and (6.38)
indeed introduce a delay of half sample. Inside a zero-delay feedback loop this
would be a serious problem. In order to develop an idea of how to address this
problem, let’s look at a few examples.

Waveshaper followed by an integrator

Suppose a waveshaper is immediately preceding an integrator, as shown in
Fig. 6.61 (this particularly happens in the OTA-style 1-poles in Figs. 6.35 and
6.36). Normally we recommended to use transposed direct form II integrators
however this time we suggest to use a direct form I integrator (Fig. 6.62). Look-
ing at the first half of the direct form I integrator (highlighted by the dashed
line in Fig. 6.62) we can notice that it exactly implements the formula (6.39).
So, the first part of the integrator implements a half-sample delay too and does
so in exactly the same way as the antialiased waveshaper for low-level signals.
This therefore leads to an idea to simply drop this part of the integrator, as it is
done in Fig. 6.63, since we are getting the same half-delay from the waveshaper

already.
—{ @)

Figure 6.61: Waveshaper immedidately followed by an integrator.

It is interesting to notice that what thereby remains of the integrator is the
native integrator contained in Fig. 3.3). Thus, in order to implement an an-
tialiased waveshaper followed by a trapezoidal integrator, simply use a naive



226 CHAPTER 6. NONLINEARITIES

Figure 6.62: Antialiased waveshaper combined with direct form I
integrator. The dashed line highlights the part of the integrator
which is equivalent to the waveshaper at low signals.

wed
— f(2) &

Figure 6.63: Antialiased waveshaper combined with direct form I
integrator, the first part of the integrator being dropped, since its
implemented by the antialiased waveshaper already.

integrator instead. This effectively produces trapezoidal integrator, simultane-
ously “killing” the unwanted latency produced by the antialiased waveshaper.

The solution proposed in Fig. 6.63 works quite well. There is still one sub-
tlety though, which, depending on the circumstances, may be fully academic
or not. By “assigning” the functionality of the first part of the integrator to
the antialiased waveshaper, we effectively positioned the w.T" gain element into
the middle of the integrator (Fig. 6.64). This doesn’t affect the time-invariant
behavior of the integrator, but will introduce some changes if the cutoff w, is
varying.

In order to avoid that effect, we would need to somehow include the varying
wI' into the averaging implemented by (6.38). A straightforward possibility
would be to change (6.37) into

1
u[l]:/o we(T)y(r)dr (6.41)

(remember that we assume T' = 1), where u(t) = w.(¢)y(t) = w.(t)Ty(t). Trape-
zoidal integration assumes (kind of) that the signals are varying linearly in
between the samples, therefore (6.41) can be rewritten as

ull] = / (1 = 7)eel0] + reoe[1])y(r) dr =

= /O (1 = T)we[0] + Twe[1]) F((1 = 7)2[0] + 72[1]) dT (6.42)
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.
=

Figure 6.64: Structure in Fig. 6.63 implies positioning the w.T" gain
element in the middle of the integrator. The dashed line highlights
the part which is being replaced by the antialiased waveshaper.

Unfortunately, the formula (6.42) is not fully convincing. At f(x) = z we would
expect (6.42) to turn into ordinary trapezoidal integration of w,.f(x) yielding

we[0)f (x[0]) + we[1)f (=[1])
2

However (6.42) gives in this case
we[0] +we[1] ~ f(«[0]) + f(=[1])
2 2

Of course, (6.42) can be further artificially amended. Whether one should at-
tempt anything like that, is an open question.

Waveshaper following an integrator

The opposite order of connection of a waveshaper and an integrator looks much
better at first sight, since in this case we could use a transposed direct form I
integrator (Fig. 6.65), which won’t require us to reposition the cutoff gain.*®
A concern which this approach is raising though, is that, as we have seen,
the latency introduced by the waveshaper is caused by the averaging occurring
after the nonlinearity, whereas in Fig. 6.65 the averaging in the integrator,
which we are dropping, is occurring before the nonlinearity. On the other hand,
linear interpolation, which is used to construct z(t) from x[n] in (6.36), is also
having a lowpass filtering effect similar to the one of the averaging, while it
doesn’t actually matter, whether we compensate the latency before or after the
waveshaper. Therefore Fig. 6.65 may also provide an acceptable solution.

Waveshaper followed by a 1-pole lowpass

Let’s now consider the case of the feedback saturator in Fig. 6.6, where the
saturator is not exactly followed by an integrator, but by a complete 1-pole?
Fig. 6.66 depicts this situation explicitly showing the internal structure of the
1-pole.

40Technically the integrator in Fig. 6.65 is, formally, not exactly a transposed direct form
IT integrator, as the 1/2 gain element should have been positioned in the middle. However,
since this is a constant gain, we can shift it without causing the same concerns as in the case
of shifting the potentially varying w.T" gain element.
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D> ) |~

Figure 6.65: Transposed direct form I trapezoidal integrator fol-
lowed by a waveshaper. The dashed line highlights the part of the
integrator which is about to be dropped.

]

Figure 6.66: Waveshaper followed by a 1-pole lowpass.

Replacing the integrator with its direct form I implementation we obtain the
structure in Fig. 6.67. Following the approach of Fig. 6.64, we reposition the
w:I' element, as shown in Fig. 6.68.

Figure 6.67: Waveshaper followed by a 1-pole lowpass built around
a direct form I integrator.

Now we would like to drop the (142z71)/2 part of the direct form I integrator,
but only for the signal coming from the waveshaper. The feedback signal of the
1-pole should still come through the full integrator. This can be achieved by
injecting the waveshaped signal into a later point of the feedback loop. The
resulting structure in Fig. 6.69 thereby compensates the latency introduced by
the antialiased waveshaper.

The structure in Fig. 6.69 can be further simplified as shown in Fig. 6.70,
where we “slid” the inverter “—1” all the way through (1+ 271)/2 to the injec-
tion point of the waveshaped signal. Such change doesn’t cause any noticeable
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Figure 6.68: Structure from Fig. 6.67 with a changed position of
the cutoff gain.

Figure 6.69: Structure from Fig. 6.68 with the waveshaped signal

bypassing the first part of the direct form I integrator (thereby
compensating the introduced latency).

effects.’! Noticing that the two 27! elements in Fig. 6.70 are actually sharing
the same input signal, we can combine both into one (Fig. 6.71).

Fig. 6.71 contains a zero-delay feedback loop, which can be resolved. Let’s
introduce helper variables u, v and s as shown in Fig. 6.71 and let g = w.T'.
Writing the equations implied by the block diagram we have

( v—l—s+s)
v=g vy

v-(1+g/2)=g (u—s)
v=-—1 (u—s)
1+4g/2

Considering that y = v + s we obtain the structure in Fig. 6.72.
Notice that the obtained structure in Fig. 6.72 is pretty much identical to
the structure of the naive 1-pole lowpass filter in Fig. 3.5, except that the cutoft

from where

41The internal state stored in the first 2~ element is inverted compared to what it used to
be, but this is compensated by the new position of the inverter.
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Figure 6.70: Structure from Fig. 6.69 with a changed position of
the inverter.

Figure 6.71: Structure from Fig. 6.70 with merged z~! elements.

wT
14+w:T/2

Figure 6.72: Structure from Fig. 6.71 with resolved zero-delay feed-
back loop, implementing Fig. 6.66 with latency compensation.

gain is not w.T" but w.T'/(14+w.T/2). Thus, in order to implement an antialiased
waveshaper followed by a 1-pole lowpass, we simply use a naive 1-pole lowpass
with adjusted cutoff instead, which effectively “kills” the unwanted latency.

In principle we could have tried to avoid the repositioning of the w.T" gain
element. Attempting to do so, we could have gone from Fig. 6.67 to the structure
in Fig. 6.73. However, this solves only one half of the problem, namely fixing
the issue in the feedback path, while the issue is still there for the waveshaped
signal. The considerations of possibly including the averaging of w.T" into the
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antialiased waveshaper apply, where we are having exactly the same situation
as in the case of an integrator following a waveshaper.

s f@) >

Figure 6.73: Structure from Fig. 6.67 with the waveshaped signal
bypassing the first part of the direct form I integrator (thereby
compensating the introduced latency) but without repositioning
of w.T gain element.

1-pole lowpass followed by a waveshaper

In case of a 1-pole lowpass filter followed by a waveshaper (Fig. 6.74) we can use
the transposed direct form I integrator, as we did in Fig. 6.65. The respective
structure is shown in Fig. 6.75.

[
& L f(x)

Figure 6.74: 1-pole lowpass followed by a waveshaper.

wT

Figure 6.75: 1-pole lowpass built around a transposed direct form
I integrator followed by a waveshaper.
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In this case we can simply pick up the waveshaper input signal in the middle
of the integrator, bypassing the second half (Fig. 6.76). Noticing that the two
271 elements in Fig. 6.76 are picking up the same signal, we could merge them
into a single 27! element as shown in Fig. 6.77, thereby producing a direct form
IT integrator (compare to Fig. 3.9).

Figure 6.76: Structure from Fig. 6.75 with the waveshaper skipping
the second half of the transposed direct form I integrator (thereby
compensating the introduced latency).

Figure 6.77: Structure from Fig. 6.76 with merged 2! elements.
The dashed line highlights the direct form II integrator.

In order to resolve the zero-delay feedback loop in Fig. 6.77 we introduce
helper variables u, v and s as shown in Fig. 6.77 and we let ¢ = w.T. Then,
writing the equations implied by the block diagram, we have

u—+s—+s
v=g\TT Ty

u-(1+g/2)=g-(z—s)

from where
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= g (x—s
kv MG

Considering that v = u + s we obtain the structure in Fig. 6.78.

ol G et () i)

Figure 6.78: Structure from Fig. 6.77 with resolved zero-delay feed-
back loop, implementing Fig. 6.74 with latency compensation.

Notice that the obtained structure in Fig. 6.78 is identical to the structure
in Fig. 6.72, except for the the opposite order of the naive 1-pole lowpass and
the waveshaper. Thus, in order to implement a 1-pole lowpass followed by an
antialiased waveshaper we simply use a naive 1-pole lowpass with adjusted cutoff
instead.

Other positions of waveshaper

In Fig. 6.66 we had a waveshaper followed by a lowpass, but imagine it was a
highpass instead (Fig. w)f In this case, even if we use the tricks similar
to the ones we did in the lowpass case, we still won’t be able to eliminate the
latency on the feedforward path between z(t) and y(t).

2(t) —= f(z) 3 y(t)

S
KN

Figure 6.79: Waveshaper followed by a 1-pole highpass.

If there is e.g. a lowpass further after the the highpass:

T

then we can eliminate the latency by changing the lowpass, exactly as we did
before. The highpass filter will work on a signal delayed by half a sample, but
this will be compensated in the immediately following lowpass. Similarly, if
there is a preceding lowpass:

f(z) = HP |—

42The highpass in Fig. 6.79 might look different from the one in Fig. 2.9, however it’s not
difficult to realize that in fact both structures are identical.
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we could consider compensating the latency by changing that lowpass. The
same of course could be done if instead of a lowpass we find an integrator, or a
suitable structure containing one.

However it might happen that there is no lowpass or an integrator or any
other structure suitable for this purpose, neither after the waveshaper nor before
it. In such cases we could artificially insert a 1-pole lowpass immediately before
or after the waveshaper (Fig. 6.80), setting the cutoff of this lowpass to a very
high value. In this case we could hope that the insertion of the new lowpass
would not significantly change the signal, at least not in the audible range, if
its cutoff is lying well above.

a(t) — f(@) T y(t)

S
K

Figure 6.80: Artificially inserted 1-pole lowpass.

One still has to be careful, since such lowpass will introduce noticeable
changes into the behavior of the system in the spectral range above the lowpass’s
cutoff and even, to an extent, below its cutoff. Even though a lowpass gener-
ally reduces the amplitude of signals, due to the changes in the phase it could
increase the system’s resonance, causing the system to turn to selfoscillation
earlier than expected.ﬁ In a nonlinear system the inaudible parts of the spec-
trum could become audible through the so-called intermodulation distortion.ﬁ
So, it’s a good idea to test for the possible artifacts created by the introduction
of such lowpass.

Zero-delay feedback equation

The appearance of antialiased waveshapers in a zero-delay feedback loop creates
the question of solving the arising zero-delay feedback equations. Fortunately,
this doesn’t create any new problems, as the inistantaneous response of an
antialiased waveshaper can be represented in familiear terms.

