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About this book: the book covers the theoretical and practical aspects of the
virtual analog filter design in the music DSP context. Only a basic amount of
DSP knowledge is assumed as a prerequisite. For digital musical instrument
and effect developers.
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Preface

The classical way of presentation of the DSP theory is not very well suitable for
the purposes of virtual analog filter design. The linearity and time-invariance
of structures are not assumed merely to simplify certain analysis and design
aspects, but are handled more or less as an “ultimate truth”. The connection
to the continuous-time (analog) world is lost most of the time. The key focus
points, particularly the discussed filter types, are of little interest to a digital
music instrument developer. This makes it difficult to apply the obtained knowl-
edge in the music DSP context, especially in the virtual analog filter design.

This book attempts to amend this deficiency. The concepts are introduced
with the musical VA filter design in mind. The depth of theoretical explanation
is restricted to an intuitive and practically applicable amount. The focus of the
book is the design of digital models of classical musical analog filter structures
using the topology-preserving transform approach, which can be considered as
a generalization of bilinear transform, zero-delay feedback and trapezoidal inte-
gration methods. This results in digital filters having nice amplitude and phase
responses, nice time-varying behavior and plenty of options for nonlinearities.
In a way, this book can be seen as a detailed explanation of the materials pro-
vided in the author’s article “Preserving the LTI system topology in s- to z-plane
transforms.”

The main purpose of this book is not to explain how to build high-quality
emulations of analog hardware (although the techniques explained in the book
can be an important and valuable tool for building VA emulations). Rather it is
about how to build high-quality time-varying digital filters. The author hopes
that these techniques will be used to construct new digital filters, rather than
only to build emulations of existing analog structures.

The prerequisites for the reader include familiarity with the basic DSP con-
cepts, complex algebra and the basic ideas of mathematical analysis. Some basic
knowledge of electronics may be helpful at one or two places, but is not critical
for the understanding of the presented materials.

The author apologizes for possible mistakes and messy explanations, as the
book didn’t go through any serious proofreading.

ix



x PREFACE

Preface to revision 2.0.0alpha

This preface starts with an excuse. With revision 2.0.0 the book receives a major
update, where the new material roughly falls into two different categories: the
practical side of VA DSP and a more theoretical part. The latter arose from
the desire to describe theoretical foundations for the subjects which the book
intended to cover. These foundations were not copied from other texts (except
where explicitly noted), but were done from scratch, the author trying to present
the subject in the most intuitive way.1 For that reason, especially in the more
theoretical part, the book possibly contains mistakes.

Certain pieces of information are simply ideas which the author sponta-
neously had and tried to describe,2 not necessarily properly testing all of them.
This is another potential source of mistakes. One option would have been not
rushing the book release and making an exhaustive testing of the presented ma-
terial. During the same time the book text could have gone through a few more
polishing runs, possibly restructuring some of the material in an easier to grasp
way. However, this probably would have delayed the book’s release by half a
year or, likely, much more, as after five months of overly intensive work on the
book the author (hopefully) deserves some relaxing. On the other hand, the
main intention of the book is not to provide a collection of ready to use recipes,
but rather to describe one possible way to think about the respective matters
and give some key pieces of information. Thus, readers, who understood the
text, should be able to correct the respective mistakes, if any, on their own.
From that perspective, the book in the present state should fulfill its goal.

Therefore the author decided to release the book in an alpha state with
the above reservations.3 Readers looking for a collection of time-proven recipes
might want to check other sources.

The author also has recieved a number of complaints in regards to the book
having too high requirements on the math side. It just so happens that certain
things simply need advanced math to be properly understood. Sacrificing the
exactness and the amount of information for the sake of a more accessible text
could have definitely been an option, but. . . that would have been a completely
different book. In that regard the new revision contains parts which are even
harder on the math side than the previous revisions, the math prerequisites for
these parts respectively being generally higher than for the rest of the book.
Such parts, however, may simply be skipped by the readers.

In regards to the usage of the math in the book, the author would like to
make one more remark. The book uses math notation not simply to provide
some calculation formulas or to do formal transformations. The math notation
is also used to express information, since quite in some cases it can do this
much more exactly than words. In that sense the respective formulas become
an integral part of the book’s text, rather than some kind of a parallel stream
of information. E.g. the formula (2.4), which some readers find daunting, is

1“Intuitive” here doesn’t mean “easy to understand”, but rather “when understood, it
becomes easy”.

2It is possible that some of these ideas are not new, but the author at the time of the
writing was not aware of that. This might result in a lack of respective credits and in a
different terminology, for which, should that happen to be the case, the author apologizes.

3The alpha state has been dropped in rev.2.1.0, as the author did some additional verifi-
cation of the new materials.
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simply providing a detailed explanation to the statement that each partial can
be integrated independently.

Certain readers, being initially daunted by the look of the text, also believe
that they need to read some other filter DSP text before attempting this one.
This is not necessarily so, since this book strongly deviates in its presentation
from the classical DSP texts and this might create a collision in the beginner’s
mind between two very different approaches to the material. Also, chances are,
after reading some other classical DSP text first, the reader will only find out
that this didn’t help much in regards to understanding this book and was simply
an additional investment of time.

The part of DSP knowledge which is more or less required (although a pretty
surface level should suffice) is a basic understanding of discrete time sampling.
Also basic knowledge of Fourier theory could be helpful, but probably even that
is not a must, as the book introduces it in a, however condensed, but sufficient
for the understanding of the the further text form. No preliminary knowledge
of filters is needed. Also, in author’s impression, often the real problem is pos-
sibly an insufficient level of math knowledge or experience, which then leads to
a reader believing that some additional filter knowledge is needed first, whereas
what’s lacking is rather purely the math skills. In this case, if the gap is not
very large, one could try to simply read through anyway, it might become pro-
gressively better, or the part of the math which is not being understood may
happen to be not essential for practical application of the materials.
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G.Borin, G.De Poli, F.Fontana, D.Rocchesso, T.Serafini and P.Zamboni, al-
though reportedly this subject has been appearing as far ago as in the 70s of
the 20th century.



Chapter 1

Fourier theory

When we are talking about filters we say that filters modify the frequency
content of the signal. E.g. a lowpass filter lets the low frequencies through,
while suppressing the high frequencies, a highpass filter does vice versa etc.
In this chapter we are going to develop a formal definition1 of the concept of
frequencies “contained” in a signal. We will later use this concept to analyse
the behavior of the filters.

1.1 Complex sinusoids

In order to talk about the filter theory we need to introduce complex sinusoidal
signals. Consider the complex identity:

ejt = cos t+ j sin t (t ∈ R)

(notice that, if t is the time, then the point ejt is simply moving along a unit
circle in the complex plane). Then

cos t =
ejt + e−jt

2

and

sin t =
ejt − e−jt

2j
Then a real sinusoidal signal a cos(ωt + ϕ) where a is the real amplitude and
ϕ is the initial phase can be represented as a sum of two complex conjugate
sinusoidal signals:

a cos(ωt+ ϕ) =
a

2

(
ej(ωt+ϕ) + e−j(ωt+ϕ)

)
=
(a

2
ejϕ
)
ejωt +

(a
2
e−jϕ

)
e−jωt

Notice that we have a sum of two complex conjugate sinusoids e±jωt with re-
spective complex conjugate amplitudes (a/2)e±jϕ. So, the complex amplitude
simultaneously encodes both the amplitude information (in its absolute magni-
tude) and the phase information (in its argument). For the positive-frequency
component (a/2)ejϕ · ejωt, the complex “amplitude” a/2 is a half of the real
amplitude and the complex “phase” ϕ is equal to the real phase.

1More precisely we will develop a number of definitions.

1



2 CHAPTER 1. FOURIER THEORY

1.2 Fourier series

Let x(t) be a real periodic signal of a period T:

x(t) = x(t+ T )

Let ω = 2π/T be the fundamental frequency of that signal. Then x(t) can
be represented2 as a sum of a finite or infinite number of sinusoidal signals of
harmonically related frequencies jnω plus the DC offset term3 a0/2:

x(t) =
a0

2
+
∞∑
n=1

an cos(jnωt+ ϕn) (1.1)

The representation (1.1) is referred to as real-form Fourier series. The respective
sinusoidal terms are referred to as the harmonics or the harmonic partials of
the signal.

The set of partials contained in a signal (including the DC term) is referred
to as the signal’s spectrum. Respectively, a periodic signal can be specified by
specifying its spectrum.

Using the complex sinusoid notation the same can be rewritten as

x(t) =
∞∑

n=−∞
Xne

jnωt (1.2)

where each harmonic term an cos(jnωt + ϕn) will be represented by a sum of
Xne

jnωt and X−ne
−jnωt, where Xn and X−n are mutually conjugate: Xn =

X∗−n. The representation (1.2) is referred to as complex-form Fourier series
and respectively we can talk of a complex spectrum. Note that we don’t have
an explicit DC offset partial in this case, it is implicitly contained in the series
as the term for n = 0.

It can be easily shown that the real- and complex-form coefficients are related
as

Xn =
an
2
ejϕn (n > 0)

X0 =
a0

2

This means that intuitively we can use the absolute magnitude and the argument
of Xn (for positive-frequency terms) as the amplitudes and phases of the real
Fourier series partials.

Complex-form Fourier series can also be used to represent complex (rather
than real) periodic signals in exactly the same way, except that the equality
Xn = X∗−n doesn’t hold anymore.

Thus, any real periodic signal can be represented as a sum of harmonically
related real sinusoidal partials plus the DC offset. Alternatively, any periodic
signal can be represented as a sum of harmonically related complex sinusoidal
partials.

2Formally speaking, there are some restrictions on x(t). It would be sufficient to require
that x(t) is bounded and continuous, except for a finite number of discontinuous jumps per
period.

3The reason the DC offset term is notated as a0/2 and not as a0 has to do with simplifying
the math notation in other related formulas.



1.3. FOURIER INTEGRAL 3

1.3 Fourier integral

While periodic signals are representable as a sum of a countable number of
sinusoidal partials, a nonperiodic real signal can be represented4 as a sum of an
uncountable number of sinusoidal partials:

x(t) =
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π

(1.3)

The representation (1.3) is referred to as Fourier integral.5 The DC offset term
doesn’t explicitly appear in this case.

Even though the set of partials is uncountable this time, we still refer to it
as a spectrum of the signal. Thus, while periodic signals had discrete spectra
(consisting of a set of discrete partials at the harmonically related frequencies),
nonperiodic signals have continuous spectra.

The complex-form version of Fourier integral6 is

x(t) =
∫ ∞
−∞

X(ω)ejωt
dω
2π

(1.4)

For real x(t) we have a Hermitian X(ω): X(ω) = X∗(−ω), for complex x(t)
there is no such restriction. The function X(ω) is referred to as Fourier trans-
form of x(t).7

It can be easily shown that the relationship between the parameters of the
real and complex forms of Fourier transform is

X(ω) =
a(ω)

2
ejϕ(ω) (ω > 0)

This means that intuitively we can use the absolute magnitude and the argument
of X(ω) (for positive frequencies) as the amplitudes and phases of the real
Fourier integral partials.

Thus, any timelimited signal can be represented as a sum of an uncountable
number of sinusoidal partials of infinitely small amplitudes.

4As with Fourier series, there are some restrictions on x(t). It is sufficient to require x(t) to
be absolutely integrable, bounded and continuous (except for a finite number of discontinuous
jumps per any finite range of the argument value). The most critical requirement here is
probably the absolute integrability, which is particularly fulfilled for the timelimited signals.

5The 1/2π factor is typically used to simplify the notation in the theoretical analysis
involving the computation. Intuitively, the integration is done with respect to the ordinary,
rather than circular frequency:

x(t) =

∫ ∞
0

a(f) cos
(
2πft+ ϕ(f)

)
df

Some texts do not use the 1/2π factor in this position, in which case it appears in other places
instead.

6A more common term for (1.4) is inverse Fourier transform. However the term inverse
Fourier transform stresses the fact that x(t) is obtained by computing the inverse of some
transform, whereas in this book we are more interested in the fact that x(t) is representable
as a combination of sinusoidal signals. The term Fourier integral better reflects this aspect.
It also suggests a similarity to the Fourier series representation.

7The notation X(ω) for Fourier transform shouldn’t be confused with the notation X(s)
for Laplace transform. Typically one can be told from the other by the semantics and the
notation of the argument. Fourier transform has a real argument, most commonly denoted as
ω. Laplace transform has a complex argument, most commonly denoted as s.
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1.4 Dirac delta function

The Dirac delta function δ(t) is intuitively defined as a very high and a very
short symmetric impulse with a unit area (Fig. 1.1):

δ(t) =

{
+∞ if t = 0
0 if t 6= 0

δ(−t) = δ(t)∫ ∞
−∞

δ(t) dt = 1

t

δ(t)

+∞

0

Figure 1.1: Dirac delta function.

Since the impulse is infinitely narrow and since it has a unit area,∫ ∞
−∞

f(τ)δ(τ) dτ = f(0) ∀f

from where it follows that a convolution of any function f(t) with δ(t) doesn’t
change f(t):

(f ∗ δ)(t) =
∫ ∞
−∞

f(τ)δ(t− τ) dτ = f(t)

Dirac delta can be used to represent Fourier series by a Fourier integral. If
we let

X(ω) =
∞∑

n=−∞
2πδ(ω − nωf )Xn

then
∞∑

n=−∞
Xne

jnωf t =
∫ ∞
−∞

X(ω)ejωt
dω
2π
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Notice that thereby the spectrum X(ω) is discrete, even though being formally
notated as a continuous function. From now on, we’ll not separately mention
Fourier series, assuming that Fourier integral can represent any necessary signal.

Thus, most signals can be represented as a sum of (a possibly infinite number
of) sinusoidal partials.

1.5 Laplace transform

Let s = jω. Then, a complex-form Fourier integral can be rewritten as

x(t) =
∫ +j∞

−j∞
X(s)est

ds
2πj

where the integration is done in the complex plane along the straight line from
−j∞ to +j∞ (apparently X(s) is a different function than X(ω)).8 For time-
limited signals the function X(s) can be defined on the entire complex plane in
such a way that the integration can be done along any line which is parallel to
the imaginary axis:

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

(σ ∈ R) (1.5)

In many other cases such X(s) can be defined within some strip σ1 < Re s < σ2.
Such function X(s) is referred to as bilateral Laplace transform of x(t), whereas
the representation (1.5) can be referred to as Laplace integral.9 10

Notice that the complex exponential est is representable as

est = eRe s·teIm s·t

Considering eRe s·t as the amplitude of the complex sinusoid eIm s·t we notice
that est is:

- an exponentially decaying complex sinusoid if Re s < 0,

- an exponentially growing complex sinusoid if Re s > 0,

- a complex sinusoid of constant amplitude if Re s = 0.

Thus, most signals can be represented as a sum of (a possibly infinite number
of) complex exponential partials, where the amplitude growth or decay speed of
these partials can be relatively arbitrarily chosen.

8As already mentioned, the notation X(ω) for Fourier transform shouldn’t be confused
with the notation X(s) for Laplace transform. Typically one can be told from the other by
the semantics and the notation of the argument. Fourier transform has a real argument, most
commonly denoted as ω. Laplace transform has a complex argument, most commonly denoted
as s.

9A more common term for (1.5) is inverse Laplace transform. However the term inverse
Laplace transform stresses the fact that x(t) is obtained by computing the inverse of some
transform, whereas is this book we are more interested in the fact that x(t) is representable
as a combination of exponential signals. The term Laplace integral better reflects this aspect.

10The representation of periodic signals by Laplace integral (using Dirac delta function) is
problematic for σ 6= 0. Nevertheless, we can represent them by a Laplace integral if we restrict
σ to σ = 0 (that is Re s = 0 for X(s)).
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SUMMARY

The most important conclusion of this chapter is: any signal occurring in prac-
tice can be represented as a sum of sinusoidal (real or complex) components.
The frequencies of these sinusoids can be referred to as the “frequencies con-
tained in the signal”. The full set of these sinusoids, including their amplitudes
and phases, is refereed to as the spectrum of the signal.

For complex representation, the real amplitude and phase information is
encoded in the absolute magnitude and the argument of the complex amplitudes
of the positive-frequency partials (where the absolute magnitude of the complex
amplitude is a half of the real amplitude). It is also possible to use complex
exponentials instead of sinusoids.



Chapter 2

Analog 1-pole filters

In this chapter we are going to introduce the basic analog RC-filter and use it
as an example to develop the key concepts of the analog filter analysis.

2.1 RC filter

Consider the circuit in Fig. 2.1, where the voltage x(t) is the input signal and the
capacitor voltage y(t) is the output signal. This circuit represents the simplest
1-pole lowpass filter, which we are now going to analyse.

� R��ÿ��� C
��þ

����� �òy(t)

������ �ð
x(t)

Figure 2.1: A simple RC lowpass filter.

Writing the equations for that circuit we have:

x = UR + UC

y = UC

UR = RI

I = q̇C

qC = CUC

(2.1)

where UR is the resistor voltage, UC is the capacitor voltage, I is the current
through the circuit and qC is the capacitor charge. Reducing the number of
variables, we can simplify the equation system to:

x = RCẏ + y

or
ẏ =

1
RC

(x− y) (2.2)

7
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or, integrating with respect to time:

y = y(t0) +
∫ t

t0

1
RC

(
x(τ)− y(τ)

)
dτ

where t0 is the initial time moment. Introducing the notation ωc = 1/RC we
have

y = y(t0) +
∫ t

t0

ωc
(
x(τ)− y(τ)

)
dτ (2.3)

We will reintroduce ωc later as the cutoff of the filter.
Notice that we didn’t factor 1/RC (or ωc) out of the integral for the case

when the value of R is varying with time. The varying R corresponds to the
varying cutoff of the filter, and this situation is highly typical in the music DSP
context.1

2.2 Block diagrams

The integral equation (2.3) can be expressed in the block diagram form (Fig. 2.2).