Indeed, according to (6.38) the instantaneous response of an antialiased
waveshaper is simply another waveshaper:

x F(z) — F(a)

fla) = (6.43)

T—a
where a = z[n — 1] is the waveshaper function’s parameter, which is having a
fixed value at each given time moment n. Thus we obtain the already familiar
kind of a zero-delay feedback equation with a waveshaper.

43This would be particularly the case in a 4-pole lowpass ladder filter, where the effect is
noticeable at ladder filter’s cutoff settings comparable or higher than the cutoff of the added
lowpass.

44Recall that e.g. in (6.33) the output signal of a waveshaper contained all sums and dif-
ferences of the frequencies of the original signal. Thus if the difference of two frequencies,
both lying well above the audible range, falls into the audible range, these originally inaudible
partials will create an audible one.
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Ill-conditioning

If 2[n] ~ z[n — 1], the denominator of (6.38) will be close to zero. Rather
fortunately this also means that the numerator will be close to zero as well,
so that, at least formally, their ratio should produce a finite value. However
practically this could mean precision losses in the numeric evaluation of the
right-hand side of (6.38) (or division by zero if z[n] = z[n — 1]).

Since z[n] & z[n—1], the value of the interpolated signal x(t) and respectively
the value of y(t) = f(z(¢)) shouldn’t change much on [n — 1,7n] and thus the
integral in (6.38) can be well approximated by a value of y(t) somewhere on that
interval.®> In principle we could take any point on that interval, but intuitively

we should expect the midway point to give the best result, and thus we take

yln] = f (W) it #fn] ~ zn — 1] (6.44)

Notice that at f(z) ~ = (6.44) turns into (6.39).
The fallback formula (6.44) creates no new problems for the solution of the
zero-delay feedback equation, since in instantaneous response terms it looks like

another waveshaper
5 T+ a
fo = £ (25°) (6.45)

where a = z[n — 1]. Note, however, that when using iterative approaches to the
solution of the zero-delay feedback equation, we potentially may need to switch
between (6.43) and (6.45) on each iteration step.

The choice between the normal and the ill-conditioned case formulas should
depend on the comparison of estimated precision losses in (6.38) and the error
in (6.44). In that regard note, that it might be a good idea to choose the
antiderivative F(z) so that F(0) = 0. This could improve the precision of
numerical computation of (6.38) and (6.43) at low signal levels, as subtraction
of two close numbers is the main source of precision losses here. On the other
hand, the main source of error in (6.44) and (6.45) is nonlinear behavior of f(x)

on the segment lying between z[n — 1] and z[n].*¢

SUMMARY

Nonlinear filters can be constructed by introducing waveshapers into block dia-
grams. Two important types of waveshapers are saturators and antisaturators.
Saturators used in resonating feedback loops prevent the signal level from infi-
nite growth. Antisaturators have a similar effect in damping feedback paths.
The discussed types of usage of saturators in filters included feedback loop
saturation, transistor ladder-style 1-pole saturation and OTA-style 1-pole sat-
uration. The discussed usage of antisaturators included the diode clipper-style
saturation of 1-poles and the usage in the damping path of an SVF.

45This is more precisely stated by the mean value theorem.

46Note that if f(x) is fully linear on that segment, then (6.44) gives the exact answer. One
could also obtain an estimation of the error of (6.44) by expanding f(z) in Taylor series around
z = (z[n] + z[n — 1])/2 and noticing that applying (6.38) just to the first two terms of this
expansion gives (6.44) (as the contribution of the first-order term of the series turns out to be
zero). Therefore the error of (6.44) is equal to the contribution of the remaining terms of the
Taylor series to (6.38).
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Waveshapers usually turn zero-delay feedback equations into transcendental
ones, which then need to be solved using approximate or numeric methods,
although in some cases analytic solution is possible.

Discrete-time waveshaping produces aliasing, which might need to be miti-
gated using oversampling and/or some more advanced methods.



Chapter 7

State-space form

Starting with this chapter we begin the discussion of subjects of a more theoret-
ical nature, not in the sense that they are not useful for practical purposes, but
rather that one can already do a lot without the respective knowledge. Simul-
taneously the mathematical level of the presented text is generally higher than
in the previous chapters. Readers who are not too interested in the respective
subjects may consider skipping directly to Chapter 11, where the discussion
returns to the previous “practical” level.

Transfer functions fully describe the behavior of linear time-invariant sys-
tems, but, as we already have seen, once the system parameters start to vary, we
find out that some important information about the system topology is lacking.
The state-space form provides a mathematical way to describe a system without
losing the essential information about the system’s topology.! Practically it’s
not much different from block diagrams, just instead of a graphical representa-
tion of a system we represent it by mathematical equations. The state-space
form can help to obtain new insights into the way how differential and difference
systems work.

7.1 Differential state-space form

The term state-space form simply means that a differential system is written in
the form of ordinary differential equations of the first order, where the differen-
tiation is done with respect to time, and the equations have been algebraically
resolved in respect to derivatives. E.g. suppose we are interested in a 2-pole
allpass based on the state-variable filter (Fig. 4.1). In principle we already have
the respective equations in (4.1) but for the sake of demonstration let’s reobtain
them from the block diagram in Fig. 4.1.

Let u; = ygp denote the output of the first integrator and us = yp,p denote
the output of the second integrator. The input of the first integrator is z —
2Rygp — yLp, thus

Uy = /wc (x — 2Ruy — ug) dt

IExcept in cases where continuous-time block diagrams contain instantaneously unstable
integratorless feedback loops.

237
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The output of the second integrator is simply ygp:

Uy = /wcul de

According to (4.23), the allpass signal can be obtained as y = z — 4Rypp:
y=z—4Ru,

Writing all three equations together:

i /wc (x — 2Ruy — ug) dt

Uy = /wcul dt

y=x—4Ruy

we have obtained the state-space form representation of Fig. 4.1, except that we
are having integral rather than differential equations. From the mathematical
point of view this is no more than a matter of notation and we can equivalently
rewrite the same equations as

U1 = we (€ — 2Ruy — ug)
122 = WU

y=x—4Ruy

It is common to write the state-space equations in the matrix form:

G- )G o
y=(-4R 0) (Z;) +a (7.1b)

or, by introducing

we rewrite the same in vector notation:
u= Au+ bz
y=cu+d-z

This is the general state-space form for a single-input single-output differential
system. We can promote it further to multiple inputs and multiple outputs by
promoting = and y to vectors and promoting b, ¢' and d to matrices:

u=Au+ Bx (7.2a)
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y =Cu+ Dx (7.2b)
E.g. for a single-input multiple-output LP/BP/HP SVF the equation (7.1b
turns into
0 1 0
y=| 1 0 <u1> +(o]a
—2R —1) \"? 1

The term state-space form originates from the fact that the vector of differ-
ential variables u represents the states of the integrators, or simply the state of
the system. Respectively the linear space of vectors u is referred to as the state
space of the system.

The state-space form encodes the essential information about the system’s
topology, namely, which gains precede the integrators and which follow the
integrators. Specifically, B is the matrix of gains occuring on the paths from the
inputs to the integrators, C is the matrix of gains occurring on the paths from
the integrators to the outputs, D is the matrix of gains bypassing the integrators
and A is the matrix of gains on the feedback paths, thus they simultaneously
precede and follow the integrators.

Integral form
Equations (7.2) can be rewritten in the integral form, which is merely a nota-
tional switch:
t
u= /(Au + Bx) dt = u(0) + / (Au+ Bx) dr (7.3a)
0
y=Cu+ Dx (7.3b)

The integral form also allows to convert the state-space form back to the block
diagram form. Each line of (7.3a) corresponds to an integrator, the respective
right-hand side describing the integrator’s input signal.

Nonlinear state-space form

The right-hand sides of the equations (7.2) actually can be arbitary nonlinear
vector functions of vector arguments, in which case we could write the equations
as

u = F(u,x)
y = G(u,x)

The discussion of nonlinear systems has been done in Chapter 6. Most of the
ideas discussed in Chapter 6 can be equally applied to the systems expressed as
a state-space form, and we won’t discuss nonlinear state-space forms further.

7.2 Integratorless feedback

Before we can convert a block diagram (or an equation system, for that mat-
ter) into a state-space form we need to resolve integratorless feedback loops,
if there are any. Integratorless feedback is a continuous-time version of zero-
delay feedback. While zero-delay feedback loops in discrete time systems are
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the loops containing no unit delays, integratorless feedback loops in continuous
time systems are the loops containing no integrators.

The resolution of integratorless feedback is therefore subject to the same
considerations and procedures as the resolution of zero-delay feedback. We are
going to demonstrate this using the TSK allpass from Fig. 5.35 as an example.

Figure 7.1: Allpass TSK filter from Fig. 5.35 with expanded 1-pole
allpass structures.

Expanding the internal structures of the 1-pole allpasses in Fig. 5.35 we
obtain the structure in Fig. 7.1. Denoting the 1-pole allpass states as u; and
ug, their output signals as y; and yo and the input of the first 1-pole allpass as
Yo (as shown in Fig. 7.1) we obtain the following equations:

U1 = Yo — U1
Y1 =u1 — (Yo —u1) = 2u1 — Yo
Uz = Y1 — U2
Yo = up — (y1 — uz) = 2uz — Y1
Yo =T — ky2
Y =Yy2 + kyo

where this time we have assumed w. = 1 for simplicity.

Apparently Fig. 7.1 contains an integratorless feedback loop, starting at o,
going through the highpass path of the first allpass to y;, then through the
highpass path of the second allpass to y» and returning via the global feedback
path to yo. This loop contains three inverters and a gain of k, thus the total
gain of this integratorless feedback loop is —k and it is not instantaneously
unstable provided k > —1. Under this assumption we can resolve it algebraically.
Selecting just the equations for y,, we have

Y1 = 2u1 — Yo
Yo = 2ug — Y1
Yo = — kyo

We would like to solve for yg, therefore we first eliminate y, in the third equation:

Yo =T — k(2u2 - yl)
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and then y; in the just obtained equation:
yo = — k(2us — (2u1 —yo)) = = — kyo + 2k(uy — uz)

(1+k)yo =z + 2k(u1 — u)
and
x + 2k(u; — ug)
14k

Notice that the denominator corresponds to the instantaneously unstable case
occuring for k < —1.

Now that we have resolved the integratorless feedback, we need to substi-
tute the resolution result into the remaining equations of the original equation
system:

Yo =

2k 1 ) 2k v+ 1 x_(kj—l)ul—QkuQ—FaS
1+k T A 1+k

u2:y1—uQ:2u1—y0—u2:

(o 2k N (2N, L
B 1+k)" 1+k)" 14k

2u; + (k— Dug — x
1+k
Y =y2 + kyo = 2uz — y1 + kyo = 2uz — (2u1 — yo) + kyo =
=2(ug —u1) + (L + k)yo = 2(uz — u1) + = + 2k(ug — ug) =
=2(k—1Du; —2(k—Dus +

u1:yo—u1=(

Or, in the matrix form

1 k—1 =2k 1 1
':7 —— .4
u k+1< 9 k1>u+k+1<1)x (7.4a)

y=2(k—-1)-(1 -u+z (7.4b)

7.3 Transfer matrix

If x(t) = X(s)e®, all other signals in the system have the same exponential
form and the system turns into

sU(s)e™ = AU(s)e® + BX(s)e™
Y (s)e’t = CU(s)e® + DX (s)e"
or

sU(s) = AU(s) + BX(s)
Y (s) = CU(s) + DX(s)

The first of the two equations is a linear equation system in a matrix form in
respect to the unknown U(s) and the solution is found from

(s — A)U(s) = BX(s)
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(where s — A is a short notation for sI — A where I is identify matrix), and
U(s) = (s — A)7'B - X(s) (7.5)
and thus
Y(s) = CU(s) + DX(s) = C(s — A)™'B - X(s) + D - X(s)
Introducing the matrix

Cadj(s— A)B

H(s)=C(s—A)™'B+D= det(s — A)

+D (7.6)

we have
Y (s) = H(s)X(s)

Thus H (s) is the transfer matriz of the system, its elements being the individual
transfer functions corresponding to all possible input-output pairs of the system.
In case of a single-input single-output system H(s) reduces to a 1 x 1 matrix:

c’adj(s — A)b

H(s)=c"(s— A 'b+d= det(s — A4)

+d (7.7)

being simply the familiar transfer function.