+ '!&"%#$//
MMMqqq
//

∫
// •//

−
OO //x(t) y(t)

ωc

Figure 2.2: A 1-pole RC lowpass filter in the block diagram form.

The meaning of the elements of the diagram should be intuitively clear.
The gain element (represented by a triangle) multiplies the input signal by ωc.
Notice the inverting input of the summator, denoted by “−”. The integrator
simply integrates the input signal:

output(t) = output(t0) +
∫ t

t0

input(τ) dτ

The representation of the system by the integral (rather than differential)
equation and the respective usage of the integrator element in the block diagram
has an important intuitive meaning. Intuitively, the capacitor integrates the
current flowing through it, accumulating it as its own charge:

qC(t) = qC(t0) +
∫ t

t0

I(τ) dτ

or, equivalently

UC(t) = UC(t0) +
1
C

∫ t

t0

I(τ) dτ

One can observe from Fig. 2.2 that the output signal is always trying to
“reach” the input signal. Indeed, the difference x− y is always “directed” from

1We didn’t assume the varying C because then our simplification of the equation system
doesn’t hold anymore, since q̇C 6= CU̇C in this case.
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y to x. Since ωc > 0, the integrator will respectively increase or decrease its
output value in the respective direction. This corresponds to the fact that the
capacitor voltage in Fig. 2.1 is always trying to reach the input voltage. Thus,
the circuit works as a kind of smoother of the input signal.

2.3 Transfer function

Consider the integrator: ∫
// //x(t) y(t)

Suppose x(t) = est (where s = jω or, possibly, another complex value). Then

y(t) = y(t0) +
∫ t

t0

esτ dτ = y(t0) +
1
s
esτ
∣∣∣t
τ=t0

=
1
s
est +

(
y(t0)− 1

s
est0

)
Thus, a complex sinusoid (or exponential) est sent through an integrator comes
out as the same signal est just with a different amplitude 1/s plus some DC
term y(t0) − est0/s. Similarly, a signal X(s)est (where X(s) is the complex
amplitude of the signal) comes out as (X(s)/s)est plus some DC term. That
is, if we forget about the extra DC term, the integrator simply multiplies the
amplitudes of complex exponential signals est by 1/s.

Now, the good news is: for our purposes of filter analysis we can simply
forget about the extra DC term. The reason for this is the following. Suppose
the initial time moment t0 was quite long ago (t0 � 0). Suppose further that
the integrator is contained in a stable filter2. It can be shown that in this case
the effect of the extra DC term on the output signal is negligible.3 Since the
initial state y(t0) is incorporated into the same DC term, it also means that the
effect of the initial state is negligible!4

Thus, we simply write (for an integrator):∫
esτ dτ =

1
s
est

This means that est is an eigenfunction of the integrator with the respective
eigenvalue 1/s.

Since the integrator is linear,5 not only are we able to factor X(s) out of the
integration: ∫

X(s)esτ dτ = X(s)
∫
esτ dτ =

1
s
X(s)est

2We will discuss the filter stability later, for now we’ll simply mention that we’re mostly
interested in the stable filters for the purposes of the current discussion

3We will discuss the mechanisms behind that fact when we talk about transient response.
4In practice, typically, a zero initial state is assumed. Then, particularly, in the case of

absence of the input signal, the output signal of the filter is zero from the very beginning
(rather than for t� t0).

5The linearity here is understood in the sense of the operator linearity. An operator Ĥ is
linear, if

Ĥ (λ1f1(t) + λ2f2(t)) = λ1Ĥf1(t) + λ2Ĥf2(t)
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but we can also apply the integration independently to all Fourier (or Laplace)
partials of an arbitrary signal x(t):∫ (∫ σ+j∞

σ−j∞
X(s)esτ

ds
2πj

)
dτ =

∫ σ+j∞

σ−j∞

(∫
X(s)esτ dτ

)
ds
2πj

=

=
∫ σ+j∞

σ−j∞

X(s)
s

esτ
ds
2πj

(2.4)

That is, the integrator changes the complex amplitude of each partial by a 1/s
factor.

Consider again the structure in Fig. 2.2. Assuming the input signal x(t) has
the form est we can replace the integrator by a gain element with a 1/s factor.
We symbolically reflect this by replacing the integrator symbol in the diagram
with the 1/s fraction (Fig. 2.3).6

+ '!&"%#$//
MMMqqq
// 1

s
// •//

−
OO //x(t) y(t)

ωc

Figure 2.3: A 1-pole RC lowpass filter in the block diagram form
with a 1/s notation for the integrator.

So, suppose x(t) = X(s)est and suppose we know y(t). Then the input signal
for the integrator is ωc(x− y). We now will further take for granted the knowl-
edge that y(t) will be the same signal est with some different complex amplitude
Y (s), that is y(t) = Y (s)est (notably, this holds only if ωc is constant, that is,
if the system is time-invariant !!!)7 Then the input signal of the integrator is
ωc(X(s) − Y (s))est and the integrator simply multiplies its amplitude by 1/s.
Thus the output signal of the integrator is ωc(x− y)/s. But, on the other hand
y(t) is the output signal of the integrator, thus

y(t) = ωc
x(t)− y(t)

s

or

Y (s)est = ωc
X(s)− Y (s)

s
est

or

Y (s) = ωc
X(s)− Y (s)

s

from where
sY (s) = ωcX(s)− ωcY (s)

6Often in such cases the input and output signal notation for the block diagram is replaced
with X(s) and Y (s). Such diagram then “works” in terms of Laplace transform, the input of
the diagram is the Laplace transform X(s) of the input signal x(t), the output is respectively
the Laplace transform Y (s) of the output signal y(t). The integrators can then be seen as
s-dependent gain elements, where the gain coefficient is 1/s.

7In other words, we take for granted the fact that est is an eigenfunction of the entire
circuit.
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and
Y (s) =

ωc
s+ ωc

X(s)

Thus, the circuit in Fig. 2.3 (or in Fig. 2.2) simply scales the amplitude of the
input sinusoidal (or exponential) signal X(s)est by the ωc/(s+ ωc) factor.

Let’s introduce the notation

H(s) =
ωc

s+ ωc
(2.5)

Then
Y (s) = H(s)X(s) (2.6)

H(s) is referred to as the transfer function of the structure in Fig. 2.3 (or
Fig. 2.2). Notice that H(s) is a complex function of a complex argument.

For an arbitrary input signal x(t) we can use the Laplace transform repre-
sentation

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

From the linearity8 of the circuit in Fig. 2.3, it follows that the result of the
application of the circuit to a linear combination of some signals is equal to
the linear combination of the results of the application of the circuit to the
individual signals. That is, for each input signal of the form X(s)est we obtain
the output signalH(s)X(s)est. Then for an input signal which is an integral sum
of X(s)est, we obtain the output signal which is an integral sum of H(s)X(s)est.
That is

y(t) =
∫ σ+j∞

σ−j∞
H(s)X(s)est

ds
2πj

(2.7)

So, the circuit in Fig. 2.3 independently modifies the complex amplitudes of the
sinusoidal (or exponential) partials est by the H(s) factor!

Notably, the transfer function can be introduced for any system which is
linear and time-invariant. For the differential systems, whose block diagrams
consist of integrators, summators and fixed gains, the transfer function is always
a non-strictly proper9 rational function of s. Particularly, this holds for the
electronic circuits, where the differential elements are capacitors and inductors,
since these types of elements logically perform integration (capacitors integrate
the current to obtain the voltage, while inductors integrate the voltage to obtain
the current).

It is important to realize that in the derivation of the transfer function con-
cept we used the linearity and time-invariance (the absence of parameter mod-
ulation) of the structure. If these properties do not hold, the transfer function
can’t be introduced! This means that all transfer function-based analysis holds
only in the case of fixed parameter values. In practice, if the parameters are
not changing too quickly, one can assume that they are approximately constant

8Here we again understand the linearity in the operator sense:

Ĥ (λ1f1(t) + λ2f2(t)) = λ1Ĥf1(t) + λ2Ĥf2(t)

The operator here corresponds to the circuit in question: y(t) = Ĥx(t) where x(t) and y(t)
are the input and output signals of the circuit.

9A rational function is nonstrictly proper, if the order of its numerator doesn’t exceed the
order of its denominator.
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during a certain time range. That is we can “approximately” apply the transfer
function concept (and the discussed later derived concepts, such as amplitude
and phase responses, poles and zeros, stability criterion etc.) if the modulation
of the parameter values is “not too fast”.

2.4 Complex impedances

Actually, we could have obtained the transfer function of the circuit in Fig. 2.1
using the concept of complex impedances.

Consider the capacitor equation:

I = CU̇

If

I(t) = I(s)est

U(t) = U(s)est

(where I(t) and I(s) are obviously two different functions, the same for U(t)
and U(s)), then

U̇ = sU(s)est = sU(t)

and thus
I(t) = I(s)est = CU̇ = CsU(s)est = sCU(t)

that is
I = sCU

or
U =

1
sC

I

Now the latter equation looks almost like Ohm’s law for a resistor: U = RI. The
complex value 1/sC is called the complex impedance of the capacitor. The same
equation can be written in the Laplace transform form: U(s) = (1/sC)I(s).

For an inductor we have U = Lİ and respectively, for I(t) = I(s)est and
U(t) = U(s)est we obtain U(t) = sLI(t) or U(s) = sLI(s). Thus, the complex
impedance of the inductor is sL.

Using the complex impedances as if they were resistances (which we can do,
assuming the input signal has the form X(s)est), we simply write the voltage
division formula for the circuit in in Fig. 2.1:

y(t) =
UC

UR + UC
x(t)

or, cancelling the common current factor I(t) from the numerator and the de-
nominator, we obtain the impedances instead of voltages:

y(t) =
1/sC

R+ 1/sC
x(t)

from where

H(s) =
y(t)
x(t)

=
1/sC

R+ 1/sC
=

1
1 + sRC

=
1/RC

s+ 1/RC
=

ωc
s+ ωc

which coincides with (2.5).
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2.5 Amplitude and phase responses

Consider again the structure in Fig. 2.3. Let x(t) be a real signal and let

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

be its Laplace integral representation. Let y(t) be the output signal (which is
obviously also real) and let

y(t) =
∫ σ+j∞

σ−j∞
Y (s)est

ds
2πj

be its Laplace integral representation. As we have shown, Y (s) = H(s)X(s)
where H(s) is the transfer function of the circuit.

The respective Fourier integral representation of x(t) is apparently

x(t) =
∫ +∞

−∞
X(jω)ejωt

dω
2π

where X(jω) is the Laplace transform X(s) evaluated at s = jω. The real
Fourier integral representation is then obtained as

ax(ω) = 2 · |X(jω)|
ϕx(ω) = argX(jω)

For y(t) we respectively have10 11

ay(ω) = 2 · |Y (jω)| = 2 · |H(jω)X(jω)| = |H(jω)| · ax(ω)
ϕy(ω) = arg Y (jω) = arg (H(jω)X(jω)) = ϕx(ω) + argH(jω)

(ω ≥ 0)

Thus, the amplitudes of the real sinusoidal partials are magnified by the |H(jω)|
factor and their phases are shifted by argH(jω) (ω ≥ 0). The function |H(jω)|
is referred to as the amplitude response of the circuit and the function argH(jω)
is referred to as the phase response of the circuit. Note that both the amplitude
and the phase response are real functions of a real argument ω.

The complex-valued function H(jω) of the real argument ω is referred to
as the frequency response of the circuit. Simply put, the frequency response is
equal to the transfer function evaluated on the imaginary axis.

Since the transfer function concept works only in the linear time-invariant
case, so do the concepts of the amplitude, phase and frequency responses!

10This relationship holds only if H(jω) is Hermitian: H(jω) = H∗(−jω). If it weren’t the
case, the Hermitian property wouldn’t hold for Y (jω) and y(t) couldn’t have been a real signal
(for a real input x(t)). Fortunately, for real systems H(jω) is always Hermitian. Particularly,
rational transfer functions H(s) with real coefficients obviously result in Hermitian H(jω).

11Formally, ω = 0 requires special treatment in case of a Dirac delta component at ω = 0
(arising particularly if the Fourier series is represented by a Fourier integral and there is a
nonzero DC offset). Nevertheless, the resulting relationship between ay(0) and ax(0) is exactly
the same as for ω > 0, that is ay(0) = H(0)ax(0). A more complicated but same argument
holds for the phase.
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2.6 Lowpass filtering

Consider again the transfer function of the structure in Fig. 2.2:

H(s) =
ωc

s+ ωc

The respective amplitude response is

|H(jω)| =
∣∣∣∣ ωc
ωc + jω

∣∣∣∣
Apparently at ω = 0 we have H(0) = 1. On the other hand, as ω grows, the
magnitude of the denominator grows as well and the function decays to zero:
H(+j∞) = 0. This suggests the lowpass filtering behavior of the circuit: it lets
the partials with frequencies ω � ωc pass through and stops the partials with
frequencies ω � ωc. The circuit is therefore referred to as a lowpass filter, while
the value ωc is defined as the cutoff frequency of the circuit.

It is convenient to plot the amplitude response of the filter in a fully log-
arithmic scale. The amplitude gain will then be plotted in decibels, while the
frequency axis will have a uniform spacing of octaves. For H(s) = ωc/(s+ ωc)
the plot looks like the one in Fig. 2.4.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Passband StopbandTransition
band

Figure 2.4: Amplitude response of a 1-pole lowpass filter.

The frequency range where |H(jω)| ≈ 1 is referred to as the filter’s passband.
The frequency range where |H(jω)| ≈ 0 is referred to as the filter’s stopband.
The frequency range between the passand and the stopband where |H(jω)| is
changing from approximately 1 to approximately 0 is referred to as the filter’s
transition band.12

Notice that the plot falls off in an almost straight line as ω →∞. Apparently,
at ω � ωc and respectively |s| � ωc we have H(s) ≈ ωc/s and |H(s)| ≈ ωc/ω.
This is a hyperbola in the linear scale and a straight line in a fully logarithmic
scale. If ω doubles (corresponding to a step up by one octave), the amplitude

12We introduce the concepts of pass-, stop- and transition bands only qualitatively, without
attempting to give more exact definitions of the positions of the boundaries between the bands.
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gain is approximately halved (that is, drops by approximately 6 decibel). We
say that this lowpass filter has a rolloff of 6dB/oct.

Another property of this filter is that the amplitude drop at the cutoff is
−3dB. Indeed

|H(jωc)| =
∣∣∣∣ ωc
ωc + jωc

∣∣∣∣ =
∣∣∣∣ 1
1 + j

∣∣∣∣ =
1√
2
≈ −3dB

The phase response of the 1-pole lowpass is respectively

argH(jω) = arg
ωc

ωc + jω

giving 0 at ω = 0, −π/4 at the cutoff and −π/2 at ω → +∞. With phase
response plots we don’t want a logarithmic phase axis, but the logarithmic
frequency scale is usually desired. Fig. 2.5 illustrates.

ω

argH(jω)

ωcωc/8 8ωc

0

−π/4

−π/2

Figure 2.5: Phase response of a 1-pole lowpass filter.

Note that the phase response is close to zero in the passband, this will be a
property encountered in most of the filters that we deal with.

2.7 Cutoff parameterization

Suppose ωc = 1. Then the lowpass transfer function (2.5) turns into

H(s) =
1

s+ 1

Now perform the substitution s← s/ωc. We obtain

H(s) =
1

s/ωc + 1
=

ωc
s+ ωc

which is again our familiar transfer function of the lowpass filter.
Consider the amplitude response graph of 1/(s + 1) in a logarithmic scale.

The substitution s ← s/ωc simply shifts this graph to the left or to the right
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(depending on whether ωc < 1 or ωc > 1) without changing its shape. Thus,
the variation of the cutoff parameter doesn’t change the shape of the ampli-
tude response graph (Fig. 2.6), or of the phase response graph, for that matter
(Fig. 2.7).

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 2.6: 1-pole lowpass filter’s amplitude response shift by a
cutoff change.

ω

argH(jω)

ωcωc/8 8ωc

0

−π/4

−π/2

Figure 2.7: 1-pole lowpass filter’s phase response shift by a cutoff
change.

The substitution s← s/ωc is a generic way to handle cutoff parameterization
for analog filters, because it doesn’t change the response shapes. This has a nice
counterpart on the block diagram level. For all types of filters we simply visually
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combine an ωc gain and an integrator into a single block:13

MMMqqq
//

∫
// //

ωc

→
ωc
s

// //

Apparently, the reason for the ωc/s notation is that this is the transfer function
of the serial connection of an ωc gain and an integrator. Alternatively, we simply
assume that the cutoff gain is contained inside the integrator:

MMMqqq
//

∫
// //

ωc

→
∫

// //

The internal representation of such integrator block is of course still a cutoff
gain followed by an integrator. Whether the gain should precede the integrator
or follow it may depend on the details of the analog prototype circuit. In the
absence of the analog prototype it’s better to put the gain before the integrator,
because then the integrator will smooth the jumps and further artifacts arising
out of the cutoff modulation. Another reason to put the cutoff gain before the
integrator is that it has an important impact on the behavior of the filter in the
time-varying case. We will discuss this aspect in Section 2.16.

With the cutoff gain implied inside the integrator block, the structure from
Fig. 2.2 is further simplified to the one in Fig. 2.8:

+ '!&"%#$//
∫

// •//
−

OO //x(t) y(t)

Figure 2.8: A 1-pole RC lowpass filter with an implied cutoff.

Unit-cutoff notation

As a further shortcut arising out of the just discussed facts, it is common to
assume ωc = 1 during the filter analysis. Particularly, the transfer function of
a 1-pole lowpass filter is often written as

H(s) =
1

s+ 1

It is assumed that the reader will perform the s ← s/ωc substitution as neces-
sary.

13Notice that including the cutoff gain into the integrator makes the integrator block in-
variant to the choice of the time units:

y(t) = y(t0) +

∫ t

t0

ωcx(τ) dτ

because the product ωc dτ is invariant to the choice of the time units. This will become
important once we start building discrete-time models of filters, where we would often assume
unit sampling period.



18 CHAPTER 2. ANALOG 1-POLE FILTERS

To illustrate the convenience of the unit cutoff notation we will obtain the
explicit expression for the 1-pole lowpass phase response shown in Fig. 2.5:

argH(jω) = arg
1

1 + jω
= − arg(1 + jω) = − arctanω (2.8)

The formula (2.8) explains the apparent from Fig. 2.5 symmetry (relative to the
point at ω = ωc) of the phase response in the logarithmic frequency scale, as
this symmetry is simply due to the property of the arctangent function:

arctanx+ arctan
1
x

=
π

2
(2.9)

2.8 Highpass filter

If instead of the capacitor voltage in Fig. 2.1 we pick up the resistor voltage as
the output signal, we obtain the block diagram representation as in Fig. 2.9.

+ '!&"%#$// •//
∫

//
−

OO

//

x(t)

y(t)

Figure 2.9: A 1-pole highpass filter.

Obtaining the transfer function of this filter we get

H(s) =
s

s+ ωc

or, in the unit-cutoff form,
H(s) =

s

s+ 1

It’s easy to see that H(0) = 0 and H(+j∞) = 1, whereas the biggest change in
the amplitude response occurs again around ω = ωc. Thus, we have a highpass
filter here. The amplitude response of this filter is shown in Fig. 2.10 (in the
logarithmic scale).

It’s not difficult to observe or show that this response is a mirrored version of
the one in Fig. 2.4. Particularly, at ω � ωc we have H(s) ≈ s/ωc, so when the
frequency is halved (dropped by an octave), the amplitude gain is approximately
halved as well (drops by approximately 6dB). Again, we have a 6dB/oct rolloff.

The phase response of the highpass is a 90◦ shifted version of the lowpass
phase response:

arg
jω

1 + jω
=
π

2
+

1
1 + jω

Fig. 2.11 illustrates. Note that the phase response in the passband is close to
zero, same as we had for the lowpass.
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Figure 2.10: Amplitude response of a 1-pole highpass filter.

ω

argH(jω)

ωcωc/8 8ωc

π/2

π/4

0

Figure 2.11: Phase response of a 1-pole highpass filter.

2.9 Poles and zeros

Poles and zeros are two very important concepts used in connection with filters.
Now might be a good time to introduce them.

Consider the lowpass transfer function:

H(s) =
ωc

s+ ωc

Apparently, this function has a pole in the complex plane at s = −ωc. Similarly,
the highpass transfer function

H(s) =
s

s+ ωc

also has a pole at s = −ωc, but it also has a zero at s = 0.
Recall that the transfer functions of linear time-invariant differential systems

are nonstrictly proper rational functions of s. Writing any such function in the
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multiplicative form we obtain

H(s) = g ·

Nz∏
n=1

(s− zn)

Np∏
n=1

(s− pn)

(Np ≥ Nz ≥ 0, Np ≥ 1) (2.10)

where Np stands for the order of the denominator, simultaneously being the
number of poles, and Nz stands for the order of the numerator, simultaneously
being the number of zeros. Thus such transfer functions always have poles and
often have zeros. The poles and zeros of transfer function (especially the poles)
play an important role in the filter analysis. For simplicity they are referred to
as the poles and zeros of the filters.

The transfer functions of real linear time-invariant differential systems have
real coefficients in the numerator and denominator polynomials. Apparently,
this doesn’t prevent them from having complex poles and zeros, however, being
roots of real polynomials, those must come in complex conjugate pairs. E.g. a
transfer function with a 3rd order denominator can have either three real poles,
or one real and two complex conjugate poles.

The 1-pole lowpass and highpass filters discussed so far, each have one pole.
For that reason they are referred to as 1-pole filters. Actually, the number of
poles is always equal to the order of the filter or (which is the same) to the
number of integrators in the filter.14 Therefore it is common, instead of e.g. a
“4th-order filter” to say a “4-pole filter”.

The number of poles therefore provides one possible way of classification of
filters. It allows to get an approximate idea of how complex the filter is and
also often allows to estimate some other filter properties without knowing lots
of extra detail. The number of zeros in the filter is usually less important and
therefore typically is not used for classification.

Finite and infinite zeros/poles

Equation (2.10) assumes that all pn and zn are finite. However often (especially
when dealing with complex numbers) it is convenient to include the infinity into
the set of “allowed” values. Respectively, if Nz < Np we will say that H(s) has
a zero of order Np−Nz at the infinity. E.g. the 1-pole lowpass transfer function
has a zero of order 1 at the infinity.

Conversely, if Np > Nz we could say that H(s) has a pole of order Np −Nz
at the infinity, however this situation won’t occur for a transfer function of a
differential filter, since Nz cannot exceed Np.

Apparently, zeros at the infinity are not a part of the explicit factoring (2.10)
and occur implicity simply due to the difference of the numerator and denomi-
nator orders. Even though they don’t show up in (2.10) they may occasionally
show up in other formulas or transformations. Thus, whether the infinite zeros
(or also poles, if we deal with other rational functions) are included into the
set of zeros/poles under consideration depends on the context. Unless explicitly

14In certain singular cases, depending on the particular definition details, these numbers
might be not equal to each other.
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mentioned, usually only finite zeros and poles are meant, however the readers
are encouraged to use their own judgement in this regard.

Notice that if zeros/poles at the infinity are included, the total number of
zeros is always equal to the total number of poles.

Rolloff

In (2.10) let ω → +∞. Apparently, this is the same as simply letting s → ∞
and therefore we obtain

H(s) ∼ g

sNp−Nz
(s→∞)

as the asymptotic behavior, which means that the amplitude response rolloff
speed at ω → +∞ is 6(Np −Nz)dB/oct.

Now suppose some of the zeros of H(s) are located at s = 0 and let Nz0 be
the number of such zeros. Then, for ω → 0 we obtain

H(s) ∼ g · sNz0 (s→ 0)

(assuming there are no poles at s = 0). Therefore the amplitude response rolloff
speed at ω → 0 is 6Nz0dB/oct. Considering that 0 ≤ Nz0 ≤ Nz ≤ Np, the
rolloff speed at ω → +∞ or at ω → 0 can’t exceed 6NpdB/oct. Also, if all zeros
of a filter are at s = 0 (that is Nz0 = Nz) then the sum of the rolloff speeds at
ω → 0 and ω → +∞ is exactly 6NpdB/oct.

The case of 0dB/oct rolloff deserves a special attention. The 0dB/oct at
ω → +∞ occurs when Np = Nz. Respectively H(s) → g as s → ∞. Since
g must be real, it follows that so is H(∞), thus we arrive at the following
statement: if H(∞) 6= 0, then the phase response at the infinity is either 0◦ or
180◦. The same statement applies for ω → 0 if Nz0 = 0, where we simply notice
that H(0) must be real due to H(jω) being Hermitian.15 The close-to-zero
phase response in the passbands of 1-pole low- and high-passes is a particular
case of this property.

Stability

The other, probably even more important property of the poles (but not zeros)
is that they determine the stability of the filter. A filter is said to be stable (or,
more exactly, BIBO-stable, where BIBO stands for “bounded input bounded
output”) if for any bounded input signal the resulting output signal is also
bounded. In comparison, unstable filters “explode”, that is, given a bounded
input signal (e.g. a signal with the amplitude not exceeding unity), the output
signal of such filter will grow indefinitely.

It is known that a filter16 is stable if and only if all its poles are located

15Of course, H(0) and H(∞) are real regardless of the rolloff speeds. However zero values
of H do not have a defined phase response and can be approached from any direction on the
complex plane of values of H. On the other hand a nonzero real value H(0) or H(∞) means
that H(s) must be almost real in some neightborhood of s = 0 or s =∞ respectively.

16More precisely a linear time-invariant system, which particularly implies fixed parameters.
This remark is actually unnecessary in the context of the current statement, since, as we
mentioned, the transfer function (and respectively the poles) are defined only for the linear
time-invariant case.
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in the left complex semiplane (that is to the left of the imaginary axis).17 For
our lowpass and highpass filters this is apparently true, as long as ωc > 0. If
ωc < 0, the pole is moved to the right semiplane, the filter becomes unstable
and will “explode”. This behavior can be conveniently explained in terms of
the transient response of the filters and we will do so later.

We have established by now that if we put a sinusoidal signal through a
stable filter we will obtain an amplitude-modified and phase-shifted sinusoidal
signal of the same frequency (after the effects of the initial state, if such were
initially present, disappear). In an unstable filter the effects of the initial state
do not decay with time, but, on the opposite, infinitely grow, thus the output
will not be the same kind of a sinusoidal signal and it doesn’t make much sense
to take of amplitude and phase responses, except maybe formally.

It is possible to obtain an intuitive understanding of the effect of the pole
position on the filter stability. Consider a transfer function of the form (2.10)
and suppose all poles are initially in the left complex semiplane. Now imagine
one of the poles (let’s say p1) starts moving towards the imaginary axis. As
the pole gets closer to the axis, the (s− p1) factor in the denominator becomes
smaller around ω = Im p1 and thus the amplitude response at ω = Im p1 grows.
When p1 gets onto the axis, the amplitude response at ω = Im p1 is infinitely
large (since jω = p1, we have H(jω) = H(p1) = ∞). This corresponds to the
filter getting unstable.18

It should be stressed once again, that the concepts of poles and zeros are
bound to the concept of the transfer function and thus are properly defined only
if the filter’s parameters are not modulated. Sometimes one could talk about
poles and/or zeros moving with time, but this is rather a convenient way to
describe particular aspects of the change in the filter’s parameters rather than
a formally correct way. Although, if the poles and zeros are moving “slowly
enough”, this way of thinking could provide a good approximation of what’s
going on.

Cutoff

The cutoff control is defined as s← s/ωc substitution. Given a transfer function
denominator factor (s− p), after the cutoff substitution it becomes (s/ωc − p).
The pole associated with this factor becomes defined by the equation

s/ωc − p = 0

which gives s = ωcp. This means that the pole position is changed from p to
ωcp.

Obviously, the same applies for zeros.

17The case when some of the poles are exactly on the imaginary axis, while the remaining
poles are in the left semiplane is referred to as marginally stable case. For some of the
marginally stable filters the BIBO property may still theoretically hold. However since in
practice (due to noise in analog systems or precision losses in their digital emulations) it’s
usually impossible to have the pole locations exactly defined and we will not concern ourselves
with this boundary case. One additional property of filters with all poles in the left semiplane
is that their state decays to zero in the absence of the input signal. Marginally stable filters
do not have this property.

18The reason, why the stable area is the left (and not the right) complex semiplane, is
discussed later in connection with transient response.
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Minimum and maximum phase

Consider a change to a filter’s transfer function (2.10) where we flip one of
the poles or zeros symmetrically with respect to the imaginary axis.19 E.g. we
replace p1 with −p∗1 or z1 with −z∗1 . Apparently, such change doesn’t affect the
amplitude response of the filter.

Indeed, a pole’s contribution to the amplitude response is, according to
(2.10), |jω−pn|, which is the distance from the pole pn to the point jω. However
the distance from the point −p∗n to jω is exactly the same, thus replacing pn
with −p∗n doesn’t change the amplitude response (Fig. 2.12). The same applies
to the situation when we change a zero from zn to −z∗n.

jω

pn −p∗n

0

jω
− p

n

jω −
(−
p ∗
n )

Re s

Im s

Figure 2.12: Contribution to the amplitude response from two sym-
metric points.

Flipping a pole symmetrically with respect to the imaginary axis normally
doesn’t make much sense, since this would turn a previously stable filter into
an unstable one. Even though sometimes we will be specifically interested in
using unstable filters (particularly if the filter is nonlinear), such flipping is not
very useful. The point of the flipping is preserving the amplitude response and,
as we mentioned, the concept of the amplitude response doesn’t really work in
the case of an unstable filter.

The situation is very different with zeros, though. Zeros can be located in
both left and right semiplanes without endangering filter’s stability. Therefore
we could construct filters with identical amplitude responses, differing only in
which of the zeros are positioned to the left and which to the right of the
imaginary axis. Even though the amplitude response is not affected by this, the
phase response apparently is, and this could be the reason to chose between the
two possible positions of each (or all) of the zeros.

Qualitatively comparing the effect of the positioning a zero to the left or to
the right, consider the following. A zero located to the left of the imaginary axis
makes a contribution to the phase response which varies from −90◦ to +90◦ as ω
goes from −∞ to +∞. A zero located on the right makes a contribution which
varies from +90◦ to −90◦. That is, in the first case the phase is increasing by

19Conjugation p∗ flips the pole p symmetrically with respect to the real axis. Now if we
additionally flip the result symmetrically with respect to the origin, the result −p∗ will be
located symmetrically to p with respect to the imaginary axis.
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180◦ as ω goes from −∞ to +∞, in the second case it is decreasing by 180◦.
The phase is defined modulo 360◦ and generally we cannot compare two

different values of the phase. E.g. if we have two values ϕ1 = +120◦ and
ϕ2 = −90◦, we can’t say for sure, whether ϕ1 is larger than ϕ2 by 210◦, or
whether ϕ1 is smaller than ϕ2 by 150◦. So, we only can reliably compare
continuous changes to the phase. In the case of comparing the positioning of
a zero in the left or right complex semiplane, we can say that in one case the
phase will be growing and in the other it will be decreasing.

If all zeros are in the left semiplane, then the phase will be increasing as
much as possible, the total contribution of all zeros to the phase variation on ω ∈
(−∞,+∞) being equal to +180◦ ·Nz. If all zeros are in the right semiplane, then
the phase will be decreasing as much as possible, the total contribution being
−180◦ ·Nz. Assuming the filter is stable, all its poles are in the left semiplane.
The factors corresponding to the poles are contained in the denominator of the
transfer function, therefore left-semiplane poles contribute to the decreasing of
the phase, the total contribution being −180◦ ·Np.

If all zeros are positioned in the left semiplane, the total phase variation is
−180◦ · (Np −Nz). If all zeros are positioned in the right semiplane, the total
phase variation is −180◦ · (Np +Nz). Since 0 ≤ Nz ≤ Np, the absolute total
phase variation in the second case is as large as possible, whereas in the first case
it is as small as possible. For that reason the filters and/or transfer functions
having all zeros in the left semiplane are referred to as minimum phase, and
respectively the filters and/or transfer functions having all zeros in the right
semiplane are referred to as maximum phase.20

2.10 LP to HP substitution

The symmetry between the lowpass and the highpass 1-pole amplitude responses
has an algebraic explanation. The 1-pole highpass transfer function can be
obtained from the 1-pole lowpass transfer function by the LP to HP (lowpass
to highpass) substitution:

s← 1/s
Applying the same substitution to a highpass 1-pole we obtain a lowpass 1-pole.
The name “LP to HP substitution” originates from the fact that a number of
filters are designed as lowpass filters and then are being transformed to their
highpass versions. Occasionally we will also refer to the LP to HP substitution as
LP to HP transformation, where essentially there won’t be a difference between
the two terms.

Recalling that s = jω, the respective transformation of the imaginary axis
is jω ← 1/jω or, equivalently

ω ← −1/ω
Recalling that the amplitude responses of real systems are symmetric between
positive and negative frequencies (|H(jω)| = |H(−jω)|) we can also write

ω ← 1/ω (for amplitude response only)
20The only filter which we discussed so far which was having a zero was the 1-pole highpass.

It has the zero right on the imaginary axis and thus we can’t really say whether it’s minimum
or maximum phase or “something in between”. However later we will encounter some filters
with zeros located off the imaginary axis and in some cases the choice between minimum and
maximum phase will become really important.
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Taking the logarithm of both sides gives:

logω ← − logω (for amplitude response only)

Thus, the amplitude response is flipped around ω = 1 in the logarithmic scale.
The LP to HP substitutions also transforms the filter’s poles and zeros by

the same formula:
s′ = 1/s

where we substitute pole and zero positions for s. Clearly this transformation
maps the complex values in the left semiplane to the values in the left semiplane
and the values in the right semiplane to the right semiplane. Thus, the LP to
HP substitution exactly preserves the stability of the filters.

Notice that thereby a zero occuring at s = 0 will be transformed into a zero
at the infinity and vice versa (this is the main example of why we sometimes
need to consider zeros at the infinity). Particularly, the zero at s = ∞ of the
1-pole lowpass filter is transformed into the zero at s = 0 of the 1-pole highpass
filter.

The LP to HP substitution can be performed not only algebraically (on a
transfer function), but also directly on a block diagram, if we allow the usage
of differentiators. Since the differentiator’s transfer function is H(s) = s, re-
placing all integrators by differentiators will effectively perform the 1/s ← s
substitution, which apparently is the same as the s ← 1/s substitution. Shall
the usage of the differentiators be forbidden, it might still be possible to convert
differentiation to the integration by analytical transformations of the equations
expressed by the block diagram.

2.11 Multimode filter

Actually, we can pick up the lowpass and highpass signals simultaneously from
the same structure (Fig. 2.13). This is referred to as a multimode filter.

+ '!&"%#$// •//
∫

// •//
−

OO

//

//x(t) yLP(t)

yHP(t)

Figure 2.13: A 1-pole multimode filter.