From the formula (7.6) or (7.7) we can derive why the transfer functions of
system built on integrators are nonstrictly proper rational functions. Indeed,
the elements of adj(s — A) are polynomials of s of up to (N — 1)-th order (where
N is the dimension of the state space, that is simply the number of integrators).
On the other hand, det(s — A) is a polynomial of s of N-th order. Therefore,
the elements of (s — A)~! are rational functions of s sharing the same N-th
order denominator det(s — A) and having numerators of up to (N — 1)-th order.
Thus, if D = 0, the elements of H(s) are strictly proper rational functions.

If D # 0, (7.6) turns into

His) = Cadj(s—A)B P D— Cadj(s — A)B + Ddet(s — A)
det(s — A) det(s — A)

and thus the numerators of the elements of H(s) become polynomials of order
N, if the respective element of matrix D is nonzero. Thus, the transfer function
becomes nonstrictly proper only if there is a direct (in the sense that it contains
no integrators) path from the input to the output.

Note that, since the denominator of the transfer function(s) is det(s — A),
it follows that the roots of the det(s — A) polynomial are the system poles. At
the same time the roots of det(s — A) = 0 are the eigenvalues of A. Thus,
eigenvalues of A are the system poles.

7.4 Transposition

Computing the transfer matrix transpose we obtain from (7.6):

H'(s)= (C(s—A)'B+D) =BT (s— AT)"'CT+ D"
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This looks like a transfer function of another system:
_l'l/ :Alu/+B/X/
y/ — C/ul + D/X/
where
A=AT B'=Cc" ¢'=B" D'=D"

We will refer to this new system as transposed system. The transposition of the
state-space form corresponds to the transposition of block diagrams described
in Section 2.14. Particularly, we swap the input gains B for the output gains C
and vice versa.

So, the transfer function of the transposed system is

H'(s)=C'(s—A)'B'+D' =BT (s — A")"'1CT + D" = H'(s)
where
Y'(s) = H'(s)X'(s) = H' (s)X/(s)

or, in component form
Y (s) = Hypn(8) X7, (s) = Hn(5) X;,(5)
while for the original system we have
Yin(s) = Hpn(5) Xn(s)

But the input/output pair z/,, v/, is the transposed system corresponds to the
input/output pair x,, y., of the original system and the transfer function for
each pair is H,,,. Thus, transposition preserves the transfer function relation-
ships between the respective input/output pairs.

7.5 Basis changes

In the process of further analysis of state-space forms it will be highly useful to be
able to change the basis of the state-space. Since a basis change is equivalent to a
linear transformation of the linear space, let u’ = T'u denote such transformation
(where T is some nonsingular matrix). Remember that what we are doing is
changing the basis of the space, the transformation 7' is just a way to notate the
respective change of coordinates! Then u = T~ 'u’ and we can rewrite (7.2a) in
terms of u’: d
— (T7') = AT "W + Bx 7.8
o (170) = AT o)
T ' = AT 'v' + Bx
W =TAT ' + TBx

Respectively, (7.2b) in terms of u’ turns into
y=Cu+ Dx=CT 'u + Dx

Introducing
A =TAT™" B =TB C'=CT! (7.9)
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we obtain

u = A'v + B'x (7.10a)

y =C'u' + Dx (7.10b)
which has exactly the same form as (7.2). That is we have obtained a new
state-space representation of the system in the new basis. Note that thereby we
didn’t change the basis of the spaces of the input signals x or the output signals
y, but solely the basis of the state signals u. Thus, the basis change is a purely
internal operation and doesn’t affect the components of the vectors x and y.

Respectively, the transfer matrix is not affected either, which can be explicitly
shown by computing the transfer matrix in the new basis:

H(s)=C'(s—A)'B +D=0CT"Y(s—TAT " )"'TB+ D =
=CT Y TsT™' —TAT )" 'TB+ D =
=CT ' T(s— AT Y 'TB+D=
=CT 'T(s— A 'T7'TB+ D =
=C(s—A)™'B+D=H(s)

7.6 Matrix exponential
Another tool which we will need is the concept of the matriz exponential. We

define the matrix exponential by writing the Taylor series for an ordinary ex-
ponential:

v _1q 2 a3
e = +JL‘+§+§+
and replacing = with a matrix:
Xz X3

The properties of the matrix exponential are similar to the ones of the ordinary
exponential, except that typically the commutativity of the involved matrices
is required. Particularly, the following properties are derived from (7.11) in a
straightforward manner, under the assumption XY =Y X and XX’ = X'X:

XY = veX XHY _ XY Y X %ex(t) — XX = XX
The value of eX is particularly easy to compute if X is diagonal:
M O -0
0 X -+ 0
X = :
0 O -0
0 0 - Ay

In this case formula (7.11) turns into N parallel Taylor series for e*» and we
simply have

eM 0 0

0 e ... 0
e =

0 0 . 0

0 0 --- e
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If X is not diagonal, but diagonalizable by a similarity transformation TX7T 1,
the value eX can be computed by noticing that matrix exponential commutes
with similarity trasformation:

eTXT™ — TeXp-1 (7.12)

which allows to express eX via eTXT™" The formula @) is obtainable from
(7.11) in a straightforward manner as well, where we also notice that (7.12)
holds for any 7" and X, they don’t have to commute.

If X is not diagonalizable, then Jordan normal form can be used instead.
We are going to address this case slightly later.

7.7 'Transient response

The differential state-space equation @ can be solved in the same fashion as
we solved the differential equations for the 1-pole in Section 2.15. Indeed, the
difference between (7.2a) and the Jordan 1-pole (2.21) is that the former has
matrix form. Also in (7.2a) the input signal is additionally multiplied by the
matrix B, but that doesn’t change the picture essentially.

Repeating the same steps as in in Section 2.15, we multiply both sides of
(7.2a) by the matrix exponential e~ 4:

e Ma=eMAu+e Bx
or
e At — e MAu=e 4Bx

Noticing that
d (
dt

we rewrite the state-space differential equation further as

e_Atu) =e Mu—e 4 Au

d

P (eiAtu) =e A'Bx

Integrating with respect to time from 0 to ¢:

t
e Au —u(0) = / e AT Bx dt
0

t t
u = eu(0) + eAt/ e A7 Bxdt = e*'u(0) + / e Bx dt (7.13)
0 0

The formula (7.13) is directly analogous to (2.22). Further, assuming complex
exponential x(t) = X(s)e*® (note that all elements of x share the same expo-
nential €%, just with different amplitudes) we continue as:

t
u = eMu(0) + eAt/ e ATBX(s)e*T dt =
0

t
= etu(0) + eAt/ e~ At - BX(s) =
0
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t
= eMu(0) + eM(s — A)"LelsmAT - BX(s) =

=0
= eMu(0) + eM(s — A)7! (e(S*A)t - 1) BX(s) =

= M (u(0) — (s — A) 7' BX(s)) + (s — A) 7 BX(s)e*

Comparing to the transfer matrix for u(t) defined by (7.5) we introduce the
steady-state response

u,(t) = (s — A)7'B - X(s)e™
and therefore
u(t) = eAt (u(0) — us(0)) + ug(t) = ue(t) + us(t) (7.14)

where u,(t) is the transient response.

Note that we have just explicitly obtained the fact (previously shown only for
the system orders N < 2) that, given a complex exponential input X(s)e®t, the
elements of the steady-state response ug will be the same complex exponentials
est, just with different amplitudes. An immediately following conclusion is that
the steady-state signals y, being linear combinations of u and x, are also the
same complex exponentials e*!. In fact, any other steady-state signal in the
system, being a linear combination of u and x, is the same complex exponential
est,

In a fully analogous to the 1-pole case way we can show that (7.14) also

holds for .
o+j00 o dS

x(t)/ajC>o X(s)e 27

e —1 st ds
us(t) = (S — A) BX(S)@ %

in which case

Substituting (7.14) into (7.2b) we obtain

y(t) = Ce™ (u(0) — us(0)) + Cuy(t) + Dx(t) =
= e ((Cu(0) + Dx(0)) — (Cus(0) + Dx(0))) + Cu,(t) + Dx(t) =
= e (y(0) — y<(0)) + ys(t) = yu(t) + ys()

where
yi(t) = Cuy(t) = e (y(0) — y4(0))
and
o+joo s
ys(t) = Cus(t) + Dx(t) = C/,» (s — A)"1BX(s)e™ ;17] + Dx(t) =

[T (= Ay B D) X()er L~
= (oA xe =
Y T 7.15
/(,-joo (s)X(s)e % (7.15)

The latter confirms the fact that y, is the steady-state response.
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7.8 Diagonal form

We have seen that the transient response part of the signals in the system
consists of linear combinations of elements of the matrix e4?. The elements
of et can be easily found if A is diagonalized by a similarity transformation.
However, instead of diagonalizing the matrix A taken in isolation, it will be
more instructive to consider this as diagonalization of the state-space system
itself.

According to (7.2a), the matrix A is an operator converting vectors from the
state space into vectors in the same space. This, diagonalization of A can be
achieved by a specific choice of the state space basis, where the basis vectors
must be the eigenvectors of A. After the change of basis we are having exactly
the same system, just expressed in different coordinates. In these coordinates
the matrix A becomes diagonal and its diagonal elements are eigenvalues of A
(which are basis-independent). Now recall that eigenvalues of A are the same
as the system poles. Therefore, a sufficient condition for the state-space system
to be diagonalizable is that all of its poles are distinct.?

Thus, in a diagonalizing basis the elements of A are simply the system poles:

pr 0 - 0
0 po -+ 0
A= )
0 O 0
0 0 - pn

and the system falls apart into a set of parallel Jordan 1-poles:
Up = Ppln + b;ll— X (716&)
y=Cu+Dx= Z Cnlly, + Dx (7.16Db)

where b are the rows of matrix B (respectively b - x are the input signals of
the Jordan 1-poles), and c,, are the columns of matrix C.

Stability

We already know that the transient response ug,(t) of a 1-pole is an exponent
K,ePnt (where K, is the exponent’s amplitude). Respectively, the transient
response part of y in (7.16b) is a linear combination of transient responses of
the Jordan 1-poles:

yi =Cu = 5 Cplity, = E cn KePm?t
n n

That is, the elements of y; are linear combinations of exponents eP»?.

Now recall that y is independent on the choice of basis and so must be
its separation into steady-state and transient response parts. Note that this is
in agreement with the fact that according to (7.15) the steady-state response
depends only on the transfer matrix and thus is independent of the basis changes.
This means that the fact that the elements of y, are linear combinations of

2A little bit later we will establish the fact that a system where some poles coincide is most
likely not diagonalizable.
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exponents ePr! is also independent of basis choice. Respectively y; — 0 if and

only if Rep, < 0 Vn. Thus we have obtained the explanation of the stability
criterion for linear filters which we introduced in Section 2.9 and have partially
shown for lower-order systems.3

Transfer matrix

Computing the transfer matrix for the diagonal form we notice that

1
0 0
s$—Dn
0 0
(s —A)"1 = 5§ —Dp2 (7.17)
0 0 0
1
0 0
$—DPN

that is we have transfer functions of the Jordan 1-poles on the main diagonal.
Respectively the main term of the transfer matrix C(s — A) ™! B is just a linear
combination of the Jordan 1-pole transfer functions. Apparently the common
denominator of the terms of this linear combination is

N

H(S —Pn)

n=1

which is simultaneously the common denominator of the transfer matrix ele-
ments.

It can be instructive to explicitly write out the elements of the transfer
matrix H(s) in the diagonal case:

N N
k=1

that is, we are having a partial fraction expansion of the rational function
H,,(s) into fractions of 1st order. Thus, if a transfer matrix is given in advance,
there is not much freedom in respect to the choice of the elements of B and C.
The poles p are prescribed by the common denominator of the transfer matrix
and the values of the products ¢, bgm and of d,,, are prescribed by the specific
functions Hp,,(s) occurring in the respective elements of the transfer matrix.

In the single-input single-output case the transfer matrix has 1 x 1 dimen-
sions, while C' has 1 x N and B has N x 1 dimensions respectively. Thus there
is only one equation (7.18) and we have N freedom degrees in respect to the
choice of ¢,k and by, giving the required values of the products c,;bxm,. FEach
such degree can be associated with a variable ay, where we replace by, with
abpm and cpp, with cpr/ag. Apparently such replacement doesn’t affect the
value of the product ¢, kbkm. One can also realize that «j simply scale the levels

30f course, exactly the same results would have been obtained if we simply computed
the explicit form of the matrix exponential et for the diagonal matrix At. However then
we would have missed the interpretation of the diagonalizing basis as the basis in which the
system can be seen simply as a set of parallel 1-poles.
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of the signals uy, which corresponds to different choices of the lengths of the
basis vectors.