It’s easy to observe that yLP(t) + yHP(t) = x(t), that is the input signal is
split by the filter into the lowpass and highpass components. In the transfer
function form this corresponds to

HLP(s) +HHP(s) =
ωc

s+ ωc
+

s

s+ ωc
= 1
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The multimode filter can be used to implement almost any 1st-order stable
differential filter by simply mixing its outputs. Indeed, let

H(s) =
b1s+ b0
s+ a0

where we assume a0 6= 0.21 Letting ωc = a0 we obtain

H(s) =
b1s+ b0
s+ ωc

= b1
s

s+ ωc
+
b0
ωc
· ωc
s+ ωc

= b1HHP(s) +
(
b0
ωc

)
HLP(s)

Thus we simply need to set the filter’s cutoff to a0 and take the sum

y = b1yHP(t) +
(
b0
ωc

)
yLP(t)

as the output signal.
Normally (although not always) we are interested in the filters whose re-

sponses do not change the shape under cutoff variation, but are solely shifted to
the left or to the right in the logarithmic frequency scale. Such modal mixtures
are easiest written in the unit-cutoff form:

H(s) =
b1s+ b0
s+ 1

= b1
s

s+ 1
+ b0

1
s+ 1

where we actually imply

H(s) =
b1(s/ωc) + b0

(s/ωc) + 1

Respectively, the mixing coefficients become independent of the cutoff:

y = b1yHP(t) + b0yLP(t)

Fig. 2.14 illustrates.

+ '!&"%#$// •//
∫

// •//
−

OO
MMMqqq
// + '!&"%#$// //

MMMqqq
//

��
x(t) y(t)

b0

b1

Figure 2.14: Modal mixture with 1-pole multimode filter imple-
menting H(s) = (b1s+ b0)/(s+ 1).

21If a0 = 0, it means that the pole of the filter is exactly at s = 0, which is a rather exotic
situation to begin with. Even then, chances are that b0 = 0 as well, in which case the filter
either reduces to a multiplication by a gain (H(s) = b1) or, if the coefficients vary, we can
take the limiting value of b0/ωc in the respective formulas.
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2.12 Shelving filters

By adding/subtracting the lowpass-filtered signal to/from the unmodified input
signal one can build a low-shelving filter:

y(t) = x(t) +K · yLP(t)

The transfer function of the low-shelving filter is respectively:

H(s) = 1 +K
1

s+ 1

The amplitude response is plotted Fig. 2.15. Typically K ≥ −1. At K = 0 the
signal is unchanged. At K = −1 the filter turns into a highpass.
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Figure 2.15: Amplitude response of a 1-pole low-shelving filter (for
various K).

The high-shelving filter is built in a similar way:

y(t) = x(t) +K · yHP(t)

and
H(s) = 1 +K

s

s+ 1
The amplitude response is plotted Fig. 2.16.

Actually, it would be more convenient to specify with the fact that the
amplitude boost or drop for the “shelf” in decibels. It’s not difficult to realize
that the decibel boost is

GdB = 20 log10(K + 1)

Indeed, e.g. for the low-shelving filter at ω = 0 (that is s = 0) we have22

H(0) = 1 +K

22H(0) = 1 +K is not a fully trivial result here. We have it only because the lowpass filter
doesn’t change the signal’s phase at ω = 0. If instead it had e.g. inverted the phase, then we
would have obtained 1−K here.
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Figure 2.16: Amplitude response of a 1-pole high-shelving filter
(for various K).

We also obtain H(+j∞) = 1 +K for the high-shelving filter.
There is, however, a problem with the shelving filters built this way. Even

though these filters do work as a shelving filters, the definition of the cutoff at
ω = 1 for such filters is not really convenient. Indeed, looking at the amplitude
response graphs in Figs. 2.15 and 2.16 we would rather wish to have the cutoff
point positioned exactly at the middle of the respective slopes. A solution to
this problem will be described in Chapter 10.

2.13 Allpass filter

The ideas explained in the discussion of the minimum and maximum phase
properties of a filter can be used to construct an allpass flter. Since in this
chapter our focus is on 1-poles, we will construct a 1-pole allpass but the same
approach generalizes to an allpass of an arbitrary order.

Starting with an identity 1-pole transfer function

H(s) =
s+ 1
s+ 1

≡ 1

and noticing that this is a minimum phase filter, let’s flip its zero symmetrically
with respect to the imaginary axis, thereby turning it into a maximum phase
filter:

H(s) =
s− 1
s+ 1

(2.11)

As we discussed before, such change can’t affect the amplitude response of the
filter and thus

|H(jω)| =
∣∣∣∣jω − 1
jω + 1

∣∣∣∣ ≡ 1

On the other hand the phase response has changed from argH(jω) ≡ 0 to some
decreasing function of ω (Fig. 2.17).
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ω
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ωcωc/8 8ωc

π/2

0
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Figure 2.17: Phase response of the 1-pole allpass filter (2.11).

The filters whose purpose is to affect only the phase of the signal, not touch-
ing the amplitude part at all, are referred to as allpass filters.23 Obviously,
(2.11) is a 1-pole allpass. However it’s not the only possible one.

Apparently, multiplying a transfer function by −1 doesn’t change the am-
plitude response. Therefore, multiplying the right-hand side of (2.11) by −1 we
obtain another 1-pole allpass.

H(s) =
1− s
1 + s

(2.12)

This one differs from the one in (2.11) by the fact that the phase response
of (2.12) is changing from 0 to −π (Fig. 2.18) whereas the phase of (2.11) is
changing from +π/2 to −π/2. Often it’s more convenient, if the allpass filter’s
phase response starts at zero, which could be a reason for preferring (2.12) over
(2.11).

ω

argH(jω)

ωcωc/8 8ωc

0

−π/2

−π

Figure 2.18: Phase response of the 1-pole allpass filter (2.12).

23The most common VA use for the allpass filters is probably in phasers.
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Notably, the phase response of the allpass (2.12) (Fig. 2.18) is the doubled
phase response of the 1-pole lowpass (Fig. 2.7). It is easy to realize that the
reason for this is that the numerator (1−s) contributes exactly the same amount
to the phase response as the denominator (1 + s):

arg
1− jω
1 + jω

= arg(1− jω)−arg(1+ jω) = −2 arg(1+ jω) = −2 arctanω (2.13)

where the symmetry of the phase response in Fig. 2.18 is due to (2.9).
Noticing that

H(s) =
1− s
1 + s

=
1

1 + s
− s

1 + s
= HLP(s)−HHP(s)

we find that the allpass (2.12) can be obtained by simply subtracting the high-
pass output from the lowpass output of the multimode filter, the opposite order
of subtraction creating the (2.11) allpass.

As mentioned earlier, the same approach can in principle be used to construct
arbitrary allpasses. Starting with a stable filter

H(s) =

N∏
n=1

(s− pn)

N∏
n=1

(s− pn)

≡ 1

we flip all zeros over to the right complex semiplane, turning H(s) into a max-
imum phase filter:

H(s) =

N∏
n=1

(s+ p∗n)

N∏
n=1

(s− pn)

where we might invert the result to make sure that H(0) = 1

H(s) = (−1)N ·

N∏
n=1

(s+ p∗n)

N∏
n=1

(s− pn)

In practice, however, high order allpasses are often created by simply connecting
several of 1- and 2-pole allpasses in series.

2.14 Transposed multimode filter

We could apply the transposition to the block diagram in Fig. 2.13. The trans-
position process is defined as reverting the direction of all signal flow, where
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forks turn into summators and vice versa (Fig. 2.19).24 The transposition keeps
the transfer function relationship within each pair of an input and an output
(where the input becomes the output and vice versa). Thus in Fig. 2.19 we have
a lowpass and a highpass input and a single output.

•oo + '!&"%#$oo
∫

oo + '!&"%#$oo OO
−

�� ooy(t) xLP(t)

xHP(t)

Figure 2.19: A 1-pole transposed multimode filter.

Looking carefully at Fig. 2.19 we would notice that the lowpass part of the
structure is fully identical to the non-transposed lowpass. The highpass part
differs solely by the relative order of the signal inversion and the integrator in the
feedback loop. It might seem therefore that the ability to accept multiple inputs
with different corresponding transfer functions is the only essential difference of
the transposed filter from the non-transposed one.

This is not fully true, if time-varying usage of the filter is concerned. Note
that if the modal mixture is involved, the gains corresponding to the transfer
function numerator coefficients will precede the filter (Fig. 2.20). Thus, if the
mixing coefficients vary with time, the coefficient variations will be smoothed
down by the filter (especially the lowpass coefficient, but also to an extent the
highpass one), in a similar way to how the cutoff placement prior to the inte-
grator helps to smooth down cutoff variations. Compare Fig. 2.20 to Fig. 2.14.

•//
MMMqqq
// + '!&"%#$//

∫
// + '!&"%#$// •//

−
OO //

MMMqqq
//

��
x(t) y(t)

b0

b1

Figure 2.20: 1-pole transposed multimode filter implementing
H(s) = (b1s+ b0)/(s+ 1).

One particularly useful case of the transposed 1-pole’s multi-input feature, is
feedback shaping. Imagine we are mixing an input signal xin(t) with a feedback
signal xfbk(t), and we wish to filter each one of those by a 1-pole filter, and the
cutoffs of these 1-pole filters are identical. That is, the transfer functions of those
filters share a common denominator. Then we could use a single transposed 1-

24The inverting input of the summator in the transposed version was obtained from the
respective inverting input of the summator in the non-transposed version as follows. First the
inverting input is replaced by an explicit inverting gain element (gain factor −1), then the
transposition is performed, then the inverting gain is merged into the new summator.
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pole multimode filter as in Fig. 2.21. The mixing coefficients A, B, C and D
define the numerators of the respective two transfer functions.

TMMF

+ '!&"%#$ //

+ '!&"%#$ //

MMMqqq
//• ////

MMMqqq
////
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•
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xin(t)

y(t)

xfbk(t)

LP

HP

A

B

C D

Figure 2.21: A transposed multimode filter (TMMF) used for feed-
back signal mixing.

2.15 Transient response

For a 1-pole filter it is not difficult to obtain an explicit expression for the filter’s
output, given the filter’s input. Indeed, let’s rewrite (2.2) in terms of ωc:

ẏ(t) = ωc · (x(t)− y(t))

We can further express ωc in terms of the system pole p = −ωc:

ẏ = p · (y − x) (2.14)

Writing the system equation in terms of the pole will prove to be useful, when
we reuse the results obtained in this section in later chapters of the book.

Rewriting (2.14) in a slightly different way we obtain

ẏ − py = −px (2.15)

Multiplying both sides by e−pt:

e−ptẏ − pe−pty = −pe−ptx

and noticing that the left-hand size is a derivative of e−pty(t) we have

d
dt

(e−pty) = −pe−ptx

Integrating both sides from 0 to t with respect to t:

e−pty(t)− y(0) = −p
∫ t

0

e−pτx(τ) dτ
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e−pty(t) = y(0)− p
∫ t

0

e−pτx(τ) dτ

Multiplying both sides by ept:

y(t) = y(0)ept − p
∫ t

0

ep(t−τ)x(τ) dτ (2.16)

we obtain a formula which allows us to explicitly compute the filter’s output,
knowing the filter’s input and initial state.

Now suppose x(t) = X(s)est. Then (2.16) implies

y(t) = y(0)ept − peptX(s)
∫ t

0

e(s−p)τ dτ =

= y(0)ept − peptX(s) · e
(s−p)τ

s− p

∣∣∣∣t
τ=0

=

= y(0)ept − peptX(s) · e
(s−p)t − 1
s− p

=

=
(
y(0)− −p

s− p
X(s)

)
ept +

−p
s− p

X(s)est =

= (y(0)−H(s)X(s)) ept +H(s)X(s)est =

=
(
y(0)−H(s)x(0)

)
ept +H(s)x(t) =

= H(s)x(t) +
(
y(0)−H(s)x(0)

)
ept (2.17)

where
H(s) =

−p
s− p

=
ωc

s+ ωc

is the filter’s transfer function.
Now look at the last expression of (2.17). The first term corresponds to

(2.6). This is the output of the filter which we would expect according to our
previous discussion. The second term looks new, but, since normally p < 0, this
term is exponentially decaying with time. Thus at some moment the second
term becomes negligible and only the first term remains. We say that the filter
has entered a steady state and refer to H(s)x(t) as the steady-state response of
the filter (for the complex exponential input signal x(t) = X(s)est). The other
term, which is exponentially decaying and exists only for a certain period of
time is called the transient response.

Now we would like to analyse the general case, when the input signal is a
sum of such exponential signals:

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

First, assuming y(0) = 0 and using the linearity of (2.16), we apply (2.17)
independently to each partial X(s)est of x(t), obtaining

y(t) =
∫
H(s)X(s)est

ds
2πj
− ept

∫
H(s)X(s)

ds
2πj

(2.18)

Again, the first term corresponds to (2.6) and is the steady-state response.
Respectively, the second term, which is exponentially decaying (notice that the
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integral in the second term is simply a constant, not changing with t), is the
transient response.

Comparing (2.18) to (2.16) we can realize that the difference between y(0) =
0 and y(0) 6= 0 is simply the addition of the term y(0)ept. Thus we simply add
the missing term to (2.18) obtaining

y(t) =
∫
H(s)X(s)est

ds
2πj

+
(
y(0)−

∫
H(s)X(s)

ds
2πj

)
· ept =

= ys(t) + (y(0)− ys(0)) · ept = ys(t) + yt(t) (2.19)

where

ys(t) =
∫
H(s)X(s)est

ds
2πj

(2.20a)

yt(t) = (y(0)− ys(0)) · ept (2.20b)

are the steady-state and transient responses.
Looking at (2.20) we can give the following interpretation to the steady-state

and transient responses. Steady-state response is the “expected” response of the
filter in terms of the spectrum of x(t) and the transfer function H(s), this is the
part of the filter’s output that we have been exclusively dealing with until now
and this is the part that we will continue being interested in most of the time.
Particularly, this is the part of the filter’s output for which the terms amplitude
and phase response are making sense. However, at the initial time moment the
filter’s output will usually not match the expected response (y(0) 6= ys(0)), since
the initial filter state may be arbitrary. Even if y(0) = 0, we still usually have
ys(0) 6= 0. But the integrator’s state cannot change abruptly25 and therefore
there will be a difference between the actual and “expected” outputs. This
difference however decays exponentially as ept. This exponentially decaying
part, caused by a discrepancy between the “expected” output and the actual
state of the filter is the transient response (Fig. 2.22).

The origin of the term “steady-state response” should be obvious by now.
As for the term “transient response” things might be a bit more subtle, but
actually it’s also quite simple.

Suppose the input of the filter is receiving a steady signal, e.g. a periodic
wave and suppose the filter has entered the steady state by t = t0 (meaning
that the transient response became negligibly small). Suppose that at t = t0 a
transient occurs in the input signal: the filter’s input suddenly changes to some
other steady signal, e.g. it has a new waveform, or amplitude, or frequency, or
all of that. This means that at this moment the definition of the steady state
also changes and the filter’s output does no longer match the “expected” signal.
Thus, at t = t0 we suddenly have ys(t) 6= y(t) and a decaying transient response
impulse is generated. The transient response turns a sudden jump, which would
have occured in the filter’s output due to the switching of the input signal, into
a continuous exponential “crossfade”.

25Assuming the input signal is finite. In theoretical filter analysis sometimes infinitely large
input signals (most commonly x(t) = δ(t)) are used. In such cases the filter state may change
abruptly (and this is the whole purposes of using input signals such as δ(t).
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y(0)−ys(0)

t

yt(t)

0

Figure 2.22: Transient response of a 1-pole lowpass filter (dashed
line depicts the unstable case).

Highpass transient response

For a highpass, since yHP(t) = x(t)−yLP(t) = x(t)−y, equation (2.19) converts
into

yHP(t) = x(t)− (ys(t) + yt(t)) = (x(t)− ys(t))− y(t) = yHPs(t) + yHPt(t)

where the highpass steady-state response is

yHPs(t) = x(t)− ys(t) = x(t)−
∫
H(s)X(s)est

ds
2πj

=

=
∫
X(s)est

ds
2πj
−
∫
H(s)X(s)est

ds
2πj

=

=
∫

(1−H(s))X(s)est
ds
2πj

=
∫
HHP(s)X(s)est

ds
2πj

and the highpass transient response is

yHPt(t) = −yt(t) = − (y(0)− ys(0)) · ept =

= ((x(t)− y(0))− (x(t)− ys(0))) · ept = (yHP(0)− yHPs(0)) · ept

That is we are having the same kind of exponentially decaying discrepancy
between the output signal and the steady-state signal, where the exponent ept

itself is identical to the one in the lowpass transient response.

Poles and stability

At this point we could get a first hint at the mechanism behind the relationship
between the filter poles and filter stability. The transient response of the 1-pole
filter decays as ept (this means it it takes longer time to reach a steady state
at lower cutoffs). However, if p > 0, the transient response doesn’t decay, but
instead infinitely grows with time (as shown by the dashed line in Fig. 2.22),
and we say that the filter “explodes”.
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At p = 0 the 1-pole lowpass filter doesn’t explode, but stays at the same
value (since p = 0 implies ẏ = 0 for this filter), corresponding to the marginally
stable case. But this actually happens because of the specific form of the transfer
function we are using: H(s) = −p/(s− p). Thus, p = 0 simultaneously implies
a zero total gain, which prevents the explosion.

However, in a more general case, a marginally stable 1-pole filter can explode.
We are going to discuss this using Jordan 1-poles.