Now if we add one more output signal, thereby the dimensions of C' becoming
2 x N, we can notice that we still have exactly the same N degrees of freedom.
If we attempt to change any of by, we need to compensate this in both of ¢,
for the same k by dividing these ¢, by ay, the latter being the ratio of the new
and old values of by,,. Respectively, if we change any of ¢, in one of the two
rows of C, this immediately requires the compensating change of by,,, which in
turn requires that the same change occurs not just in one but in both rows of
C'. Adding more rows to C and/or more columns to B we see that the available
freedom degrees are still the same and correspond to the freedom of choice of
the basis vector lengths.

Thus, aside from the free choice of the basis vector lengths (and of their
ordering) the transfer matrix uniquely defines the diagonal form of the state-
space system. Respectively, for a non-diagonal form, if the matrix A is given,
then the transformation T" to the diagonal form is uniquely defined (up to the
lengths and the ordering of the basis vectors), and, since the transfer function
uniquely defines the matrices B’, C’ and D’ of the diagonal form, the matrices
B=T7'B' C=C'T and D = D' are also uniquely defined.

Steady-state response

Apparently, there is the usual freedom in regards to the choice of the steady-state
response arising out of evaluating the inverse Laplace transform of H(s)X(s)
to the left or to the right of the poles of H(s). The change of the steady-
state response (7.15) depending on the choice of the inverse Laplace transform’s
integration path in (7.15) to the left or to the right (or in between) the poles of
H (s) poses no fundamentally new questions compared to the previous discussion
in the analysis of 1- and 2-pole transient responses and results simply in the
changes of the amplitudes of transient response partials.

Diagonalization in case of coinciding poles

Even if two or more poles of the system coincide, it still might be diagonalizable,
if the eigenvectors corresponding to these poles are distinct. It might seem that
this is the most probable situation, after all, what are the changes of two vectors
coinciding, or at least being collinear? Without trying to engage ourselves into
an analysis of the respective probabilities, we are going to look at this fact from
a different angle.

Namely, given a diagonal state space form with some of the eigenvalues
coinciding, we are going to have identical entires in the matrix (s — A)~™!, as
one can easily see from (7.17). This means that the order of the common
denominator of the elements of (s — A)~! will be less than N and respectively
the order of the denominator of the transfer matrix H(s) will also be less than
N. This means that the effective order of the system is less than N and the
system is degenerate.

Thus, a non-degenerate system with coinciding poles cannot be diagonalized.
In such cases we will have to use the Jordan normal form, which we discuss a
bit later.
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7.9 Real diagonal form

Given a state-space system we could decide to implement it in a diagonal form
by first performing a diagonalizing change of basis and then implementing the
obtained diagonal state space form. However, if the system has complex poles,
the underlying Jordan 1-poles of the system will become complex too, respec-
tively generating complex signals u,. So, while the system has real input and
real output, internally it would need to deal with complex signals. Of course, in
a digital world using complex signals internally in a system shouldn’t be a big
problem. But, for one, this is simply unusual and complicates the implementa-
tion structure. More importantly, operations on complex numbers are at least
twice as expensible as the same operations on real numbers. We therefore wish
to convert a diagonal form containing complex poles to a purely real system,
while retaining as much of the diagonalization as possible.

Since the system itself and the matrix A in the original basis are real, the
complex poles need to come in conjugate pairs. Without loss of generality we
can order the poles in such a way that complex-conjugate pairs come first,

followed by purely real poles: p1, pi, ps, p%, .., pn (Where p2 = pi, ps = p3,
etc.) We will refer to the complex poles pi, ps, ... as the odd poles and to pj,
ps, ... as the even poles. When referring to odd/even poles we will mean only

the essentially complex poles, the purely real poles being excluded. Since the
poles p,, are eigenvalues of A, we will be referring to even/odd eigenvalues and
respectively to even/odd eigenvectors.

Let vi be the eigenvector corresponding to py, that is Avy = pyvy. Then,
since A has purely real coefficients, Avi = Avy = p1vy; = pijvy, (where ¥
denotes conjugation of vector’s components). Thus V7 is the eigenvector corre-
sponding to pi. Obviously, the same applies to any other even/odd eigenvector.
Therefore we can choose a set of eigenvectors such that even eigenvectors are
component conjugates of odd eigenvectors: vy, Vi, vz, V3, ..., VN.

If u' = T'u is the diagonalizing transformation of the system, the new basis
must consist of eigenvectors of A. Respectively, since u = T~ !u/, the columns
of T~ must consist of the new basis vectors, that is of the eigenvectors of A
(or, more precisely, consist of coordinates of these eigenvectors in the original
basis). We will choose

T71: (Vl Vi V3 V3 ... VN)

This means that applying component conjugation to 7! swaps the even and
the odd columns of 7!, which can be expressed as

T-1=7"18
where

010 0 0

1 00 0 0

00 0 1 0
S=10 010 0

000 0 0

000 0 1

is the “swapping matrix”. Note that elements of S are purely real and that

S-1=35.
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Since -
T - T-1=TT-1=1"=1

component conjugation and matrix inversion commute:

T ' —T-1=7"15

Reciprocating the leftmost and the rightmost expressions we have
T=(T'S)" =9 'T=5T

That is, component conjugation of T' swaps its even and odd rows. Or, put in
a slightly different way, the even/odd rows of T are component conjugates of
each other, and so are the even/odd columns of 7~1.

Let’s now concentrate on the first conjugate pair of poles. Taking the diag-
onalized form equations (7.16) we extract those specifically concerning the first
two poles:

= pru) + b x (7.19a)
Uy = piub + by - x (7.19b)
N
y = cju} + chuy + Z c,u, + Dx (7.19¢)
n=3

(where we need to employ the prime notation (7.10) for the diagonalized form,
since we explicitly used the diagonalizing transformation u’ = Tu, thus the
non-primed state u referring to the non-diagonalized form).

Using (7.9) and recalling that the first two rows of 7' are component con-
jugates of each other, we must conclude that so are the first two rows of B’,
that is by’ = b/". Recalling that the first two colums of T~! are component
conjugates of each other, we conclude that ¢} = cT On the other hand, writing
out the first two rows of (7.13) in the diagonal case we have

t
uy (t) = ePr'u/y (0) +/ P =TpTx dt
0
* t * = T
ub(t) = ePrtub(0) +/ eP1= b Tx dt
0

Except for the initial state term, the right-hand side of the second equation is a
complex conjugate of the right-hand side of the first one. Regarding the initial
state term, practically seen, we would have the following situations

- the initial state would be either zero, in which case ub(t) = uf*(t),

- or it would be a result of some previous signal processing by the system,
where previously to that processing the initial state would be zero, in
which case u5(0) = w}*(0) and respectively u)(t) = u}*(¢).

Therefore, we can simply require that u5(0) = uf*(0), and thus the output
signals u] (t) and u5(t) of the first two Jordan 1-poles are mutually conjugate.
Respectively, the contribution of u}(t) and uy(t) into y in (7.19¢), being equal
to cju) + chuh, turns out to be a sum of two conjugate values and is therefore
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purely real. Obviously, the same applies to all other complex conjugate pole
pairs.

Thus, even equations of (7.16a) do not contribute any new information about
the system and we could drop them, simply computing even state signals as
conjugates of odd state signals: u) = uf*, u) = uf, etc. At the same time we
could rewrite the odd equations of (7.16a) explicitly using real and imaginary
parts of the signals u':

d

% Reu,, = Rep, Reu), — Imp, Imu,, + (Reb)]) -x (7.20a)
d
T Imu, = Imp, Reu), + Rep, Imu), + (Imb]]) - x (7.20b)

Therefore we can introduce the new state variables, taking purely real values:

ul +ul

up = Reu, = +—"= 5 ntl
, , for odd p,, (7.21a)

" I Uy — Upqq

Uy =Imu, = ——7—

2j
and

un = u, for purely real p, (7.21Db)

Then (7.20) turn into

i, = Repy - uj, —Tmpy - upyy + (Reb])) - x (7.22a)
iy =Tmp, - uy +Rep, - ujy; + (Tmby) - x (7.22b)

and the respective terms in (7.19¢) turn into

’or A Y Ix oIk 1) AN rorN
Cnun + Cn+1un+1 - cnun + Cn un - Cnun + (Cnun) - 2Re (Cnun) -

_ ’ " / "
=2Rec, " u, —2Imc, - uy

Thus we have obtained a purely real system

Rep; —Imp; 0 0 0 Reb/"
Imp; Rep; 0 0 0 Im b/’
» 0 0 Reps —Imps 0 , Rebf’
u = 0 0 Imps Reps 0 |w + [Imbf | X
0 0 0 0 .0 :
0 0 0 0 - px b7
(7.23a)
y=(2Rec¢] —2Im¢, 2Recy —2Imcy --- cy)u”+Dx (7.23b)

We will refer to (7.23) as the real diagonal form. It represents the system as a
set of parallel 2-poles (7.22) (and optionally additional parallel 1-poles if some
of the system poles are real).

Note that the substitutions (7.21) are expressible as another linear transfor-
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mation u” = T'u’ where

i1 0 o0 0
2%. —2%. 0 0 0
T = ) ) % %1 ’
0 0 5 -5 0
0 0 0 0 0
0O 0 0 0 1

Therefore the real diagonal form of the system is related to the original form by
a change of basis, where the respective transformation matrix is 7" 7.

Jordan 2-poles

The 2-poles (7.22) in the real diagonal form are fully analogous to the 1-poles
occuring in the diagonal form. They will also occur in the real Jordan normal
form. For that reason we will refer to them as Jordan 2-poles. They are also
sometimes (especially in their discrete-time counterpart form) referred to as
coupled-form resonators.

The key feature of the Jordan 2-pole topology is that in the absence of the
input signal, the system state is spiralling in a circle of an exponentially decaying
(or growing) radius. Indeed, recalling that equations (7.22) are simply separate
equations for the real and imaginary components of a complex signal u/,, we can
return to using the equation (7.19a), which by letting x = 0 and turns into

U = pu
where we also dropped the indices and the prime notation for simplicity. Re-
spectively

q .
&loguzgzszep—FjImp (7.24)

On the other hand
logu = Iln|u| + jargu
therefore

d
—logu = |u| + j£ argu (7.25)

—1
dt "
Equating the right-hand sides of (7.24) and (7.25), we obtain

d d
£1n|u| +j& argu = Rep+ jImp

or

%ln|u| = Rep

—argu =Imp

dt

from where

In|u(t)] = In|u(0)| + Rep -t
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argu(t) = argu(0) + Imp - ¢
or

lu(t)] = [u(0)] - e FeP
argu(t) = argu(0) + Imp - ¢
Thus the complex value wu(t) is rotating around the origin with the angular
speed Im p, it’s distance from the origin changing as e?®°?, thereby moving in
a decaying spiral if Rep < 0, an expanding spiral if Rep > 0, or a circle if
Rep = 0. Recalling that the state components of (7.22) are simply the real
and imaginary parts of v in the above equations, we conclude that the state of
(7.22) in the absence of the input signal is moving in the same spiral trajectory.