Steady state

The steady-state response is actually not a precisely defined concept, as it has
a subjective element. A bit earler we have been analysing the situation of an
abrupt change of the input signal causing a discrepancy between the steady-
state response and the actual output signal, this discrepancy being responsible
for the appearance of the transient response term. However we don’t have to
understand this case as an abrupt change of the input signal. Instead we could
consider the input signal over the entire time duration as a whole incorporating
the abrupt change as an integral part of the signal. E.g. instead of considering
the input signal changing from sin t to 2 sin(4t+ 1) at some moment t = t0, we
would formally consider a non-periodic signal x(t) defined as

x(t) =

{
sin t if t < t0

2 sin(4t+ 1) if t ≥ t0

In that sense there would be just some non-periodic input signal x(t) which
doesn’t change to some other input signal. Then we would have a different
definition of the signal’s spectrum, the spectrum being constant all the time,
rather than suddenly changing at t = t0, which would mean there is no transient
at t = t0. Thus we would also be having a different definition of the steady
state response, which wouldn’t have a discrepancy with the filter’s output signal
at t = t0 either. Therefore there wouldn’t be a transient response impulse
appearing at t = t0. Thus, the definition of the input signal has a subjective
element, which results in the same subjectivity of the definition of the steady-
state response signal.

The formal definition of the steady-state response is the formula (2.20a).
Careful readers who are also familiar with Laplace transform theory might be
by now asking themselves the question, whether the multiplication of X(s) by
H(s) has any effect on the region of convergence and, if yes, what are the
implications of this effect. Surprisingly, this question has a connection to the
subjectivity of the steady-state response.

The thing is that due to the subjectivity of the steady-state response, we
don’t care too much about what the Laplace integral in (2.20a) converges to.
Most importantly, it does converge. And normally it will converge for any Re s
(with some additional care being taken in evaluation of (2.20a) if the integration
path Re s = const contains some poles). It’s just that as we horizontally shift
the integration path Re s = const, and this path is thereby traversing through
the poles of H(s)X(s), the integral (2.20a) will converge to some other function,
but it will converge nevertheless. In fact we even cannot say what the Laplace
transform’s region of convergence for (2.20a) is. We could say what the region
of convergence is for X(s), since we have the original signal x(t), but we cannot
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say what is the region of convergence for H(s)X(s), since its original signal
would be ys(t) and we don’t have an exact definition of the latter.

Therefore we actually could choose which of the different resulting signals
delivered by (2.20a) (for different choices of the “region of convergence” of
H(s)X(s)) to take as the steady-state response. For one, we probably shouldn’t
go outside of the region of convergence of X(s), since otherwise we would have
a different input signal and the result would be simply wrong. However, other
than that we have total freedom. Given that all poles (or actually, the only pole,
since so far H(s) is a 1-pole) of H(s) are located to the left of the imaginary axis
(which is the case for the stable filter), it probably makes most sense to choose
the range of Re s containing the imaginary axis as the region of convergence of
H(s)X(s), because H(s) evaluated on the imaginary axis gives the amplitude
and phase responses and thus the steady-state response definition will be in
agreement with amplitude and phase responses.

What shall we do, however, if Re p > 0 (where p is the pole of H(s)), that
is H(s) is unstable? First, let’s notice that as we change the integration path
in (2.20a) from Re s < p to Re s > p the integral (2.20a) changes exactly by the
residue of H(s)X(s)est at s = p (it directly follows from the residue theorem).
But this residue is simply

Res
s=p

(
H(s)X(s)est

)
= Res

s=p

(
a

s− p
·X(s)est

)
= aX(p)ept (where a = −p)

Therefore the steady state response ys(t) defined by the integral (2.20a) is chang-
ing by a term of the form aX(p)ept, which is then added to or subtracted from
the transient response to keep the sum y(t) unchanged. But the transient re-
sponse already consists of a similar term, just with a different amplitude. Thus
the change from Re s < p to Re s > p simply changes the transient response’s
amplitude. Therefore, there is not much difference, whether in the unstable case
we evaluate (2.20a) for e.g. Re s = 0 or for some Re s > p. It might therefore
be simply more consistent to always evaluate it for Re s = 0, regardless of the
stability, but, as we just explained, this is not really a must.

Note that thereby, even though amplitude and phase responses make no
sense for unstable filters, the equation (2.20a) still applies, therefore the transfer
function H(s) itself makes total sense regardless of the filter stability.

Jordan 1-pole

For the purposes of theoretical analysis of systems of higher order it is sometimes
helpful to use 1-poles where the input signal is not multiplied by the cutoff −p:

ẏ = py + x (2.21)

(Fig. 2.23). We also allow p to take complex values. Such 1-poles are the
building elements of the state-space diagonal forms and of the so-called Jordan
chains. For that reason we will refer to (2.21) as a Jordan 1-pole.

One could argue that there is not much difference between the 1-pole equa-
tions (2.14) and (2.21) and respectively between Fig. 2.2 and Fig. 2.23, since
one could always represent the Jordan 1-pole via the ordinary 1-pole lowpass
by dividing the input signal of the latter by the cutoff. Also it would be no
problem to allow p to take complex values in (2.14). This approach however
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Figure 2.23: Jordan 1-pole. Note that the integrator is not sup-
posed to internally contain the implicit cutoff gain!

won’t work if p = 0. For that reason, in certain cases it is more conveninent to
use a Jordan 1-pole instead.

Changing from (2.14) to (2.21) effectively takes away the −p coefficient in
front of x from all formulas derived from (2.14). Particularly, (2.16) turns into

y(t) = y(0)ept +
∫ t

0

ep(t−τ)x(τ) dτ (2.22)

and (2.17) turns into

y(t) = y(0)ept + eptX(s)
∫ t

0

e(s−p)τ dτ =

=
(
y(0)− 1

s− p
X(s)

)
ept +

1
s− p

X(s)est (2.23)

where have
ys(t) =

1
s− p

X(s)est = H(s)x(t)

and
H(s) =

1
s− p

From this point on we’ll continue the transient response analysis in terms of
Jordan 1-poles. The results can be always converted to ordinary 1-poles by
multiplying the input signal by −p.

Hitting the pole

Suppose the input signal of the filter is x(t) = X(p)ept (where X(p) is the com-
plex amplitude). In this case (2.23) cannot be applied, because the denominator
s− p turns to zero and we have to compute the result differently. From (2.22)
we obtain

y(t) = y(0)ept +X(p)
∫ t

0

ep(t−τ)epτ dτ = y(0)ept +X(p)tept (2.24)

Now there doesn’t really seem to be a steady-state component in (2.24). The
second term might look a bit like the steady-state response. Clearly it’s not
having the usual steady-state response form H(p)X(p)ept, but that would be
impossible since H(p) = ∞. Not only that, it’s not even proportional to the
input signal (or, more precisely, the proportionality coefficient is equal to t,
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thereby changing with time), thus not really looking like any kind of a steady
state. The first term doesn’t work as a steady-state response either, since it
depends on the initial state of the system.

Since the idea of the steady-state response is, to an extent, subjective, it
means the output which we expect from the system independently of the initial
state, we could formally introduce

ys(t) = X(p)tept

as the steady-state response in this case, thereby further transforming (2.24) as

y(t) = y(0)ept +Xtept = (y(0)− ys(0))ept + ys(t) = yt(t) + ys(t)

The benefit of this choice is that the transient response still consists of a single
ept partial. The other option is letting

ys(t) ≡ 0

which means that (2.24) entirely consists of the transient response.
In either case, the problem is that as s → p in (2.23), the steady-state

response defined by ys(t) = H(s)X(s)est becomes infinitely large and we need
to switch to a different steady-state response definition. Note, that there is
no jump in the output signal y(t), nor does y(t) become infinitely large. The
switching is occuring only in the way how we separate y(t) into steady-state and
transient parts.

We could further illustrate what is going on by a detailed evaluation of (2.23)
at s→ p. The part which needs special attention is the integral of e(s−p)τ :

lim
s→p

∫ t

0

e(s−p)τ dτ = lim
s→p

e(s−p)τ

s− p

∣∣∣∣t
τ=0

= lim
s→p

e(s−p)t − 1
s− p

= t

and thus y(t) = y(0)ept +X(p)tept, which matches our previous result.

In the particular case of p = 0 the equation (2.24) turns into

y(t) = y(0) +X(0)t

thus the marginally stable system to which Fig. 2.23 turns at p = 0 explodes if
s = 0, that is if x(t) is constant.26

Jordan chains

Fur the purposes of further analysis of transient responses of systems of higher
orders it will be instructive to analyse the transient response generated by serial
chains of identical Jordan 1-poles, referred to as Jordan chains (Fig. 2.24).

Given a complex exponential input signal x(t) = X(s)est, the output of the
first 1-pole will have the form

y1(t) = ys1(t) + yt1(t) = H1(s)X(s)est + (y1(0)−H1(s)X(s))ept

where
H1(s) =

1
s− p

26It’s easy to see that this system is simply an integrator.
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Figure 2.24: Jordan chain

The output of the second 1-pole will be therefore

y2(t) = H2
1 (s)X(s)est + (y1(0)−H1(s)X(s))tept + (y2(0)−H2

1 (s)X(s))ept

where we have used (2.23) and (2.24).
Before we obtain the output of the further 1-poles we first need to apply

(2.22) to x(t) = Xtnept yielding

y(t) = y(0)ept +X
tn+1

(n+ 1)!
ept

Then

y3(t) = H3
1 (s)X(s)est + (y1(0)−H1(s)X(s))

t2

2
ept+

+ (y2(0)−H2
1 (s)X(s))tept + (y3(0)−H3

1 (s)X(s))ept

and, continuing in the same fashion, we obtain for the n-th 1-pole:

yn(t) = Hn
1 (s)X(s)est +

n−1∑
ν=0

(yn−ν(0)−Hn−ν
1 (s)X(s))

tν

ν!
ept (2.25)

Apparently the first term Hn
1 (s)X(s)est is the steady-state response whereas

the remaining terms are the transient response. In principle, one could argue,
that treating the remaining terms as transient response can be questioned, since
we have some ambiguity in the definition of the steady-state response of the 1-
poles if their poles are hit by their input signals. However, while this argument
might be valid in respect to individual 1-poles, from the point of view of the
entire Jordan chain all terms tνept/ν! are arising out of the mismatch between
the chain’s internal state and the input signal, therefore we should stick to the
steady-state response definition Hn

1 (s)X(s)est. This also matches the fact that
the transfer function of the entire Jordan chain is HN

1 (s) = 1/(s − p)N , where
N is the number of 1-poles in the chain.

2.16 Cutoff as time scaling

Almost all analysis of the filters which we have done so far applies only to
linear time-invariant filters. In practice, however, filter parameters are often
being modulated. This means that the filters no longer have the time-invariant
property and our analysis does not really apply. In general, the analysis of
time-varying filters is a pretty complicated problem. However, in the specific
(but pretty common) case of cutoff modulation there is actually a way to apply
the results obtained for the time-invariant case.

Imagine a system of an arbitrary order (therefore, containing one or more
integrators). Suppose the cutoff gain elements are always preceding the integra-
tors and suppose all integrators have the same cutoff gain (that is, these gains
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always have the same value, even when modulated). For each such integrator,
given its input signal (which we denote as x(t)), its output signal is defined by

y(t) = y(t0) +
∫ t

t0

ωcx(τ) dτ

If cutoffs are synchronously varying with time, we could reflect this explicitly:

y(t) = y(t0) +
∫ t

t0

ωc(τ)x(τ) dτ (2.26)

We would like to introduce a new time variable τ̃ defined by

dτ̃ = ωc(τ) dτ

and respectively write

y(t) = y(t0) +
∫ t

τ=t0

x(τ) dτ̃(τ)

Under the additional restriction ωc(t) > 0 the function τ̃(τ) becomes monotonic
and we can introduce the warped time t̃:

dt̃ = ωc(t) dt

that is
t̃ =

∫
ωc(t)dt (2.27)

E.g. we could take

t̃ =
∫ t

0

ωc(τ)dτ

If we further restrict ωc(t) to be bounded to a positive finite range:

0 < ωmin ≤ ωc(t) ≤ ωmax < +∞ (2.28)

(which is a fairly reasonable restriction on the cutoff), the monotonic function
t̃(t) will provide a 1:1 mapping between t ∈ (−∞,+∞) and t̃ ∈ (−∞,+∞). We
can therefore reexpress the signals x(t) and y(t) in terms of t̃, obtaining some
functions x̃

(
t̃
)

and ỹ
(
t̃
)
, and ultimately

ỹ
(
t̃
)

= ỹ
(
t̃0
)

+
∫ t̃

t̃0

x̃(τ̃) dτ̃ (2.29)

This means that the variation of ωc can be equivalently represented as warping
of the time axis, the cutoff gains in the warped time scale having a constant
unity value.27

In principle the restriction (2.28) can be relaxed to simply ωc(t) ≥ 0, thereby
allowing ωc to become zero or to infinitely grow. This somewhat complicates
the reasoning about the warped time t̃. E.g. if ωc(t) = 0 over a prolonged
period of time, then we need to compress the respective time range of x(t) into
a zero-length time range of x̃(t̃), essentially simply throwing out the respective
part of the signal. However, practically a zero cutoff simply means that the
system state is frozen. On the other hand, an infinitely growing cutoff is nothing
special, unless the cutoff grows to infinity over a finite time range, which is quite
an artificial situation, so we will simply ignore this theoretical possibility.

27Instead of unit cutoff we can have any other positive value, by simply linearly stretching
the time axis in addition to the warping t̃(t).
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Equivalent topologies

The fact that cutoff modulation can be equivalently represented as warping of
the time scale has several implications of high importance. One implication has
to do with equivalence of systems with different topologies.

The term topology in this context simply refers to the components used
in the system’s block diagram and the way they are connected to each other.
Often, the reason we would want to talk about the topology would be to put
it against the idea of the transfer function. More specifically: there can be
systems with different topologies implementing the same transfer function. We
have already seen the example of that: there is an ordinary 1-pole multimode
and a transposed 1-pole multimode, which both can be used to implement one
and the same transfer function.

According to our previous discussion, systems having identical transfer func-
tions will behave identically (at least in the absence of the transient response
arising out of a non-zero initial state of the system). However, all of our anal-
ysis of system behavior, including the transient response, was done under the
assumption of time-invariance. This assumption is actually critical: for a time-
varying system the situation is more complicated and two systems may behave
differently even if they share the same transfer function.28 We had a brief ex-
ample of that in Section 2.7 where we compared different positionings of the
cutoff gain relative to the integrator.

However (2.29) means that if the cutoff modulation is compliant to (2.26)
(pre-integrator cutoff gain) and if the only time-varying aspect of the system
is the cutoff modulation, the systems will behave identically. Indeed, we could
use one and the same time-warping (2.27) for both of the systems, thus, if they
are identically behaving in the original time-invariant case, so will they in the
time-warped case.

This question will be addressed once again from a slightly more detailed
point in Section 7.12.

Time-varying stability

A further implication of (2.29) is the fact that the stability of a system cannot
be destroyed by the cutoff modulation. This is true for an arbitrary system,
given all cutoff gains are preceding the integrators and are having equal values
all the time. Indeed, the warping of the time axis (2.27) can’t affect the BIBO
property of the signals x(t) and y(t), thus stability is unaffected by the time
warping.29

28Of course, strictly speaking time-varying systems do not have a transfer function. But it
is intuitive to use the idea of a “time-varying transfer function”, understood as the transfer
function which is formally evaluated pretending the system’s parameters are fixed at each
time moment. E.g. if we have a 1-pole lowpass with a varying cutoff ωc(t), we would say that
its transfer function at each time moment is H(s) = ωc(t)/(ωc(t) + s). Of course, this is not
a true transfer function in the normal sense. Particularly, for an exponential input est the
filter’s output is not equal to y(t) = H(s, t)est.

29Note that this applies only to the idealized continuous-time systems. After conversion to
discrete time the same argument will not automatically hold and the stability of the resulting
discrete time system will need to be proven again. However, it is not unreasonable to expect,
given a discretization method which preserves time-invariant stability, that it will also at least
approximately preserve the time-varying stability.
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For the 1-pole filter, however, the time-varying stability can be checked in a
much simpler manner. As we should remember, the output signal equation for
a 1-pole lowpass, written in the differential form is

ẏ = ωc(t)(x− y)

This means that, as long as ωc > 0, the value of y always “moves in the direction
towards the input signal” (or it doesn’t move, if ωc = 0). In this case, clearly,
the absolute value of y can’t exceed the maximum of the absolute value of x.30

On the contrary, imagine ωc < 0, x(t) = 0 and y(t) 6= 0 (let’s say x(t) was
nonzero for a while and then we switched it off, leaving y(t) at a nonzero value).
The differential equation turns into ẏ = −ωcy = |ωc| · y, which clearly produces
an indefinitely growing y(t).

The 1-pole highpass filter’s output is simply x(t) − y(t) (where y(t) is the
lowpass signal), therefore the highpass filter is stable if and only if the lowpass
filter is stable.

We have seen that cutoff is a very special filter parameter, such that its mod-
ulation can’t destroy the filter’s stability (provided some reasonable conditions
are met). There are also some trivial cases, when the modulated parameters
are not a part of a feedback loop, such as e.g. the mixing gain of a shelving
filter. Apparently, such parameters when being varied can’t destroy the filter’s
stability as well. With the filter types which we introduce later in this book
there will be other parameters within feedback loops which in principle can be
modulated. Unfortunately, for the modulation of such other parameters there
is no simple answer (although sometimes the stability can be proven by some
means). Respectively there is no easy general criterion for time-varying filter
stability as there is for the time-invariant case. Often, we simply hope that
the modulation of the filter parameters does not make the (otherwise stable)
filter unstable. This is not simply a theoretical statement, on the contrary, such
cases, where the modulation destabilizes a filter, do occur in practice.

SUMMARY

The analog 1-pole filter implementations are built around the idea of the mul-
timode 1-pole filter in Fig. 2.13. The transfer functions of the lowpass and
highpass 1-pole filters are

HLP(s) =
ωc

s+ ωc

and
HHP(s) =

s

s+ ωc

respectively. Other 1-pole filter types can be built by combining the lowpass
and the highpass signals.