Notably, the separation of u into real and imaginary parts works only if the
pole is complex.*

Transfer matrix

In order to obtain the transfer matrix of the real diagonal form we could first
obtain the transfer matrices of the individual 2-poles (7.22). Concentrating on
a single 2-pole, we write (7.22) as
uw; =Rep-uy —Imp-us + 21
e = Imp-uy +Rep-us + a2
where we ignored the input mixing coefficients B (in principle we can understand
this form in the sense that the input signals are picked up past the mixing
coefficients B, or as a particular case of B being identity matrix). We could
explicitly compute the matrix (s—A)~! for the above system, or we could derive
it “manually”, which is what we’re going to do.
Given 21 = X (s)e®", o = Xo(s)e® we have
sU(s)e’t = Rep - Up(s)e® — Imp - Us(s)e® + Xi(s)e™
sUs(8)e = Imp - Up(s)e* + Rep - Us(s)e® + Xo(s)e™

Respectively

(s —Rep)Ui(s) +Imp-Ua(s) = Xi(s)
—Imp-Ui(s) + (s—Rep)Us(s) = Xa(s)

Attempting to eliminate Uy (s), we multiply each equation by a different factor:

(s —Rep)Imp-Ui(s) + (Imp)® - Us(s) =TImp- Xi(s)
— (s —Rep)Imp - Uy(s) + (s — Rep)?Us(s) = (s — Rep) Xa(s)

and add both equations together:

((s = Rep)® + (Imp)?) Ua(s) = Imp - X1(s) + (s — Rep) Xa(s)

4This is strongly related to the appearance of Jordan normal form at the moment when
two complex conjugate poles coincide on the real axis.
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Respectively attempting to eliminate Us(s), we multiply each equation by a
different factor:

(s —Rep)?Ui(s) + (s —Rep)Imp - Us(s) = (s — Rep) X:(s)
— (Imp)? - Uy(s) + (s — Rep) Imp - Us(s) = Imp - X5(s)

and subtract the second equation from the first one:

((s — Rep)® + (Imp)?) Ur(s) = (s — Rep) Xy (s) — Imp - Xa(s)

Ui(s)\ 1 s—Rep —Imp Xi(s)\
Us(s)) (s —Rep)2+(Imp)2 \ Imp s—Rep) \Xa(s))
_ 1 s—Rep —Imp X1(s)
~ s2—2Rep-s+|p2 \ Imp  s—Rep) \Xz(s)
and, since for this system the matrix B is identity matrix,

_ 1 s—Rep —Imp
A= 7.26
(s=4) 52 —2Rep- s+ [p|? ( Imp S—Rep) (7.26)

Note that the denominator is the standard 2-pole filter’s transfer function de-
nominator, written in terms of the pole. Indeed, the complex conjugate poles p
and p* of two complex Jordan 1-poles were combined into a Jordan 2-pole by
means of a linear combination. Respectively the Jordan 2-pole has exactly the
same poles.

Generalizing the result obtained in (7.26) to systems of arbitrary order,
containing multiple parallel 2-poles, we conclude that the main diagonal of (s —
A)~! contains the matrices of the form

1 s—Rep —Imp
G(s) = 7.27
(s) s2—2Rep-s+ |p|? ( Imp sRep) (7.27)

similarly to how the transfer functions 1/(s — p,) of the Jordan 1-poles are
occurring on the main diagonal of (s — A)~! in (7.17). Thus (s — A)~! has the
form

Gils) 0 o0
0 Go(s) - 0
s=A7=1 9 o0 0
0 0 !

S —PN
where G(s) have the form (7.27).

Similarly to what we did in the diagonal case, in the real diagonal case we
also would like to explicitly write out the elements of the transfer matrix H(s).
For the sake of notation simplicity we will write them out for the case of a 2 x 2
matrix A. First, let’s notice that

o el 1) ()t o)
P21 P22 bJ pa1b] + pasbd
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= (c1p11b] + c1p12b] + capa1b] + copasbl) =

2
( > szckblT>

k=1

where p,,,, are the elements of (s — A)~! and where ¢, b} denotes the outer
product of the n-th column of C by the m-th row of B. Then, for a 2 x 2 real
diagonal system we obtain:

2
Hnm,(s) - Z pklcnkblm + dnm -
k=1
_ (Cnlblm + Cn2b2m)(5 - Rep) + (Cn2b1m - cn1b2m) Imp
52 —2Rep- s+ |p|?
AnmS + Bnm

= d
82—2Rep'8+‘p|2 + dpm

+dnm =

where oy, and (,,, are obtained by summing the respective products of the
elements of b and c. Respectively, for higher-order systems we have

QApmkS + ﬁnmk cnkbkm
) I p>08272Repk'5+|pk|2+ 5 — Dk - (7.28)
m pg

Im pr,=0

Since real diagonal form is nothing more than a linear transformation of the
diagonal form, there are the same freedom degrees in respect to the choice of the
coefficients of B and C' matrices, corresponding to choosing the basis vectors of
different lengths.

7.10 Jordan normal form

We have shown that if a non-degenerate system has coinciding poles, it is not
diagonalizable. The generalization of the diagonalization idea, which also works
in this case, is Jordan normal form. The process of diagonalization implies that
there is a similarity transformation of the matrix which brings the matrix into
a diagonal form. Such transformation might not exist. However, there is always
a similarity transformation bringing the matrix into the Jordan normal form.

The building element of a matrix in the Jordan normal form is a Jordan cell.
A Jordan cell is a matrix having the form

P 0 0 0 0
1 p. O 0 0
0 1 p, 0 0
=109 o 0 (7.29)
0 0 0 . pn O
0 0 0 - 1 p,

That is it contains one and the same eigenvalue p,, all over its main diagonal,
and it contains 1’s on the subdiagonal right below its main diagonal, all other
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elements being equal to zero.” Respectively, a matrix in the Jordan normal form
consists of Jordan cells on its main diagonal:

Ji 0 0

0 Jo 0
A:

0 0 . 0

0 0 - Jy

(where M is the number of different Jordan cells), all other entries in the matrix
being equal to zero.

Apparently the sizes of all Jordan cells should sum up to the dimension of
the matrix A. The total number of times an eigenvalue appears on the main
diagonal of A is equal to the multiplicity of the eigenvalue. Typically there
would be a single Jordan cell corresponding to a given eigenvalue. Thus, if an
eigenvalue has a multiplicity of 5, typically there would be a single Jordan cell
of size 5 x 5 containing that eigenvalue. It is also possible that there are several
Jordan cells corresponding to the same eigenvalue, e.g. given an eigenvalue of a
multiplicity of 5, there could be a 2 x 2 and a 3 x 3 Jordan cell containing that
eigenvalue. If there are several Jordan cells for a given eigenvalue, the respective
state-space system is degenerate, fully similar to the case of repeated poles in
the diagonalized case.

It is easy to notice that, compared to the diagonal form, Jordan cells appear
on the main diagonal instead of eigenvalues. A Jordan cell may have a 1 x 1 size,
in which case it is identical to an eigenvalue appearing on the main diagonal. If
all Jordan cells have 1 x 1 size Jordan normal form turns into diagonal form.

Similarly to diagonal form being unique up to the order of eigenvalues, the
Jordan normal form is unique up to the order of Jordan cells. That is, the
number and the sizes of Jordan cells corresponding to a given pole is a property
of the original matrix A. The process of finding the similarity transformation
converting a matrix into Jordan normal form is not much different from the
diagonalization process: we need to find a basis in which the matrix takes
Jordan normal form, which immediately implies a set of equations for such
basis vectors. More details can be found outside of this book.

Jordan chains

It’s not difficult to realize that a Jordan cell corresponds to a series of Jordan
1-poles, which we introduced in Section 2.15 under the name of a Jordan chain.
So, now we should be able to understand the reason for that name.

Indeed, suppose A is in Jordnal normal form and suppose there is a Jordan
cell of size N7 located at the top of the main diagonal of A. Then, writing out
the first N; rows of (7.2) we have

i =pius + b -x
iy = prug + (w1 + by - x)
i3 = prus + (uz + bJ - x)

5Some texts place 1’s above the main diagonal. This is simply a matter of convention. One
can convert from one version to the other by simply reindexing the basis vectors.
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Un, = prupn; + (UN1—1 + bJT\h ‘X)

Note that except for the first line, the input signal of the respective 1-pole
contains the output of the previous 1-pole. In Fig. 2.24 we had a single-input
single-output Jordan chain, now we are having a multi-input multi-output one

(Fig. 7.2).

T T T T .
bl-X b2-x b3~x le X

I
s
7
s
7
s

(5% U2 UN,

Figure 7.2: Multi-input multi-output Jordan chain

Transfer matrix

In the diagonal case the transfer matrix had a diagonal form (7.17) correspond-
ing to the fact that the diagonal form is just a set of parallel Jordan 1-poles.
Now we need to replace these 1-poles with Jordan chains. Thus, instead of
single values 1/(s — p,) on the main diagonal, the transfer matrix will have
submatrices of the size of respective Jordan cells. From Fig. 7.2 it’s not difficult
to realize that a transfer submatrix corresponding to a Jordan cell of the form
(7.29) will have the form

1
" 1
0 0 0
(S _1pn)2 S _]-pn
0 0
(s —pn)? (s —pn)? $—Pn
1 1 1 . 1 0
(8—piL)N1‘1 (3_p71z)N1_2 (8—piL)N1‘3 ' s~ Pn )
(S o p”)Nl (8 7p")N171 (S - pn)N172 o (5 *pn)Z S —Pn

Transient response

According to (7.13), the elements of the matrix et are the exponent terms in
u(t) which have the amplitudes u,,(0). Apparently, being a part of the transient
response, these terms do not explicitly depend on the system input signal and
thus are the same in the single-input single-output and multiple-input multiple-
output cases. Comparing to the explicit expression (2.25) for the output signal
of a single-input single-output Jordan chain, we realize the following.
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The elements of et are tVeP»t/u!. These elements are organized into sub-
matrices of e? corresponding to Jordan cells of A. Each such submatrix has
the following form:%

0 0 X 0 0
1 0 0 0
t2
5 t 1 0 0
: : K 0f-e’
tN1_2 tN1—3 tN1_4 Lo
=20 (=3 (& -
tNl—l tNl—Q tN1_3 )
t

(N — D)l (N, —2)l (N, —3)!

This confirms that the stability criterion Rep,, < 0 Vn stays the same even if
the system is not diagonalizable.

Real Jordan normal form

If the system has pairs of mutually conjugate poles, the Jordan cells for these
poles will also come in conjugate pairs. Following the same steps as for diagonal
form, we can introduce new state variables for the real and imaginary parts of
complex state signals. Respectively, we each pair of conjugate Jordan cells will
be converted to a purely real cell of double size. We will refer to such cells as
real Jordan cells.

In order to understand how a real Jordan cell looks like, we can recall the
interpretation of Jordan cells as Jordan chains (Fig. 7.2). Let’s imagine that
the signals passing through this chain are complex. This can be equivalently
represented as passing real and imaginary parts of these signals separately. Re-
spectively, an element of a real Jordan chain must simply forward the real and
imaginary parts of its output signal to the real and imaginary inputs of the next
element. E.g. for a pair of conjugate 2nd-order Jordan cells

p 0 0 O
1 p 0 O
00 p* O
00 1 p*

the corresponding real Jordan cell would be

Rep —Imp O 0
Imp Rep 0 0
1 0 Rep —Imp
0 1 Imp Rep

7.11 Ill-conditioning of diagonal form

Suppose we are having a system where all poles are distinct, which is therefore
diagonalizable. And suppose, as a matter of a thought experiment, we begin

6The explicit form of an exponent of a Jordan normal form matrix can also be obtained
directly from (7.11), but that approach is more involved and we won’t do it here.
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to modify the system parameters in a continuous way, simultaneously keeping
track of the diagonal form of this system. We also keep track of the similarity
transformation matrix 7" defined by u’ = Tu, where u is the original state and
u’ is the “diagonalized” state. Note, that by this experiment we don’t mean
that we are varying the system parameters in respect to time, rather we consider
it as looking at different systems with different parameter values.

Suppose, we modify the system parameters in such a way, that some poles
of the system get close to each other and finally coincide. Assuming the system
order doesn’t degenerate, at this point we should switch from a diagonal matrix
A’ to a Jordan normal form matrix A’. The difference between these two matices
is clearly non-zero, thus there is a sudden jump in the components of matrix A’
at the moment of the switching. Respectively, there is a jump in the components
of T" as well. We wish to analyse more closely, what’s happening in this case.

If two eigenvalues of a matrix become close then the respective eigenvectors
might either also get close to each other or not. If they don’t, the eigenspace
retains the full dimension as the poles coincide, respectively the system is diag-
onalizable and the system order degenerates. Thus, if the order of the system
doesn’t degenerate, the eigenvectors corresponding to closely located eigenval-
ues must get close to each other too. Note that by saying that the eigenvectors
are getting close to each other we mean that they are becoming almost collinear.
Apparently, eigenvectors simply having different lengths but the same (or the
opposite) directions don’t count as different eigenvectors.

Let’s pick a pair of such eigenvectors which are getting close to each other.
Without loss of generality we may denote these two eigenvectors as vy and vs.
In order to simplify the discussion, we will first assume that both eigenvectors
are normalized: |vq| = |va| = 1 (where here and further the lengths will be
defined in terms of the original basis, that is we are treating the original basis
as an orthonormal one). Again, without loss of generality we may assume that
vy and vy are pointing in (almost) the same direction.