30If ωc = 0 then y(t) doesn’t change. This is the marginally stable case. Particularly, even
if x(t) = 0, the output y(t) will stay at whatever value it is, rather than decaying towards the
zero.
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Chapter 3

Time-discretization

Now that we have introduced the basic ideas of analog filter analysis, we will
develop an approach to convert analog filter models to the discrete time.

3.1 Discrete-time signals

The discussion of the basic concepts of discrete-time signal representation and
processing is outside the scope of this book. We are assuming that the reader
is familiar with the basic concepts of discrete-time signal processing, such as
sampling, sampling rate, sampling period, Nyquist frequency, analog-to-digital
and digital-to-analog signal conversion. However we are going to make some
remarks in this respect.

As many other texts do, we will use the square bracket notation to denote
discrete-time signals and round parentheses notation to denote continuous-time
signals: e.g. x[n] and x(t).

We will often assume a unit sampling rate fs = 1 (and, respectively, a unit
sampling period T = 1), which puts the Nyquist frequency at 1/2, or, in the
circular frequency terms, at π. Apparently, this can be achieved simply by a
corresponding choice of time units.

Theoretical DSP texts typically state that discrete-time signals have periodic
frequency spectra. This might be convenient for certain aspects of theoretical
analysis such as analog-to-digital and digital-to-analog signal conversion, but it’s
highly unintuitive otherwise. It would be more intuitive, whenever talking of a
discrete-time signal, to imagine an ideal DAC connected to this signal, and think
that the discrete-time signal represents the respective continuous-time signal
produced by such DAC. Especially, since by sampling this continuous-time sig-
nal we obtain the original discrete-time signal again. So the DAC and ADC con-
versions are exact inverses of each other (in this case). Now, the continuous-time
signal produced by such DAC doesn’t contain any partials above the Nyquist
frequency. Thus, its Fourier integral representation (assuming T = 1) is

x[n] =
∫ π

−π
X(ω)ejωn

dω
2π

45
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and its Laplace integral representation is

x[n] =
∫ σ+jπ

σ−jπ
X(s)esn

ds
2πj

Introducing notation z = es and noticing that

ds = d(log z) =
dz
z

we can rewrite the Laplace integral as

x[n] =
∮
X(z)zn

dz
2πjz

(where X(z) is apparently a different function than X(s)) where the integration
is done counterclockwise along a circle of radius eσ centered at the complex
plane’s origin:1

z = es = eσ+jω = eσ · ejω (−π ≤ ω ≤ π) (3.1)

We will refer the representation (3.1) as the z-integral.2 The function X(z) is
referred to as the z-transform of x[n].

In case of non-unit sampling period T 6= 1 the formulas are the same, except
that the frequency-related parameters get multiplied by T (or divided by fs), or
equivalently, the n index gets multiplied by T in continuous-time expressions:3

x[n] =
∫ πfs

−πfs
X(ω)ejωTn

dω
2π

x[n] =
∫ σ+jπfs

σ−jπfs
X(s)esTn

ds
2πj

z = esT

x[n] =
∮
X(z)zn

dz
2πjz

(z = eσ+jωT , −πfs ≤ ω ≤ πfs)

The notation zn is commonly used for discrete-time complex exponential
signals. A continuous-time signal x(t) = est is written as x[n] = zn in discrete-
time, where z = esT . The Laplace-integral amplitude coefficient X(s) in X(s)est

then may be replaced by a z-integral amplitude coefficient X(z) such as in
X(z)zn.

1As with Laplace transform, sometimes there are no restrictions on the radius eσ of the
circle, sometimes there are.

2A more common term for (3.1) is the inverse z-transform, but we will prefer the z-integral
term for the same reason as with Fourier and Laplace integrals.

3Formally the σ parameter of the Laplace integral (and z-integral) should have been mul-
tiplied by T as well, but it doesn’t matter, since this parameter is chosen rather arbitrarily.
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3.2 Naive integration

The most “interesting” element of analog filter block diagrams is obviously the
integrator. The time-discretization for other elements is trivial, so we should
concentrate on building the discrete-time models of the analog integrator.

The continuous-time integrator equation is

y(t) = y(t0) +
∫ t

t0

x(τ) dτ

In discrete time we could approximate the integration by a summation of the
input samples. Assuming for simplicity T = 1, we could have implemented a
discrete-time integrator as

y[n] = y[n0 − 1] +
n∑

ν=n0

x[ν]

We will refer to the above as the naive digital integrator.
A pseudocode routine for this integrator could simply consist of an accumu-

lating assignment:

// perform one sample tick of the integrator
integrator_output := integrator_output + integrator_input;

It takes the current state of the integrator stored in the integrator output vari-
able and adds the current sample’s value of the integrator input on top of that.

In case of a non-unit sampling period T 6= 1 we have to multiply the accu-
mulated input values by T :4

// perform one sample tick of the integrator
integrator_output := integrator_output + integrator_input*T;

3.3 Naive lowpass filter

We could further apply this “naive” approach to construct a discrete-time model
of the lowpass filter in Fig. 2.2. We will use the naive integrator as a basis for
this model.5

Let the x variable contain the current input sample of the filter. Consid-
ering that the output of the filter in Fig. 2.2 coincides with the output of the
integrator, let the y variable contain the integrator state and simultaneously
serve as the output sample. As we begin to process the next input sample, the

4Alternatively, we could, of course, scale the integrator’s output by T , but this is less
useful in practice, because the T factor will be usually combined with the cutoff gain factor
ωc preceding the integrator.

5Based on the fact that the naive integration introduced above is identical to Euler
backward-difference integration, there is an opinion that the naive approach (loosely defined
as “take whatever values we have now at the integrator inputs and apply a single naive inte-
gration step to those”) is identical to the Euler method. This is not 100% so. The readers are
encouraged to formally apply backward- and forward-difference Euler methods to ẏ = ωc(y−x)
to convince themselves that there are some differences. Particularly, the backward-difference
method is implicit (requires solving an equation), while the forward-difference method pro-
duces the “future” value of the output. For more complicated systems the differences could
be more drastic, although the author didn’t explicitly verify that.
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y variable will contain the previous output value. At the end of the processing
of the sample (by the filter model) the y variable will contain the new output
sample. In this setup, the input value for the integrator is apparently (x−y)ωc,
thus we simply have

// perform one sample tick of the lowpass filter
y := y + (x-y)*omega_c;

(mind that ωc must have been scaled to the time units corresponding to the
unit sample period!)

A naive discrete-time model of the multimode filter in Fig. 2.13 could have
been implemented as:

// perform one sample tick of the multimode filter
hp := x-lp;
lp := lp + hp*omega_c;

where the integrator state is stored in the lp variable.
The above naive implementations (and any other similar naive implemen-

tations, for that matter) work reasonably well as long as ωc � 1, that is the
cutoff must be much lower than the sampling rate. At larger ωc the behavior
of the filter becomes rather strange, ultimately the filter gets unstable. We will
now develop some theoretical means to analyse the behavior of the discrete-time
filter models, figure out what are the problems with the naive implementations,
and then introduce another discretization approach.

3.4 Block diagrams

Let’s express the naive discrete-time integrator in the form of a discrete-time
block diagram. The discrete-time block diagrams are constructed from the same
elements as continuous-time block diagrams, except that instead of integrators
they have unit delays. A unit delay simply delays the signal by one sample.
That is the output of a unit delay comes “one sample late” compared to the
input. Apparently, the implementation of a unit delay requires a variable, which
will be used to store the new incoming value and keep it there until the next
sample. Thus, a unit delay element has a state, while the other block diagram
elements are obviously stateless. This makes the unit delays in a way similar to
the integrators in the analog block diagrams, where the integrators are the only
elements with a state.

A unit delay element in a block diagram is denoted as:

z−1// //

The reason for the notation z−1 will be explained a little bit later. Using a unit
delay, we can create a block diagram for our naive integrator (Fig. 3.1). For an
arbitrary sampling period we obtain the structure in Fig. 3.2. For an integrator
with embedded cutoff gain we can combine the ωc gain element with the T gain
element (Fig. 3.3). Notice that the integrator thereby becomes invariant to the
choice of the time units, since ωcT is invariant to this choice.

Now let’s construct the block diagram of the naive 1-pole lowpass filter.
Recalling the implementation routine:
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+ '!&"%#$// •//

z−1 oo

OO //x[n] y[n]

Figure 3.1: Naive integrator for T = 1.

MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]
T

Figure 3.2: Naive integrator for arbitrary T .

MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]
ωcT

Figure 3.3: Naive integrator with embedded cutoff.

// perform one sample tick of the lowpass filter
y := y + (x-y)*omega_c;

we obtain the diagram in Fig. 3.4. The z−1 element in the feedback from the
filter’s output to the leftmost summator is occurring due to the fact that we are
picking up the previous value of y in the routine when computing the difference
x− y.

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO •//

z−1 oo

−
OO //

_______________

�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�
�

x[n] y[n]
ωcT

Figure 3.4: Naive 1-pole lowpass filter (the dashed line denotes the
integrator).
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This unit delay occurring in the discrete-time feedback is a common problem
in discrete-time implementations. This problem is solvable, however it doesn’t
make too much sense to solve it for the naive integrator-based models, as the
increased complexity doesn’t justify the improvement in sound. We will address
the problem of the zero-delay discrete-time feedback later, for now we’ll con-
centrate on the naive model in Fig. 3.4. This model can be simplified a bit, by
combining the two z−1 elements into one (Fig. 3.5), so that the block diagram
explicitly contains a single state variable (as does its pseudocode counterpart).

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1

•��

OO
−

OO //

___________

�
�
�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�
�
�
�
�
�

x[n] y[n]
ωcT

Figure 3.5: Naive 1-pole lowpass filter with just one z−1 element
(the dashed line denotes the integrator).

3.5 Transfer function

Let x[n] and y[n] be respectively the input and the output signals of a unit
delay:

z−1// //x[n] y[n]

For a complex exponential input x[n] = esn = zn we obtain

y[n] = es(n−1) = esne−s = znz−1 = z−1x[n]

That is
y[n] = z−1x[n]

That is, z−1 is the transfer function of the unit delay! It is common to express
discrete-time transfer functions as functions of z rather than functions of s. The
reason is that in this case the transfer functions are nonstrictly proper6 rational
functions, similarly to the continuous-time case, which is pretty convenient. So,
for a unit delay we could write H(z) = z−1.

Now we can obtain the transfer function of the naive integrator in Fig. 3.1.
Suppose7 x[n] = X(z)zn and y[n] = Y (z)zn, or shortly, x = X(z)zn and

6Under the assumption of causality, which holds if the system is built of unit delays.
7As in continuous-time case, we take for granted the fact that complex exponentials zn are

eigenfunctions of discrete-time linear time-invariant systems.
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y = Y (z)zn. Then the output of the z−1 element is yz−1. The output of the
summator is then x+ yz−1, thus

y = x+ yz−1

from where
y(1− z−1) = x

and
H(z) =

y

x
=

1
1− z−1

This is the transfer function of the naive integrator (for T = 1).
It is relatively common to express discrete-time transfer functions as ratio-

nal functions of z−1 (like the one above) rather than rational functions of z.
However, for the purposes of the analysis it is also often convenient to have
them expressed as rational functions of z (particularly, for finding their poles
and zeros). We can therefore multiply the numerator and the denominator of
the above H(z) by z, obtaining:

H(z) =
z

z − 1

Since z = es, the frequency response is obtained as H(ejω). The amplitude
and phase responses are

∣∣H(ejω)
∣∣ and argH(ejω) respectively.8

For T 6= 1 we obtain
H(z) = T

z

z − 1

and, since z = esT , the frequency response is H(ejωT ).

Now let’s obtain the transfer function of the naive 1-pole lowpass filter in
Fig. 3.5, where, for the simplicity of notation, we assume T = 1. Assuming
complex exponentials x = X(z)zn and y = Y (z)zn we have x and yz−1 as
the inputs of the first summator. Respectively the integrator’s input is ωc(x−
yz−1). And the integrator output is the sum of yz−1 and the integrator’s input.
Therefore

y = yz−1 + ωc(x− yz−1)

From where (
1− (1− ωc)z−1

)
y = ωcx

and
H(z) =

y

x
=

ωc
1− (1− ωc)z−1

=
ωcz

z − (1− ωc)
The transfer function for T 6= 1 can be obtained by simply replacing ωc by ωcT .

The respective amplitude response is plotted in Fig. 3.6. Comparing it to
the amplitude response of the analog prototype we can observe serious deviation
closer to the Nyquist frequency. The phase response (Fig. 3.7) has similar
deviation problems.

In principle, the amplitude response deviation can be drastically reduced
by correcting the filter’s cutoff setting. E.g. one could notice that the second

8Another way to look at this is to notice that in order for zn to be a complex sinusoid ejωn

we need to let z = ejω .
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ω

|H(ejω)|,dB

π0.1π0.01π0.001π 0.02π 1 1.2

0

-6

-12

-18

Figure 3.6: Amplitude response of a naive 1-pole lowpass filter for a
number of different cutoffs. Dashed curves represent the respective
analog filter responses for the same cutoffs.

ω

argH(ejω)

π0.1π0.01π0.001π 0.02π 1 1.2

0

−π/4

−π/2

Figure 3.7: Phase response of a naive 1-pole lowpass filter for a
number of different cutoffs. Dashed curves represent the respective
analog filter responses for the same cutoffs.

of the amplitude responses in Fig. 3.6 is occurring a bit too far to the right,
compared to the analog response (which is what we’re aiming at). Therefore
we could achieve a better matching between the two responses by reducing the
cutoff setting of the digital filter by a small amount. Depending on the formal
definition of the response matching, one could derive an analytical expression
for such cutoff correction. There are two main problems with that, though.

One problem is that many other filters, e.g. a 2-pole resonating lowpass, have
more parameters, e.g. not only cutoff but also the resonance, and we potentially
may need to correct all of them, which results in much more involved math.
This problem is not as critical though, and there are some methods utilizing
this approach.

The other problem, though, is the phase response. Looking at Fig. 3.7 it
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seems that no matter how we try to correct the filter’s cutoff, the phase response
will be always zero at Nyquist, whereas we would desire something close to
−π/2. The effects of the deviation of the filter’s phase response are mostly
quite subtle. Therefore it’s somewhat difficult to judge how critical the phase
devations might be.9 However there’s one absolutely objective and major issue
associated with the phase deviations. Attempting to mix outputs of two filters
with some deviations in either or both of the amplitude and phase responses
may easily lead to unexpected and undesired results. For that reason in this
book we will concentrate on a different method which is much more robust in
this respect.

Poles and zeros

Discrete-time block diagrams are differing from continuous-time block diagrams
only by having z−1 elements instead of integrators. Recalling that the transfer
function of an integrator is s−1, we conclude that from the formal point of view
the difference is purely notational.

Now, the transfer functions of continuous-time block diagrams are non-
strictly proper rational functions of s. Respectively, the transfer functions of
discrete-time block diagrams are nonstrictly proper rational functions of z.

Thus, discrete-time transfer functions will have poles and zeros in a way sim-
ilar to continuous-time transfer functions. Similarly to continuous-time transfer
functions, the poles will define the stability of a linear time-invariant filter. Con-
sider that z = esT and recall the stability criterion Re s < 0 (where s = pn,
where pn are the poles). Apparently, Re s < 0 ⇐⇒ |z| < 1. We might there-
fore intuitively expect the discrete-time stability criterion to be |pn| < 1 where
pn are the discrete-time poles. This is indeed the case, a linear time-invariant
difference system10 is stable if and only if all its poles are located inside the
unit circle. We will give more detail about the mechanisms behind this in the
discussion of the discrete-time transient response in Sections 3.12 and 7.13.

3.6 Trapezoidal integration

Instead of naive integration, we could attempt using the trapezoidal integration
method (T = 1):

// perform one sample tick of the integrator
integrator_output := integrator_output +

(integrator_input + previous_integrator_input)/2;
previous_integrator_input := integrator_input;

Notice that now we need two state variables per integrator: integrator output
and previous integrator input. The block diagram of a trapezoidal integrator is
shown in Fig. 3.8. We’ll refer to this integrator as a direct form I trapezoidal
integrator. The reason for this term will be explained later.

9Many engineers seem to believe that the deviations in phase response are quite tolerable
acoustically. The author’s personal preference is to be on the safe side and not take the risks
which are difficult to estimate. At least some caution in this regard would be recommended.

10Difference systems can be defined as those, whose block diagrams consist of gains, sum-
mators and unit delays. More precisely those are causal difference systems. There are also
difference systems with a lookahead into the future, but we don’t consider them in this book.
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•// + '!&"%#$//

z−1//

OO
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //x[n] y[n]

1/2

Figure 3.8: Direct form I trapezoidal integrator (T = 1).

We could also construct a trapezoidal integrator implementation with only
a single state variable. Consider the expression for the trapezoidal integrator’s
output:

y[n] = y[n0 − 1] +
n∑

ν=n0

x[ν − 1] + x[ν]
2

(3.2)

Suppose y[n0−1] = 0 and x[n0−1]=0, corresponding to a zero initial state (recall
that both y[n0 − 1] and x[n0 − 1] are technically stored in the z−1 elements).
Then

y[n] =
n∑

ν=n0

x[ν − 1] + x[ν]
2

=
1
2

(
n∑

ν=n0

x[ν − 1] +
n∑

ν=n0

x[ν]

)
=

=
1
2

(
n∑

ν=n0+1

x[ν − 1] +
n∑

ν=n0

x[ν]

)
=

1
2

(
n−1∑
ν=n0

x[ν] +
n∑

ν=n0

x[ν]

)
=

=
u[n− 1] + u[n]

2

where

u[n] =
n∑

ν=n0

x[ν]

Now notice that u[n] is the output of a naive integrator, whose input signal
is x[n]. At the same time y[n] is the average of the previous and the current
output values of the naive integrator. This can be implemented by the structure
in Fig. 3.9. Similar considerations apply for nonzero initial state. We’ll refer to
the integrator in Fig. 3.9 as a direct form II or canonical trapezoidal integrator.
The reason for this term will be explained later.