Suppose we have a state vector u lying fully in the two-dimensional subspace
spanned by vi and vy. Therefore its coordinate expansion in the diagonalizing
basis is a linear combination of v; and v, the other coordinates being zeros:

u=qai1Vvy + agVvy

We are going to show that a; and as are not well defined.
Let’s introduce two other unit-length vectors into the same two-dimensional
subspace:

v, — Vi + Vo
+ |V1 —|—V2|
Vi — Vo
Vo= ——
[vi— o

Apparently, v, and v_ are orthogonal to each other and we could expand u in
terms of vy and v_:
u=oayvy +a_v_
such expansion being well-defined, since the basis v, v_ is orthonormal.
Now we wish to express a1 and ae via a4 and a_:

Vi + Vo Vi — Vg
u=a, vy +a_Vv_ =« +a_ =
+V+ +
|vi + vol [vi —va
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CY+ o Oé+ Q_
[vi+va|  |[vi— vy [vi+va| [vi— vy

from where

O[+ o _
o] = +
[vi+va| vy — Vsl
Ol+ o
g = —
[vi+va| v — Vs

Since a4 and a_ are coordinates in an orthonormal basis, both ay and a_ are
taking values of comparable orders of magnitude, bounded by the length of the
vector u. On the other hand, since |v; — va| & 0, the values of o and ag will
get extremely large, unless a_ is very small.

Now consider a conversion from the basis vy, vo to a more “decent” basis,
e.g. to vy, v_. Expressing vy, vo via v, v_, we have

Vi =04V +0ove
Vo = fyvy — fove

where 64 ~ 1 and f_ ~ 0. Therefore

u=avi+ava=ag (B1vy+0-v_)+as(Byvy —f-_v_) =
=(a1+a)fy vy + (g —a)f_ v =ayvy+a_v_

As we have noted, usually a; and «s are having very large magnitudes, while
ai + a2 < |ul. This means that usually a; and ay are having opposite signs,
in order to have |(aq + a2)B4| < 1, since 4 =~ 1. Respectively their difference
a1 — ag is usually having a very large magnitude which is being compensated
by the multiplication by g_ = 0.

Thus, the problematic equation is
ay = (a1 + a2)Bs = ag + as

where we add two very large numbers of opposite sign in order to obtain a
value of ay of a reasonable magnitude. Such computations are associated with
large numeric precision losses. Choosing different lengths for v; and vy will
not change the picture, we still will need to obtain a; as the sum of the same
opposite values of a much larger magnitude.

A conversion from the basis vy, vo to a “decent” basis other than v, v_
can be viewed as converting first to vy, v_ and then to the desired basis.
Apparently, converting from one “decent” basis to another “decent” one neither
introduces new precision-related issues, nor removes the already existing ones.

Now realize, that essentially we have just been analysing the precision issues
arising in the transformations from the original to the diagonalizing basis and
back. It’s just that we have restricted the analysis to a particular subspace of
the state space, but the transformation which we have been analysing was a
diagonalizing transformation of the entire space. We have therefore determined
that there are range and precision issues arising in the diagonalizing transfor-
mation when two eigenvectors become close to each other. We have also found
out that this situation always occurs in non-degenerate cases of poles getting
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close to each other. Thus, diagonal form becomes ill-conditioned if the poles are
located close to each other, the effects of ill-conditioning being huge precision
losses and the values possibly going out of range. Jordan cells of size larger than
1 are nothing more than a limiting case of this ill-conditioned situation, where
a different choice of basis avoids the precision issues.

The reader may also recall at this point the ill-conditioning in the analysis
of the transient response of the 2-pole filters, which occurs at R =~ 1, when both
poles of the system coincide on the real axis. That was exactly the same effect
as the one which we analysed in this section.

7.12 Time-varying case

Until now we have been assuming that the system coefficients are not changing.
If the system coeflicients are varying with time, then quite a few of the previously
derived statements do not hold anymore. This also causes problems with some
of the techniques. The fact that the transfer function doesn’t apply in the time-
varying case should be well-known by now, however the other issues arising out
of parameter variation are not that obvious. Let’s look through them one by
one.

Basis change

If the matrix A is varying with time, we might need T' to vary with time as well,
e.g. if T' is a matrix of the diagonalizing transformation. However, if T is not
constant anymore, the transformations of (7.8) get a more complicated form,

since instead of d
& (T—lul) — T—lul
we are having

d d
— T*l / — T*l -/ 7T71 1/
T REY v

Thus (7.8) transforms as
—1.7 d —1 / -1/
T u—ﬁ—&T -u' =AT "u' + Bx

respectively yielding

T = (A:F—1 - (iT*) u’ + Bx

and

d
o = <TAT1 — TdtTl) u + TBx

Thus the first of the equations (7.9) is changed into

d
A =TAT™! — TET‘I (7.30)
The extra term in (7.30) is the main reason why different topologies have dif-
ferent time-varying behavior. If two systems are to share the same transfer
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function, they need to share the poles. In this case the matrices A and A’ have
the same diagonal or Jordan normal form (unless the system order is degenerate)
and are therefore related by a similarity transformation. Given that B, C' and
B’, C" are related via the same transformation matrix according to (7.9), the
difference between the two systems will be purely the one of a different state-
space basis, and we would expect a fully identical behavior of both. However,
in order to have identical time-varying behavior, the matrices A and A’ would
need to be related via (7.30) rather than via a similarity transformation. In fact
(7.30) cannot hold, unless at least one of the matrices A and A’ depends not
only on some externally controlled parameters (such as cutoff and resonance),
but also on their derivatives, which is a highly untypical control scenario.

Transient response

In the derivation of the transient response in Section 7.7 we have been using the
fact that

% (eiAtu) = e AMa— e MAu

However if A is not constant then the above needs to be written as

Q —At .\ —At i — At
T (e u) =e 'u dte u

We might want to rewrite the derivative of e~ as

d a)_ —ard Y d
(dte )—e dt( At)=e A tth

but actually we cannot do that, since we don’t know whether the derivative of
— At will commute with At. Thus, our derivation of the transient response stops
right there.z

Diagonal form

Given that we are using a diagonal form as a replacement for another non-
diagonal system, we already know that such replacement changes the time-
varying behavior of the system due to the extra term in (7.30).

A more serious problem occurs in this situation if we want to go through
parameter ranges where the system poles get close or equal to each other. Such
situation is unavoidable if we want a pair of mutually conjugate complex poles
of a real system to smoothly change into real poles, since such poles would need
to become equal on the real axis before they can go further apart. As we have
found out, the diagonal form doesn’t support the case of coinciding poles in
a continuous manner, since switching from poles to Jordan cells on the main
diagonal is a non-continuous transformation of the state space.

"Notably, the same was the case for our transient response derivations for 1- and 2-pole
cases, where we were assuming the fixed values of system parameters. Except for the 1-pole
case, where the only available freedom degree in the 1 X 1 matrix A could be represented as
the cutoff, leading to an equivalent representation of the modulation via time-warping.
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Cutoff modulation

If all cutoff gains are identical and precede the integrators, it is convenient to
factor them out of matrices A and B:

u=w. - (Au+ Bx) (7.31a)
y=Cu+ Dx (7.31b)

If the cutoff is varying with time, we could explicitly reflect this in the first
equation, where we can also let B (but not A) vary with time:

d

(0 = we(t) - (Au(t) + B(£)x(t)

Introducing dr = w(t)dt we have

%U(b‘(ﬂ) = Au(t(r)) + B(t(1))x(¢(7))

or

() = Aa(r) + %(7) (732

where

u(r) =u(t(r))  x(r) = B((7))x(¢(7))

Thus, as we have already shown in Section 2.16, cutoff modulation is expressible
as a warping of the time axis, provided the cutoff is bounded to a finite positive
range

T(t) = /wc(t)dt where 0 < wWmin < we(t) < Wnax < +00

where the time-warped system defined by (7.32) is time-invariant.

Note that cutoff modulation in (7.31) is a transformation of A which changes
its eigenvalues but not its eigenvectors. Thus, if we diagonalize the system by a
basis change, the new basis can stay unchanged, and there will not be the extra
term in (7.30). Respectively, the diagonalized system will stay fully equivalent
to the original one, even though the cutoff is being modulated. Apparently the
diagonalized system also can be written in the factored-out-cutoff form (7.31).

A somewhat more complicated reasoning can include the less restrictive case
we(t) > 0. Specifically, w. = 0 simply freezes the system state, while infinitely
growing w, is not a problem as long as it doesn’t grow to infinity over a finite
time range.

Equivalence of systems under cutoff modulation

It’s not difficult to realize that the equivalence under the condition of cutoff
modulation in (7.31) holds not only between the original system and its diago-
nalized version, but between any two systems related by a basis change, since
the cutoff modulation is not affecting the transformation between the two sys-
tems. Suppose we are having two systems sharing the same transfer function.
In such case they have an equivalent behavior in the time-invariant case, but
we wish to have it equivalent in the time-varying case too. More specifically,
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we would like to make the second system have the time-varying behavior of the
first one.

Since the transfer function is the same, both systems share the same diagonal
form up to the ordering and the lengths of the basis vectors. The transformations
between both systems and the shared diagonal form are cutoff-independent and
therefore the systems are equivalent.

Equivalence under other modulations

We have already shown that two systems sharing the same transfer function
are equivalent under the cutoff modulation (7.31). We often would wish to also
analyse for the equivalence under modulation of other parameters. Generally
this will not be the case, but the state-space form techniques may allow us to
find out more details about the specific differences between the systems. In
order to demonstrate some of the analysis possibilities, we are going to analyse
the TSK allpass (Fig. 7.1), which we have been converting to the state-space
form in Section 7.2.

Taking (7.4) let’s replace the feedback amount k with damping R. From

5.17) we are having

ok k1
S LB S
A
1 1 1+R R+l
_ L _
1+k 1+=E 1+R+1-R 2
_1-R__1-R-1-R__ 2R

1+R 1+R " 1+R

and thus (7.4) turns into

R+1
uI:meawR—lm?+—g;x (7.33a)
R+1
u2=(34-mu1—1hm-—4€;—x (7.33b)

AR 4R
y:7R+1U1+R+1U2+35 (733C)

Looking at the output mixing coefficients we notice a strong similarity to (4.23)
where we subtract the bandpass signal (which, as we should remember, is ob-
tained directly from one of the state variables of an SVF) from the input, the
bandpass signal being multiplied by 4R. On the other hand for the TSK allpass
we have just obtained (7.33c):

_ AR AR AR
R+1 " "R+1°"" 7 R+1

y= (u1 — u2)
This motivates to attempt an introduction of new state variables, where one of
the variables will be a difference of u; and us. We expect this variable to behave
somewhat like an SVF bandpass signal.

Attempting to turn 4R/(R+1)-(u1 —u2) into exactly 4Ru (which is what we
would have had for an SVF) might be not the best idea, since the transformation
would be dependent on R, and it would be difficult to assess possible implications
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of such dependency. Instead we want something which is proportional to u; —us,
but the transformation should be independent of R. This is achieved by e.g.

/ /
UL = Uy + Uy
ug = uhy — Uy

which implies u} = (u1 —u2)/2. Applying this transformation to (7.33) we have

iy i = —R(uy )+ (B~ 1)(u — o) +
:(1—2R)u’1—u’2+@
iy — i, = (R -+ 1)ty ) — Rluty — ) — "3 L =
= (14 2R)u} + ub — %x
Y= () o () b= 42

from where

20y = —4Ruy — 2uy + (R+ 1)z

20 = 2u)
SR,
A e
or
R+1
W) = —2Ru}, — ub + TJF:C
Ul = u}
SR,
i

Now this looks very much like an SVF allpass, except that the input signal has
been multiplied by (R4 1)/2 and the bandpass signal is respectively multiplied
by 8R/(R+1) instead of multiplying by 4R (Fig. 7.3). Note that the product of
pre- and post-gains is still 4R, exactly what we would normally use to build an
SVF allpass. Thus, the only difference between the SVF allpass and the TSK
allpass is the distribution of the pre- and post-bandpass gains.

-®
> svr Bp >
+

Figure 7.3: An equivalent representation of the allpass TSK filter
from Fig. 5.35 using an SVF bandpass.

We could also cancel the denominator 2 of the pre-gain with the numerator
of the post-gain (Fig. 7.4). Since 2 is a constant, “sliding” it through the SVF
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bandpass system effectively just rescales the internal state of the SVF by a factor
of 2 (without introducing any new time-varying effects), but this rescaling is then
compensated in the post-gain. Thus the system in Fig. 7.4 is fully equivalent to
the one in Fig. 7.3.

Figure 7.4: An equivalent modification of Fig. 7.3.