We can develop yet another form of the bilinear integrator with a single state
variable. Let’s rewrite (3.2) as

y[n] = y[n0 − 1] +
x[n0 − 1]

2
+

n−1∑
ν=n0

x[ν] +
x[n]

2

and let

u[n− 1] = y[n]− x[n]
2

= y[n0 − 1] +
x[n0 − 1]

2
+

n−1∑
ν=n0

x[ν]
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Figure 3.9: Direct form II (canonical) trapezoidal integrator (T =
1).

Notice that

y[n] = u[n− 1] +
x[n]

2
(3.3a)

and

u[n] = u[n− 1] + x[n] = y[n] +
x[n]

2
(3.3b)

Expressing (3.3a) and (3.3b) in a graphical form, we obtain the structure in
Fig. 3.10. We’ll refer to the integrator in Fig. 3.10 as a transposed direct form
II or transposed canonical trapezoidal integrator. The reason for this term will
be explained later.

MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

1/2

u[n−1]

u[n]

Figure 3.10: Transposed direct form II (transposed canonical)
trapezoidal integrator (T = 1).

The positioning of the 1/2 gain prior to the integrator in Fig. 3.10 is quite
convenient, because we can combine the 1/2 gain with the cutoff gain into a
single gain element. In case of an arbitrary sampling period we could also
include the T factor into the same gain element, thus obtaining the structure in
Fig. 3.11. A similar trick can be performed for the other two integrators, if we
move the 1/2 gain element to the input of the respective integrator. Since the
integrator is a linear time-invariant system, this doesn’t affect the integrator’s
behavior in a slightest way.

Typically one would prefer the direct form II integrators to the direct form I
integrator, because the former have only one state variable. In this book we will
mostly use the transposed direct form II integrator, because this is resulting in
slightly simpler zero-delay feedback equations and also offers a nice possibility
for the internal saturation in the integrator.



56 CHAPTER 3. TIME-DISCRETIZATION

MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

ωcT/2

u[n−1]

u[n]

Figure 3.11: Transposed direct form II (transposed canonical)
trapezoidal integrator with “embedded” cutoff gain.

The transfer functions of all three integrators are identical. Let’s obtain
e.g. the transfer function of the transposed canonical integrator (in Fig. 3.10).
Assuming signals of the exponential form zn, we can drop the index [n], under-
standing it implicity, while the index [n−1] will be replaced by the multiplication
by z−1. Then (3.3) turn into

y = uz−1 +
x

2
u = y +

x

2

Substituting the second equation into the first one we have

y =
(
y +

x

2

)
z−1 +

x

2

yz = y +
x

2
+
x

2
z

y(z − 1) =
x

2
(z + 1)

and the transfer function of the trapezoidal integrator is thus

H(z) =
y

x
=

1
2
· z + 1
z − 1

For an arbitrary T one has to multiply the result by T , to take the respective
gain element into account:

H(z) =
T

2
· z + 1
z − 1

If also the cutoff gain is included, we obtain

H(z) =
ωcT

2
· z + 1
z − 1

One can obtain the same results for the other two integrators.
What is so special about this transfer function, that makes the trapezoidal

integrator so superior to the naive one, is to be discussed next.
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3.7 Bilinear transform

Suppose we take an arbitrary continuous-time block diagram, like the familiar
lowpass filter in Fig. 2.2 and replace all continuous-time integrators by discrete-
time trapezoidal integrators. On the transfer function level, this will correspond
to replacing all s−1 with T

2 ·
z+1
z−1 . That is, technically we perform a substitution

s−1 =
T

2
· z + 1
z − 1

in the transfer function expression.
It would be more convenient to write this substitution explicitly as

s =
2
T
· z − 1
z + 1

(3.4)

The substitution (3.4) is referred to as the bilinear transform, or shortly BLT.
For that reason we can also refer to trapezoidal integrators as BLT integrators.
Let’s figure out, how does the bilinear transform affect the frequency response
of the filter, that is, what is the relationship between the original continuous-
time frequency response prior to the substitution and the resulting discrete-time
frequency response after the substitution.

Let Ha(s) be the original continuous-time transfer function. Then the re-
spective discrete-time transfer function is

Hd(z) = Ha

(
2
T
· z − 1
z + 1

)
(3.5)

Respectively, the discrete-time frequency response is

Hd(ejωT ) = Ha

(
2
T
· e

jωT − 1
ejωT + 1

)
= Ha

(
2
T
· e

jωT/2 − e−jωT/2

ejωT/2 + e−jωT/2

)
=

= Ha

(
2
T
j tan

ωT

2

)
Notice that Ha(s) in the last expression is evaluated on the imaginary axis!!!
That is, the bilinear transform maps the imaginary axis in the s-plane to the
unit circle in the z-plane! Now, Ha

(
2
T j tan ωT

2

)
is the analog frequency response

evaluated at 2
T tan ωT

2 . That is, the digital frequency response at ω is equal to
the analog frequency response at 2

T tan ωT
2 . This means that the analog fre-

quency response in the range 0 ≤ ω < +∞ is mapped into the digital frequency
range 0 ≤ ωT < π (0 ≤ ω < πfs), that is from zero to Nyquist!11 Denoting
the analog frequency as ωa and the digital frequency as ωd we can express the
argument mapping of the frequency response function as

ωa =
2
T

tan
ωdT

2
(3.6)

or, in a more symmetrical way

ωaT

2
= tan

ωdT

2
(3.7)

11A similar mapping obviously occurs for the negative frequencies.
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Notice that for frequencies much smaller that Nyquist frequency we have ωT �
1 and respectively ωa ≈ ωd.

This is what is so unique about the bilinear transform. It simply warps the
frequency range [0,+∞) into the zero-to-Nyquist range, but otherwise doesn’t
change the frequency response at all! Considering in comparison a naive inte-
grator, we would have obtained:

s−1 =
z

z − 1

s =
z − 1
z

(3.8)

Hd(z) = Ha

(
z − 1
z

)

Hd(ejω) = Ha

(
ejω − 1
ejω

)
= Ha

(
1− e−jω

)
which means that the digital frequency response is equal to the analog transfer
function evaluated on a circle of radius 1 centered at s = 1. This hardly defines
a clear relationship between the two frequency responses.

So, by simply replacing the analog integrators with digital trapezoidal in-
tegrators, we obtain a digital filter whose frequency response is essentially the
same as the one of the analog prototype, except for the frequency warping.
Particularly, the relationship between the amplitude and phase responses of the
filter is fully preserved, which is particularly highly important if the filter is to
be used as a building block in a larger filter. Very close to perfect!

Furthermore, the bilinear transform maps the left complex semiplane in the
s-domain into the inner region of the unit circle in the z-domain. Indeed, let’s
obtain the inverse bilinear transform formula. From (3.4) we have

(z + 1)
sT

2
= z − 1

from where

1 +
sT

2
= z

(
1− sT

2

)
and

z =
1 + sT

2

1− sT
2

(3.9)

The equation (3.9) defines the inverse bilinear transform. Now, if Re s < 0,
then, obviously ∣∣∣∣1 +

sT

2

∣∣∣∣ < ∣∣∣∣1− sT

2

∣∣∣∣
and |z| < 1. Thus, the left complex semiplane in the s-plane is mapped to the
inner region of the unit circle in the z-plane. In the same way one can show
that the right complex semiplane is mapped to the outer region of the unit
circle. And the imaginary axis is mapped to the unit circle itself. Comparing
the stability criterion of analog filters (the poles must be in the left complex
semiplane) to the one of digital filters (the poles must be inside the unit circle),
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we conclude that the bilinear transform exactly preserves the stability of the
filters!

In comparison, for a naive integrator replacement we would have the follow-
ing. Inverting the (3.8) substitution we obtain

sz = z − 1

z(1− s) = 1

and
z =

1
1− s

Assuming Re s < 0 and considering that in this case∣∣∣∣z − 1
2

∣∣∣∣ =
∣∣∣∣ 1
1− s

− 1
2

∣∣∣∣ =
∣∣∣∣1− 1

2 + s
2

1− s

∣∣∣∣ =
∣∣∣∣12 · 1 + s

1− s

∣∣∣∣ < 1
2

we conclude that the left semiplane is mapped into a circle of radius 0.5 cen-
tered at z = 0.5. So the naive integrator overpreserves the stability, which is
not nice, since we would rather have digital filters behaving as closely to their
analog prototypes as possible. Considering that this comes in a package with a
poor frequency response transformation, we should rather stick with trapezoidal
integrators.

So, let’s replace e.g. the integrator in the familiar lowpass filter structure in
Fig. 2.2 with a trapezoidal integrator. Performing the integrator replacement,
we obtain the structure in Fig. 3.12.12 We will refer to the trapezoidal integrator
replacement method as the topology-preserving transform (TPT) method. This
term will be explained and properly introduced later. For now, before we simply
attempt to implement the structure in Fig. 3.12 in code, we should become aware
of a few further issues.

3.8 Cutoff prewarping

Suppose we are using the lowpass filter structure in Fig. 3.12 and we wish to have
its cutoff at ωc. If we however simply put this ωc parameter into the respective
integrator gain element ωcT/2, the frequency response itself and, specifically, its
value at the cutoff will be different from the expected one. Fig. 3.13 illustrates.
The −3dB level is specifically highlighted in Fig. 3.13, since this is the amplitude
response value of the 1-pole lowpass filter at the cutoff, thereby aiding the visual
identification of the cutoff point on the response curves.13

Apparently, the difference between analog and digital response is occuring
due to the warping of the frequency axis (3.6). We would like to estimate the

12Note that thereby, should we become interested in the amplitude and phase responses of
Fig. 3.12, we don’t have to derive the discrete-time transfer function of Fig. 3.12. Instead we
can simply take the amplitude and phase responses of the analog 1-pole (which are simpler
to compute) and apply the mapping (3.7). This is the reason that we almost exclusively deal
with analog transfer functions in this book, we simply don’t need digital ones most of the
time.

13Apparently, the picture in Fig. 3.13 will be the same at any other sampling rate, except
that the frequency axis values will need to be relabelled proportionally to the sampling rate
change. E.g. at 88.2kHz the labels would be 4, 8, 16, 22.05, 32 and 44.1kHz respectively. We
could have labelled the axis in terms of normalized ω instead, but giving the absolute values
is more illustrative. Particularly, the audible frequency range is easier to see.
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Figure 3.12: 1-pole TPT lowpass filter (the dashed line denotes the
trapezoidal integrator).
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Figure 3.13: Amplitude response of an unprewarped bilinear-
transformed 1-pole lowpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.

frequency error introduced by the warping. To simplify the further discussion
let’s rewrite (3.6) as a mapping function µ(ω):

ωa = µ(ωd) =
2
T

tan
ωdT

2
(3.10)

Now, given some desired analog response, we could take some point ωa on
this response and ask ourselves, where is the same point located on the digital
response. According to (3.10), it is located at µ−1(ωa) (where µ−1 is the function
inverse of µ). Thus the ratio of the actual and desired frequencies is µ−1(ωa)/ωa,
or, in the octave scale:

∆P = log2

µ−1(ωa)
ωa

The solid curve in Fig. 3.14 illustrates (note that Fig. 3.14 labels the ∆P axis
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in semitones).
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Figure 3.14: Bilinear transform’s detuning of analog frequencies
plotted against analog frequency (solid curve) or digital frequency
(dashed curve). Sampling rate 44.1kHz.

We could also express the detuning of analog frequencies in terms of the
corresponding digital frequency. Given the digital frequency response, we take
some point ωd and ask ourselves, where is the same point located on the analog
response. According to (3.10), it is located at µ(ωd) and thus the frequency
ratio is ωd/µ(ωd), respectively

∆P = log2

ωd
µ(ωd)

The dashed curve in Fig. 3.14 illustrates. Note that we are not talking about how
much the specified digital frequency will be detuned (because digital frequencies
are not getting detuned, they are already where they are), it’s still about how
much the corresponding analog frequency will be detuned.

Thus, given an analog filter with a frequency response Ha(jω), its digital
counterpart will have its frequencies detuned as shown in Fig. 3.14. Particularly,
the cutoff point, instead of being at the specified frequency ω = ωc, will be at

ωd = µ−1(ωc) (3.11)

In principle, one could argue that the frequency response change in Fig. 3.13
is not that drastic and could be tolerated, especially since the deviation occurs
mostly in the high frequency range, which is not the most audible part of the
frequency spectrum. This might have been the case with the 1-pole lowpass
filter, however for other filters with more complicated amplitude responses it
won’t be as acceptable. Fig. 3.15 illustrates the frequency error for a 2-pole
resonating lowpass filter. The resonance peaks (which occur close to the filter’s
cutoff) are very audible and so would be their detuning, which according to
Fig. 3.14 is in the range of semitones. Particularly, at 16kHz the dashed curve
in Fig. 3.14 shows a detuning of ca. 1 octave, meaning that we would have a
resonance at this point when it should have been occurring at ca. 32kHz.
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Figure 3.15: Amplitude response of an unprewarped bilinear-
transformed resonating 2-pole lowpass filter for a number of dif-
ferent cutoffs. Dashed curves represent the respective analog filter
responses for the same cutoffs. Sampling rate 44.1kHz.

Prewarping at cutoff

As a general rule (to which there are exceptions), we would like the cutoff point
of the filter to be positioned exactly at the specified cutoff frequency ωc. In this
regard we could notice that if we used a different cutoff value

ω̃c = µ(ωc) (3.12)

then (3.11) would give

ωd = µ−1(ω̃c) = µ−1(µ(ωc)) = ωc

and the cutoff point would be exactly where we wanted it to be. Fig. 3.16 illus-
trates. The cutoff correction (3.12) is a standard technique used in combination
with the bilinear transform. It is referred to as cutoff prewarping.

Technically, cutoff prewarping means that we use ω̃c instead of ωc in the
gains of the filter’s integrators. However, the integrator gains are not exactly
ωc but rather ωcT/2. From (3.12) and (3.10) we have

ω̃cT

2
=

2
T

tan
ωcT

2
· T

2
= tan

ωcT

2
(3.13)

Thus, we can directly apply (3.13) to compute the prewarped gains ω̃cT/2. Note
that (3.13) is essentially identical to (3.7).

The cutoff prewarping redistributes the frequency error shown in Fig. 3.14.
In the absence of prewarping the error was zero at ω = 0 and monotonically
growing as ω increases. With the cutoff prewarping the error is zero at ω = ωc
instead and grows further away from this point.

Indeed, let H(jω) be unit-cutoff analog response of the filter in question.
And let’s pick up an analog frequency ωa and find the respective detuning. The
correct frequency response at ωa is

Ha(ωa) = H(jωa/ωc) (3.14a)
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Figure 3.16: Amplitude response of a prewarped bilinear-
transformed 1-pole lowpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.

On the other hand, given the prewarped cutoff ω̃c = µ(ωc), the digital frequency
response at some frequency ωd is

Hd(ejωd) = H(jµ(ωd)/ω̃c) = H(jµ(ωd)/µ(ωc)) (3.14b)

We want to find such ωd that the arguments of H(jω) in (3.14a) and (3.14b)
are identical:

µ(ωd)
µ(ωc)

=
ωa
ωc

(3.15)

From where

ωd = µ−1

(
ωa
µ(ωc)
ωc

)
The solid curves in Fig. 3.17 illustrate the respective detuning ωa/ωd (in semi-
tones) of analog frequencies.

Alternatively from (3.15) we could express ωa as a function of ωd:

ωa =
ωc

µ(ωc)
µ(ωd)

thus expressing the analog frequency detuning ωa/ωd as a function of ωd. The
dashed curves in Fig. 3.17 illustrate.

Apparently, the maximum error to the left of ω = ωc is attained at ω = 0.
Letting ωa → 0 and, equivalently, ωd → 0 we have µ(ωd) ∼ ωd and (3.15) turns
into

ωd
µ(ωc)

∼ ωa
ωc

or
ωd
ωa
∼ µ(ωc)

ωc
and thus the detuning at ω = 0 is

∆P
∣∣∣∣
ω=0

= log2

µ(ωc)
ωc

(3.16)
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Figure 3.17: Prewarped bilinear transform’s detuning of analog fre-
quencies plotted against analog frequency (solid curves) or digital
frequency (dashed curves). Different curves correspond to pre-
warping at different cutoff frequencies. Sampling rate 44.1kHz.

Other prewarping points

We have just developed the prewarping technique from the condition that the
cutoff point must be preserved by the mapping (3.6). However instead we could
have required any other point ωp to be preserved.

Given the cutoff ωc, the analog response at ωp is

Ha(ωp) = H(jωp/ωc) (3.17a)

On the other hand, given the prewarped cutoff ω̃c (we want to prewarp at
a different point now, therefore we don’t know yet, what is the relationship
between ωc and ω̃c) the digital frequency response at ωp is

Hd(ejωp) = H(jµ(ωp)/ω̃c) (3.17b)

We want to find such ω̃c that the arguments of H(jω) in (3.17a) and (3.17b)
are identical:

ωp
ωc

=
µ(ωp)
ω̃c

and

ω̃c =
µ(ωp)
ωp

ωc (3.18)
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Equation (3.18) is the generalized prewarping formula, where ωp is the frequency
response point of zero detuning. We will refer to ωp as the prewarping point.

According to (3.18) prewarping at ωp simply means that the cutoff should
be multiplied by µ(ωp)/ωp. At ωp = ωc this multiplication reduces to (3.12).