7.13 Discrete-time case

Discrete-time block diagrams can be converted to the discrete-time version of
the state-space form, which is also referred to as the difference state-space form.
The main principles are the same, except that instead of Au+ Bx delivering the
input signals of the integrators, it delivers the input signals of the unit delays.
The same values will occur at the outputs of the unit delays one sample later,
thus the first state-space equation takes the form

uln + 1] = Au|n| + Bx|[n]
The second equation is the same as in the continuous-time case:
yln] = Culn] + Dx[n]
Writing both equations together we obtain the discrete-time state-space form:
un + 1] = Au|n] + Bx[n] (7.34a)
y[n] = Culn] + Dx[n] (7.34b)
Transfer matrix
Substituting the complex exponential signal x[n] = X(2)2" into (7.34) we obtain

U(2)2" ™ = AU(2)2" + BX(2)2"
Y (2)z" = CU(z)z" + DX(z)z"

from where

zU(z) = AU(2) + BX(z)
Y (z) = CU(z) + DX(z)

From the first of the equations we have
(z — A)U(z) = BX(2)
U(z) = (2 — A)"'BX(2) (7.35)



268 CHAPTER 7. STATE-SPACE FORM

Substituting this into the second equation we have

Y(z) = C(z — A)"'BX(2) + DX(z)

and thus
Y(z) = H(2)X(2)
where .
H(z)=C(z—A)'B+D = W+D

therefore the eigenvalues of A are the system poles.

Transient response

Substituting the complex exponential input x[n] = X(z)z" into (7.34a) we can
rewrite (7.34a) as
u[n + 1] = Auln] + BX(z)z"

ufn] = Au[n — 1] + BX(2)z"' = Au[n — 1] + qz" (7.36)

where
q=BX(z)z"!

Recursively substituting (7.36) into itself at progressively decreasing values of
n we obtain

uln] = Aufn — 1]+ qz" =
=A(Aun -2 +qz" ") + q2" =
= A%u[n — 2] + (Az_l +1)qz" =
=A% (Auln — 3]+ qz" ) + (4271 +1) qz" =
= Adu[n — 3] + ((Az71)2 + Azt + 1) qz" =

— Ao + (427" (A7) TP AT ) g
1 (1) (-

= Amuf0] + (" = A") (2 — A) " qz =

= A™u[0] + (" — A") (z — A) 7' BX(2) =

= (2 — A) ' BX(2)z" + A" (u[m — (- A7 BX(z)) -
= u;[n] + A" (u[0] — u,[0])
where
u,n] = (z — A) 7' BX(2)2" = (2 — A) ' Bx[n]

is the steady-state response (compare to the transfer matrix for u in (7.35)),
respectively
u;[n] = A" (uf0] — u,[0]) (7.37)

The generalization to arbirary signals x[n] is done in the same way as in the
continuous-time case. The steady-state and transient responses for y are triv-
ially obtained from those for u.
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Stability

Considering the transient response in (7.37), we could diagonalize the system
by a change of basis. If diagonalization is successful, then it’s obvious than A™
decays to zero if and only if |p,| < 1 Vn and grows to infinity if Ip,,: |pn| > 1.
Since neither the system poles nor the decaying of the transient response to zero
depend on the basis choice, we have thereby established the criterion of stability
of discrete time systems.

The non-diagonalizable case can be handled by using Jordan normal form,
where the discrete-time Jordan 1-poles of the Jordan chains will be stable if and
only if |p,| < 1 ¥n.

7.14 Trapezoidal integration

Writing (7.31) in an integral form we have

u= /wc (Au + Bx) dt (7.38a)
y =Cu+ Dx (7.38b)

On the other hand, expressing direct form I trapezoidal integration Fig. 3.8 in
equation form we have

z[n — 1] + z[n]
2

Applying (7.39) to the integral in (7.38a) we obtain

yln] =yn — 1]+ T (7.39)

A(uln] + un — 1]) + B(x[n] + x[n — 1])
2

T

u[n] =un — 1] + w,

from where

(1 - “’;TA> ufn] = (1 + “’;TA) un — 1] + w;TB(x[n] +x[n — 1))

uln] = (1 - “’CTA>_1 ((1 + “’;TA> uln — 1] + w;TB(x[n] +x[n —1])

2
(7.40)
Equation (7.40) is the resolved zero-delay feedback equation for the state-space
form (7.31) (or, equivalently (7.38)). Since we have used direct form I inter-
gators, it needs additional state variables for the storage of the previous input
values, which we could have spared if direct form II or transposed direct form
IT integration was used.

Let’s apply trasposed direct form II integration (3.3) to the integral in
(7.38a). Apparently, we have a notation clash, since in (3.3) the variable u
is an internal variable of the integrator. Notating this internal variable as v and
notating the input signals of the integrators as 2w, and also not forgetting to
introduce a non-unit sampling period 7', we obtain from (3.3) a set of equations:

uln] = v[n — 1] + win| obtained from (3.3a)
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vin] = uln] + w(n| obtained from (3.3b)

wel

wn] = (Auln] + Bx[n]) obtained from (7.38a)

Solving for w[n] we have

win| = w;T (A(w[n] + v[n — 1]) + Bx[n])

where v[n — 1] are the previous states of the integrators, and respectively

<1 — W;TA> win| = w;T (Av[n — 1] + Bx[n])

and

win] = (1 - wCTA) ”;T (Av[n — 1] + Bx[n]) (7.41)

Equation (7.41) is another variant of the resolved zero-delay feedback equa-
tion (7.40), this time written for transposed direct form IT form. The benefit,
compared to (7.40), is that we only need to store the previous states of the
integrators v[n — 1].

Since M~! = adj M/ det M, the denominator of both equations (7.40) and
(7.41) is det(1 — w.T/2 - A). Since det(X — M) = 0 is the eigenvalue equation,
the denominator turns to zero when 1 becomes an eigenvalue of w.T/2 - A, or
respectively when 2/T becomes an eigenvalue of w.A. Thus, we have a limitation

we - max {p,} <2/T (7.42)
pn€R

under which the system doesn’t get instantaneously unstable. Apparently w.p,
are simply the poles of the system, thus (7.42) simply states that the real poles
of the system must be located to the left of 2/7".2

SUMMARY

The state-space form essentially means writing the system as a differential (or
difference, in the discrete-time case) equation system in a matrix form. Thereby
we have a compact abstract representation of the system, which, differently
from to the transfer function, doesn’t lose essential information about the time-
varying behavior. A particularly useful way to approach the state-space form
analysis is by diagonalizing the matrix, which essentially separates the effects
of different poles of the system from each other.

80f course if there are complex poles sufficiently close to the real semiaxis [2/T, +00), the
performance of trapezoidal integration is also questionable.



Chapter 8

Raising the filter order

As the order of the filter grows, there are more and more different choices of
the transfer function. Particularly, there is more than one way to introduce the
resonance into a transfer function of order higher than 2. Some of the most
interesting options were already discussed in the previous chapters.

We have also introduced the state-space form as a general representation
for differential systems. However, being so general, the state-space form leaves
lots of open questions in regards to the choice of topology and the user-facing
parameters.

In this chapter we are going to discuss a number of standard topologies which
can be used to construct a system of any given order and also a number of ways
to map commonly used user-facing parameters, such as cutoff and resonsance,
to the internal parameters of such systems. Note, however, that these structures
and techniques are useful only occasionally, for rather specific purposes.

8.1 Generalized SVF

We have seen that the idea of the ladder filter can be generalized from a 4-pole
to other numbers of poles, even though there are problems arising at pole counts
other than 4. Could we somehow attempt to generalize the SVF?

The most natural way to generalize the SVF is probably to treat it as the so-
called controllable canonical form, (Fig. 8.1) which is the analog counterpart of
direct form II (Fig. 3.33). Apparently, the main difference between Fig. 3.33 and
Fig. 8.1 is simply that all unit delays are replaced by integrators. The other
differerence, namely the inverted feedback is merely a matter of convention,
resulting in opposite signs of the coefficients a,, compared to what they would
have been in the absence of the feedback inversion. We chose the convention
with the inverted feedback mainly because it’s more similar to the 2-pole SVF
structure in Fig. 4.1.

The controllable canonical form allows to implement an arbitrary transfer
function of N-th order (the requirement that the transfer function is a non-
strictly proper rational function being implicitly understood). Indeed, it’s not

271
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N ax

Figure 8.1: Generalized SVF (controllable canonical form).

difficult to figure out that the tranfer function of the system in Fig. 8.1 is

N N N
E bps™ " E b,sN " E bn_pns”
n=0 n=0 n=0

H(s) = —F = N = N_1
1+ Z aps " 1+ Z aps¥ sV 4 Z an_nS"
n=1 n=1 n=0

Thus a, and b, are simply the denominator and numerator coefficients of the
transfer function. Notice that b, are essentially modal pickups and we can share
the feedback part of the structure (consisting of integrators and a,, gains) among
several different sets of pickup coefficients b,, to simultaneously implement a
number of filters sharing a common denominator.

Normally Fig. 8.1 assumes unit-cutoff integrators, because the a,, and b,
coefficients provide enough freedom to implement any transfer function of the
given order. However, in music DSP applications cutoff control is a common
feature, therefore we could also allow the integrators to take identical non-unit
cutoffs. Further, letting N = 2, as = 1 and a; = 2R we obtain an SVF with b,
serving as modal mixing coefficients for HP, BP and LP outputs. On the other
hand, at N =1, a; = 1 we obtain the 1-pole filter we discussed in the beginning
of this book.

Generally, letting ay have a fixed value is a good way to remove the re-
dundancy introduced into the system control by the embedded cutoffs of the
integrators. It is not difficult to realize that

anN = H(_pn)

where p,, are the positions of the system poles when w. = 1. Notably, although
it is mostly academic, this also can support the case of real poles of opposite
signs, which cannot be implemented by a classical 2-pole SVF due to ay being
fixed to 1.

Unfortunately, there is no clear answer to what the coefficients a,, should
be for N > 2. The simplicity of the 2-pole case was due to the fact that
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the denominator of a 2-pole transfer function essentially has only 2 degrees of
freedom (corresponding to a; and as), one degree being taken by the cutoff, and
we are being left with the remaining degree which just happens to correspond to
the resonance. With the 1-pole there was only one freedom degree, being taken
by the cutoff. At N > 2 there are too many different options of how to map the
freedom degrees to filter control parameters and there is no definite answer to
that, although some of the options will be discussed later in this chapter.
With the numerator coefficients b,, there is a bit more clarity, as there are
certain general considerations applying more or less for any choice of a,,. E.g.
if the numerator is equal to ay, we get some kind of an N-th order lowpass,
since H(0) = 1 and H(s) ~ ay/s" for s — oo. For the s numerator we
have H(co) = 1 and H(s) ~ sV /ayn for s — 0, corresponding to some kind

1/2 .N/2
N

of an N-th order highpass. For an even N and an a numerator we get

H(s) ~ SN/Q/LL}\,/2 for s — 0 and H(s) ~ a}\{Q/sN/z for s — o0, corresponding
to some kind of a bandpass. This however defines only the asymptotic behavior
at 0 and oo, the amplitude response shape in the middle can be pretty much
arbitrary, being defined by the denominator.

By transposing the controllable canonical form one obtains the so-called
observable canonical form. We are not going to address it in detail, as most of
the discussion of the controllable canonical form above applies to the observable
canonical form as well.

8.2 Serial cascade representation

Another structure which allows implementing arbitrary transfer functions is the
serial cascade. It is probably the one most commonly used. Compared to the
generalized SVF, in the serial cascade representation we are using only 1- and
2-pole filters and we can choose commonly known and well-studied structures
to implement those.! The benefit compared to the parallel implementation
(discussed later in this chapter) is that the serial cascade form doesn’t get ill-
conditioned when system poles get close to each other.

Cascade decomposition

Given an arbitrary N-th order real transfer function, let’s write it in the multi-
plicative form:

=
V2
N—
Il
e}
S
i 2
I
—
Vo)
|
N
3
S~—

(8.1)

2

(s —pn)

I
—

n
where N, < N, since H(s) must be nonstrictly proper. Since H(s) has real

coefficients, all complex poles of H(s) will come in conjugate pairs, and the
same can be said about the zeros.

ISerial cascade implementation is especially popular in classical DSP, since direct forms
commonly used there are reportedly starting to have more issues as the filter order grows,
although the author didn’t verify that by his own experiments.
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Now we are going to write each pair of conjugate poles as a purely real
2nd-order factor in the denominator:

(s=p)(s—p*)=5"—s-2Rep+ |p|*

and we are going to write each pair of conjugate zeros as a purely real 2nd-order
factor in the numerator:

(s —2)(s—2%) =8> —5-2Rez + |2|?

Further, if necessary, we can combine any two real poles into a 2nd-order factor
in the denominator:

(s —p1)(s —p2) = s> — (p1 +p2) - 5+ p1p2

and we can combine any two real zeros into a 2nd-order factor in the numerator:
2
(s—2z1)(s —22) =5° — (21 + 22) - s+ 2122

Thus we can distribute all conjugate pair of poles and zeros into 2nd-order real

rational factors of the form
s24+as+b

s24+cs+d

unless we do not have enough zeros, in which case there will be one or more
2nd-order real rational factors of the form

_s+b and/or v
s2+cs+d s2+cs+d

The remaining pairs of real poles and zeros can be combined into 1st-order real
rational factors of the form

s+a 1

> and/or P

or they can be also combined into 2nd-order real rational factors, e.g.:

s+ar s+a 52+ (a1 + az)s + ajas

s+b s+by 824 (b +bo)s+ biby

Thus the entire transfer function is represented as a product of purely real 2nd-
and 1st-order factors:

Na N,
H(s) =g [[ Han(s) - [ Hin(s) (8.2)

where Hs,(s) and Hy,(s) are the 2nd- and 1st-order factors respectively. The
gain coefficient g, if desired, can be factored into the numerator of one or several
of the factors Ha,(s) and Hi,(s), so that the product expression gets a simpler
form:

N2 N,
H(S) = H H27L(S) : H Hln(s) (83)
n=1 n=1

Now recall that 1-pole multimode can implement any stable real 1st-order trans-
fer function and SVF can implement any stable real 2nd-order transfer function.
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This means that we can implement pretty much any H(s) as a serial chain of
SVFSE and 1st-order multimodes.i We will refer to the process of representing
H(s) is a cascade form as cascade decomposition of H(s).

Cutoff control

The denominator 1+ s/w, of a 1-pole filter is controlled by a single parameter,
which is the filter cutoff. The denominator 142Rs/w.+(s/w.)? of a 2-pole filter
is controlled by cutoff and damping. Thus each of the 2- and 1-poles in (8.3)
has a cutoff, defined by the positions of the respective poles. Writing explicitly
these cutoff parameters in (8.3) we obtain

N» _ Ny B
H(s) = [[ Han(s/wan) - [[ Hin(s/win)

n=1 n=1

where Hs,, and Hy,, are unit-cutoff versions of the same 2- and 1-poles and wo,
and wy, are the respective cutoffs.

Suppose the above H(s) defines a unit-cutoff filter. Then non-unit cutoff for
H(s) is achieved by

Ny B Ny _
H(s/we) = [[ Hon(s/wewzn) - [| Hin(s/wewrn) (8.4)

which means that the cutoffs of the underlying 2- and 1-poles are simply mul-
tiplied by w,. and we have w.ws, and w.wi, as the 2- and 1-pole cutoffs.

One should remember, that it is important to apply one and the same pre-
warping for all filters in the cascade, as discussed in Section 3.8. E.g. we could
choose to prewarp (8.4) at w = w, which means that we prewarp only w.
(rather than individually prewarping the 2- and 1-pole cutoffs w.wa, and wewiy, ),
thereby obtaining its prewarped version w., and then simply substitute w. for
we in (8.4):

NQ Nl
H(s/@.) = H Hopn(8/Ocwan,) - H Hipn(8/Ocwin)
n=1 n=1
Thus, the 2- and 1-pole cutoffs become w.wo, and &.wy, respectively.

Cascaded model of a ladder filter

As an example of the just introduced technique we are going to implement the
transfer function of a 4-pole lowpass ladder filter by a serial chain of two SVFs.
A 4-pole lowpass ladder filter has no zeros and two conjugate pairs of poles
for k > 0. By considering two coinciding poles on a real axis also as mutually
conjugate, we can assume k > 0.

20f course a multimode TSK, a multimode SKF, or any other 2nd-order filter with sufficient
freedom in transfer function parameters would do instead of an SVF.

3 Apparently H(s) can be implemented by 1-poles and SVFs if its factors can be imple-
mented by 1-poles and SVFs. Those which can not, can be implemented by generalized SVFs.
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Since there are no zeros, we simply need a 2-pole lowpass SVF for each
conjugate pair of poles. Let pi1, p}, p2, p5 be the poles of the ladder filter.
According to (5.2)

145,
V2

By (4.13), the cutoffs of the 2-pole lowpasses w1 2 = |p1,2| and R = —Rep1,2/|p1,2
Respectively the transfer function of the ladder filter can be represented as

pr2=-1+ (8.5)

1 1
s\? S ' s\? S
(Y oom 1 (2) ven o
w1 w1 w2 w2
The unknown gain coefficient g can be found by evaluating (5.1) at s = 0,

obtaining the condition H(0) = 1/(1 + k). Evaluating (8.6) at s = 0 yields
H(0) = g. Therefore

(8.6)

1

C1+k

This gives us a cascade of 2-poles implementing a unit-cutoff ladder filter. Ex-
tending (8.6) to arbitrary cutoffs is respectively done by

g

H(s) 1 1 ) 1

T 2 2
<S>+2Rls+1<s>+2325+1
WeW1 WeW1 Wewo Wewo

Cascaded multimode

The cascade decomposition can be also used to provide modal outputs, sharing
the same transfer function denominator. In order to demonstrate this we will
consider a serial connection of two SVFs.2

The transfer function of such structure can have almost any desired 4th or-
der stable denominator.” We would like to construct modal outputs for such
connection, so that by mixing those modal signals we should be able to ob-
tain arbitrary numerators. This should allow us to share this chain of SVFs
for generation of two or more signals which share the same transfer function’s
denominator.

We have several options of connecting two SVFs in series, depending on
which of the modal outputs of the first SVF is connected to the second SVF’s
input. The most symmetric option seems to be picking up the bandpass output
(Fig. 8.2).

Now let

Di(s) = 5% + 2R w5 + w?
Dy(s) = 8% + 2Rowss + ws

be the denominators of the transfer functions of the two SVFs and let D(s) =
D1 (s)D4(s) be their product. Writing out the transfer functions for the signals

4The idea to specifically address this is the book arose from a discussion with Andrew
Simper.

5Denominators not achievable by classical SVFs can be achieved by using generalized 2nd-
order SVFs.
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HP1 | HP2

— | ——

a(t) — SVF; 2 SVF, 27
LP1 LP2

=

Figure 8.2: A multimode cascade of two SVFs.

at the SVF outputs (in respect to the input signal x(t) in Fig. 8.2) we obtain

Hipa(s) = Df(i) _ M%DD(Z()S)
Hop(5) = ot = 15020
Han(6)= 55 = "y
tor(e) = 575 Bt = 505
a6 = o )= 5

Or, since we have the common denominator D(s) everywhere, we could concen-
trate just on the numerators:

Noticing from Fig. 8.2 that BP1 can be obtained as LP2 4 2R,BP2 + HP2
anyway, we can drop the respective numerator from the list and try to arrange
the remaining ones in the order of the descending polynomial order:

Nupi(s) = 52D2( ) = s* 4+ 2Rowos® + w%sz
Nupa(s) = w;s®

(s
(s
(
(s

) = wawn 52

Npp2
Nipo

Nip1

) = wiwy s
) = w?Dy(s) = wis® + 2Rowiwns + wiwd
The last line doesn’t really fit, and the first one looks more complicated than

the next three, but we can fix that by replacing the first and the last lines by
linear combinations:

w w
Nup1(s) — 2R272NHP2(8) — lNBP2(S) = s
w1 w1
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Nupa(s) = wis

Nppa(s) = wow: s°

Nipa(s) = wiwy s
Nrpi(s) — %NBM(S) — 2Ry %NLM(S) = wiwj

Thus we can obtain all powers of s from linear combinations of LP1, HP1, LP2,
BP2 and HP2, thereby being able to construct arbitrary polynomials of orders
up to 4 for the numerator.

Notably, instead of connecting the bandpass output of the first SVF to the in-
put of the second SVF, as it has been shown in Fig. 8.2, we could have connected
the lowpass or the highpass output. This would have resulted in somewhat dif-
ferent math, but essentially gives the same modal mixture options.

8.3 Parallel representation

Real poles

Given a transfer function which has only real poles which are all distinct, we
could expand it into a sum of 1st-order partial fractions. Each such 1st-order
fraction corresponds to a 1-pole and we could implement the transfer function
as a sum of 1-poles. Essentially this is identical to the diagonal state-space
form, which, provided all system poles are real and sufficiently distinct (so that
no ill-conditioning occurs), is just a set of parallel Jordan 1-poles.

In the case of a single-input single-output system, which we are currently
considering, the transfer function of such diagonal system, given by (7.18), has
the form

N
nbn
H(s) =y = - d (8.7)

where b,, and ¢, are the input and output gains respectively. Given a particular
nonstrictly rational H(s), the partial fraction expansion (8.7) uniquely defines
d and the products ¢,b,,. The respective freedom of choice of ¢,, and b,, can be
resolved by letting b, = 1 Vn and thus we control the numerator of the transfer
function by the output mixing coefficients ¢, (Fig. 8.3).%

We could also replace Jordan 1-poles by ordinary 1-pole lowpasses, where we
need to divide the mixing coefficients by the respective cutoffs we,, (Fig. 8.4).

The global cutoff control of the entire filter in Fig. 8.3 or Fig. 8.4 is achieved
in the same way as with serial cascades. Obviously, the usual consideration of
common prewarping of the 1-pole components applies here as well.

Complex poles

If system poles are complex we need to use the real diagonal form, which replaces
the complex Jordan 1-poles with Jordan 2-poles. For a single-input single-

60f course, we could instead let ¢, = 1 and control the transfer function numerator by the
input gains by, or distribute the control between b, and c.
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x(t) y()

Figure 8.4: Implementation by parallel 1-pole lowpasses.

output system, equation (7.28) takes the form

ans + ﬁn Cnbn
H(s) = —— +d 8.8
(s) Z s2—2Repy, - 5+ |pnl? + Z S — pn + (8.8)

Im p, >0 Im p,,=0

We could obtain the explicit expressions for a,, and 3, from the derivation of
(7.28), but it would be more practical to simply obtain their values from the
partial fraction expansion of H(s). That is, given H(s), we find a,, and 3,
(as well as, of course, c,b, and d) from (8.8). We also should remember that,
according to the freedom of choice of the state space basis vectors lengths, we

could choose any non-zero input gains vector, e.g. (1 O)T which means that we
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are using only the “real part” input of the Jordan 2—pole.i According to (7.26),
the contribution of such Jordan 2-pole to H(s) will be

1 (c . ) s—Rep, —Imp, 1\
82—2Repn‘8+|pn|2 noT Impy, s — Repn 0)

_cn(s—Repy) +cpp1Imp,  cps+ (cpy1 Imp, — ¢y Repy)

52 —2Repy - s+ |pnl? 52 —2Repy - s + |pnl?

Thus

Qp = Cp,

Bn = Cnt1 Imp, — ¢, Repy,
from where

Cn = Qp,
Bn + an Repy,

Cn+1 = Im I
n

Thus, having found «a,, and [3,, we can find ¢, and ¢, 1. The respective struc-
ture is shown in Fig. 8.5. Notice that as Im p,, becomes smaller, ¢, {1 becomes
larger. This is the ill-conditioning effect of the diagonal form discussed in Sec-

tion 7.11.

d
x(t) > y(t)
Re
Im H,
Re —
|
Hy sl

Figure 8.5: Implementation by parallel Jordan 2- and 1-poles. Dis-
connected imaginary part inputs are receiving zero signals.

Similarly to how we could replace Jordan 1-poles with ordinary 1-pole low-
passes, we could replace Jordan 2-poles by some other 2-poles, e.g. by SVFs.
Finding the output mixing coefficients becomes simpler, since, apparently, the
coefficients o, and (3, in (8.8) now simply correspond to SVF bandpass and
lowpass output gains (properly scaled by the cutoff). Fig. 8.6 illustrates.

“The dual approach would be to let the output mixing vector (1 O), in which case we
control the transfer function’s numerator by the input gains.
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d
x(t) > ~P y(t)

Figure 8.6: Implementation by parallel SVFs and 1-pole lowpasses.

Another benefit of an SVF is that it does