In order to find the detuning at other frequencies, notice that equations
(3.14) turn into

Ha(ωa) = H(jωa/ωc)

Hd(ejωd) = H(jµ(ωd)/ω̃c) = H

(
j
ωpµ(ωd)
ωcµ(ωp)

)
from where, equating the arguments of H(jω):

ωpµ(ωd)
ωcµ(ωp)

=
ωa
ωc

we have
µ(ωd)
µ(ωp)

=
ωa
ωp

(3.19)

Equation (3.19) is identical to (3.15) except that it has ωp in place of ωc. Thus we
could reuse the results of the previous analysis of the analog frequency detuning.
In particular Fig. 3.17 fully applies, different curves corresponding to different
prewarping points. At the same time, (3.16) simply turns to

∆P
∣∣∣∣
ω=0

= log2

µ(ωp)
ωp

(3.20)

Bounded cutoff prewarping

Even though cutoff prewarping is an absolutely standard technique and is often
used without any second thought, the need for a different choice of the prewarp-
ing point is actually not as exotic as it might seem. Consider e.g. the amplitude
response of a 1-pole highpass filter prewarped by (3.12), shown in Fig. 3.18.
One can notice a huge discrepancy between analog and digital amplitude re-
sponses occurring well into the audible frequency range [0, 16kHz]. The error is
getting particularly bad at cutoffs above 16kHz. In comparison, the responses
of unprewarped filters in Fig. 3.19 even look kind of better, especially if only the
audible frequency range is considered. This would be even more so, if higher
sampling rates are involved, where the audible range error in Fig. 3.19 would
become smaller, while the same error in Fig. 3.18 can still get as large, given a
sufficiently high cutoff value.

Apparently, the large error within the audible range in Fig. 3.18 is due to
the detuning error illustrated in Fig. 3.17. This error wasn’t as obvious in the
case of the 1-pole lowpass filter, since this filter’s amplitude response is almost
constant to the left of the cutoff point. On the other hand, highpass filter’s
amplitude response is changing noticeably in the same area, which makes the
detuning error is made much more promiment.

Does this suggest that we shouldn’t use cutoff prewarping with highpass fil-
ters? In principle this is engineer’s decision. However consider the unprewarped
resonating 2-pole highpass filter’s amplitude response in Fig. 3.20. As with the
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Figure 3.18: Amplitude response of a prewarped bilinear-
transformed 1-pole highpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.
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Figure 3.19: Amplitude response of an unprewarped bilinear-
transformed 1-pole highpass filter for a number of different cutoffs.
Dashed curves represent the respective analog filter responses for
the same cutoffs. Sampling rate 44.1kHz.

responating lowpass, the resonance peak detuning is quite prominent here. Also
the difference in the response value is magnified around the resonance point. All
in all, we’d rather prewarp the cutoff (Fig. 3.21) and tolerate the detuning to
the left of ωc.

However notice, that as the cutoff peak is getting out of the audible range,
we stop caring, where exactly it is positioned, since it can’t be heard anyway.
So, why should we then tolerage the error in the audible range which continues
to increase even faster? Instead, at this moment we could fix the prewarping



3.8. CUTOFF PREWARPING 67

f, kHz

|H(ejω)|,dB

22.051611.025842

0

+6

-6

+12

Figure 3.20: Amplitude response of an unprewarped bilinear-
transformed resonating 2-pole highpass filter for a number of dif-
ferent cutoffs. Dashed curves represent the respective analog filter
responses for the same cutoffs. Sampling rate 44.1kHz.
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Figure 3.21: Amplitude response of a prewarped bilinear-
transformed resonating 2-pole highpass filter for a number of dif-
ferent cutoffs. Dashed curves represent the respective analog filter
responses for the same cutoffs. Sampling rate 44.1kHz.

point to the upper boundary of the audible range:

ωp =

{
ωc if ωc ≤ ωmax

ωmax if ωc ≥ ωmax

or simply
ωp = min {ωc, ωmax} (3.21)

where ωmax is some point around 16kHz. At least then the detuning in the
audible range won’t grow any further than it is at ωc = ωmax (Fig. 3.22). The
picture gets even better at higher sampling rates (Fig. 3.23).
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Figure 3.22: Effect of cutoff prewarping bounded at 16kHz. Sam-
pling rate 44.1kHz.
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Figure 3.23: Effect of cutoff prewarping bounded at 16kHz. Sam-
pling rate 88.1kHz.

Substituting (3.21) into (3.18) we obtain

ω̃c =
µ(min {ωc, ωmax})

min {ωc, ωmax}
ωc =


µ(ωc) if ωc ≤ ωmax

µ(ωmax)
ωmax

ωc if ωc ≥ ωmax

(3.22)

The mapping defined by (3.22) is shown in Fig. 3.24. Note that thereby we
become able to specify the cutoffs beyond Nyquist, and actually to specify arbi-
trarily large cutoffs, since the new mapping curve is crossing the former vertical
asymptote at ωc = π/2.
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ωmax

µ(ωmax)

π/20 ωc

ω̃c

Figure 3.24: Bounded cutoff prewarping. The thick dashed line
shows the unbounded prewarping continuation. The thin oblique
dashed line is the continuation of the straight part of the prewarp-
ing curve. The black dot marks the breakpoint of the prewarping
curve.

The breakpoint at ωc = ωmax in Fig. 3.24 can be somewhat unexpected. In
order to understand the mechanism behind its appearance suppose ωc is varying
with time. Using (3.18) we compute the time derivative of ω̃c:

˙̃ωc = ωc
d
dt
µ(ωp)
ωp

+
µ(ωp)
ωp

ω̇c

As ωc becomes larger than ωmax the first term suddenly disappears and there is a
jump in ˙̃ωc. In other words, the variation of the prewarping point makes its own
contribution to ˙̃ωc. As soon as the variation stops, the respective contribution
abruptly disappears.

The frequency detunings occurring in case of (3.22) can be found directly
from Fig. 3.17, keeping in mind that (3.22) is simply another expression of
(3.21).

Continuous-speed prewarping

The breakpoint occurring in Fig. 3.24 might be undesirable if the cutoff is being
modulated, since there can be a sudden change of the perceived modulation
speed as the cutoff traverses through the prewarping breakpoint. For that reason
it might be desirable to smooth the breakpoint in one way or the other. The
simplest approach would be to continue the curve as a tangent line after the
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breakpoint:

ω̃c =

{
µ(ωc) if ωc ≤ ωmax

µ(ωmax) + (ωc − ωmax)µ′(ωmax) if ωc ≥ ωmax

(3.23)

where

µ′(ω) =
d

dω

(
2
T

tan
ωT

2

)
=

1

cos2
ωT

2

= 1 + tan2 ωT

2
= 1 +

(
T

2
µ(ω)

)2

is the derivative of µ(ω). Note, however, that this will no longer keep ωmax as
the prewarping point and the situation would be something in between (3.12)
and (3.22).

At ωc →∞ from (3.23) we have

ω̃c = µ(ωmax) + (ωc − ωmax)µ′(ωmax) ∼ µ′(ωmax)ωc (3.24)

Comparing the right-hand side of (3.24) to (3.18) we obtain the equation for
the effective prewarping point at infinity:

µ(ωp)
ωp

= µ′(ωmax) (3.25)

In principle ωp can be found from (3.25), however we are not so much interested
in how far off will be the prewarping point, as in the estimation of the associated
increase in detuning. By (3.20)

∆P
∣∣∣∣
ω=0

= log2

µ(ωp)
ωp

= log2 µ
′(ωmax) (at ωc =∞)

which for ωmax = 16kHz at 44.1kHz sampling rate gives ca. 2.5 octaves, while
at 88.2kHz sampling rate it gives only about 0.5 octave. In comparison, at
ωc = ωmax (and respectively ωp = ωmax) we would have a smaller value

∆P
∣∣∣∣
ω=0

= log2

µ(ωp)
ωp

= log2

µ(ωmax)
ωmax

which for ωmax = 16kHz at 44.1kHz sampling rate gives ca. 1 octave, while at
88.2kHz sampling rate it gives only about 2 semitones.

We have therefore found the effect of (3.23) on the detuning occurring at
ω = 0 for ωc →∞. It would also be nice to estimate the same effect at ω = ωmax.
By (3.19)

µ(ωd)
ωa

=
µ(ωp)
ωp

which by (3.25) becomes
µ(ωd)
ωa

= µ′(ωmax)

Letting ωd = ωmax we have

ωa =
µ(ωmax)
µ′(ωmax)

=

2
T

tan
ωmaxT

2

cos−2

(
ωmaxT

2

) =
1
T

sin (ωmaxT )
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and the detuning itself is the logarithm of the ratio

ωa
ωd

=
ωa
ωmax

=
sin (ωmaxT )
ωmaxT

= sinc (ωmaxT )

For ωmax = 16kHz at 44.1kHz sampling rate this gives ca. −1.5 octaves, while
at 88.1kHz it gives ca. −4 semitones.

Since (as illustrated by Fig. 3.17) the detuning is a monotonic function of
ω, at ωc = ∞ we are having the audible range detuning error in the range of
ca. [−1.5, 2.5] octaves at 44.1kHz sampling rate and in the range of ca. [−4, 6]
semitones at 88.2kHz sampling rate. Therefore it is more or less balanced out,
although being a bit larger at higher frequencies.

Apparently, more elaborate ways of smoothing the breakpoint in Fig. 3.24
may be designed, but we won’t cover them here as the options are almost infinite.

Prewarping of systems of filters

According to (3.18), prewarping is nothing more than a multiplication of the
cutoff gains of the integrators by µ(ωp)/ωp, where ωp is the prewarping point.

Suppose we are having a system consisting of several filters connected to-
gether. When prewarping filters in such system, it would be a good idea to
choose a common prewarping point for all filters. In this case we multiply their
cutoffs by one and the same coefficient. Thereby their amplitude and phase
responses are shifted by one and the same amount (in the logarithmic frequency
axis), and they all retain the frequency response relationships which existed
between them prior to prewarping. Effectively this is the same as changing the
“common cutoff” of the filter system, and the frequency response of the entire
system is simply shifted horizontally by the same amount, fully retaining its
shape.

On the other hand by prewarping them independently we shift the frequency
response of each filter differently from the others and the amplitude and phase
relationships between those are thereby destroyed. Therefore the amplitude and
phase response shapes of the entire system of filters are not preserved.

As an illustration consider a parallel connection of a 1-pole lowpass and a
1-pole highpass filter, the lowpass cutoff being ωc/2, the highpass cutoff being
2ωc where ωc is the formal cutoff of the system:

•//

LP//

+ '!&"%#$��

HP//
OO //

The transfer function of such system (written in the unit-cutoff form) is

H(s) =
1

1 + 2s
+

s/2
1 + s/2

The result of prewarping the lowpass and the highpass separately at their respec-
tive cutoffs ωc/2 and 2ω is shown in Fig. 3.25. Actually for the ωc = 11.025kHz
and ωc = 16kHz the highpass cutoff 2ωc needed to be clipped prior to prewaring,
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since it is equal or exceeds Nyquist and cannot be directly prewarped by (3.12).
Compare to Fig. 3.26 where the prewarping of both filters has been done at the
common point ωc.

f, kHz

|H(ejω)|,dB

22.051611.025842

0

-6

-12

-18

Figure 3.25: Separate prewarping of system components (for a
number of different cutoffs). Dashed curves represent the respec-
tive analog filter responses for the same cutoffs. Sampling rate
44.1kHz.

f, kHz

|H(ejω)|,dB

22.051611.025842

0

-6

-12

-18

Figure 3.26: Common-point prewarping of system components (for
a number of different cutoffs). Dashed curves represent the respec-
tive analog filter responses for the same cutoffs. Sampling rate
44.1kHz.

Other prewarping techniques

With 1-pole lowpass and highpass filters the only available control parameter is
the filter cutoff. Thus the only option which we had for compensating the bilin-
ear transform’s frequency detuning was correcting the cutoff value. Other filters
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may have more parameters available. Usually their parameters (e.g. resonance)
will have a strong “vertical” effect on the amplitude response and thus are not
very suitable for compensating the frequency detuning. However in some cases
there will be further options of horizonally altering the filter’s amplitude (and
phase) responses without causing noticeable changes in the vertical direction.
In such cases we will have further options for more detailed compensation of the
frequency detuning.

Note, however, that these compensations, being not expressible as cutoff
multiplication, may destroy the frequency response of a system of filters, unless
there is some other way to make them have identical effect on all of the filters
in the system. We will discuss some examples of this later in the book.

3.9 Zero-delay feedback

There is a further problem with the trapezoidal integrator replacement in the
TPT method. Replacing the integrators with trapezoidal ones introduces delay-
less feedback loops (that is, feedback loops not containing any delay elements)
into the structure. E.g. consider the structure in Fig. 3.12. Carefully examining
this structure, we find that it has a feedback loop which doesn’t contain any
unit delay elements. This loop goes from the leftmost summator through the
gain, through the upper path of the integrator to the filter’s output and back
through the large feedback path to the leftmost summator.

Why is this delayless loop a problem? Let’s consider for example the naive
lowpass filter structure in Fig. 3.5. Suppose we don’t have the respective pro-
gram code representation and wish to obtain it from the block diagram. We
could do it in the following way. Consider Fig. 3.27, which is the same as Fig. 3.5,
except that it labels all signal points. At the beginning of the computation of
a new sample the signals A and B are already known. A = x[n] is the current
input sample and B is taken from the internal state memory of the z−1 element.
Therefore we can compute C = A − B. Then we can compute D = (ωcT )C
and finally E = D+B. The value of E is then stored into the internal memory
of the z−1 element (for the next sample computation) and is also sent to the
output as the new y[n] value. Easy, right?

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1

•��

OO
−

OO //A

B

C D E
x[n] y[n]

ωcT

Figure 3.27: Naive 1-pole lowpass filter and the respective signal
computation order.

Now the same approach doesn’t work for the structure in Fig. 3.12. Because
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there is a delayless loop, we can’t find a starting point for the computation
within that loop.

The classical way of solving this problem is exactly the same as what we had
in the naive approach: introduce a z−1 into the delayless feedback, turning it
into a feedback containing a unit delay (Fig. 3.28). Now there are no delayless
feedback paths and we can arrange the computation order in a way similar to
Fig. 3.27. This however destroys the resulting frequency response, because the
transfer function is now different. In fact the obtained result is not significantly
better (if better at all) than the one from the naive approach. There are some
serious artifacts in the frequency response closer to the Nyquist frequency, if the
filter cutoff is sufficiently high.

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •//

+ '!&"%#$//

z−1

OO

OO

oo

•//

z−1 oo

−
OO //x[n] y[n]

ωcT/2

Figure 3.28: Digital 1-pole lowpass filter with a trapezoidal inte-
grator and an extra delay in the feedback.

Therefore we shouldn’t introduce any modifications into the structure and
solve the zero-delay feedback problem instead. The term “zero-delay feedback”
originates from the fact that we avoid introducing a one-sample delay into the
feedback (like in Fig. 3.28) and instead keep the feedback delay equal to zero.

So, let’s solve the zero-delay feedback problem for the structure in Fig. 3.12.
Notice that this structure simply consists of a negative feedback loop around
a trapezoidal integrator, where the trapezoidal integrator structure is exactly
the one from Fig. 3.11. We will now introduce the concept of the instantaneous
response of this integrator structure.

So, consider the integrator structure in Fig. 3.11. Since there are no delayless
loops in the integrator, it’s not difficult to obtain the following expression for
y[n]:

y[n] =
ωcT

2
x[n] + u[n− 1] (3.26)

Notice that, at the time x[n] arrives at the integrator’s input, all values in
the right-hand side of (3.26) are known (no unknown variables). Introducing
notation

g =
ωcT

2
s[n] = u[n− 1]

we have
y[n] = gx[n] + s[n]
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or, dropping the discrete time argument notation for simplicity,

y = gx+ s

That is, at any given time moment n, the output of the integrator y is a linear
function of its input x, where the values of the parameters of this linear function
are known. The g parameter doesn’t depend on the internal state of the integra-
tor, while the s parameter does depend on the internal state of the integrator.
We will refer to the linear function f(x) = gx+ s as the instantaneous response
of the integrator at the respective implied time moment n. The coefficient g can
be referred to as the instantaneous response gain or simply instantaneous gain.
The term s can be referred to as the instantaneous response offset or simply
instantaneous offset.

Let’s now redraw the filter structure in Fig. 3.12 as in Fig. 3.29. We have
changed the notation from x to ξ in the gx+s expression to avoid the confusion
with the input signal x[n] of the entire filter.

+ '!&"%#$// gξ + s// •//
−

OO //x[n] y[n]

Figure 3.29: 1-pole TPT lowpass filter with the integrator in the
instantaneous response form.

Now we can easily write and solve the zero-delay feedback equation. Indeed,
suppose we already know the filter output y[n]. Then the output signal of the
feedback summator is x[n]−y[n] and the output of the integrator is respectively
g(x[n]− y[n]) + s. Thus

y[n] = g(x[n]− y[n]) + s

or, dropping the time argument notation for simplicity,

y = g(x− y) + s (3.27)

The equation (3.27) is the zero-delay feedback equation for the filter in Fig. 3.29
(or, for that matter, in Fig. 3.12). Solving this equation, we obtain

y(1 + g) = gx+ s

and respectively

y =
gx+ s

1 + g
(3.28)

Having found y (that is, having predicted the output y[n]), we can then proceed
with computing the other signals in the structure in Fig. 3.12, beginning with
the output of the leftmost summator.14

14Notice that the choice of the signal point for the prediction is rather arbitrary. We could
have chosen any other point within the delayless feedback loop.
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It’s worth mentioning that (3.28) can be used to obtain the instantaneous
response of the entire filter from Fig. 3.12. Indeed, rewriting (3.28) as

y =
g

1 + g
x+

s

1 + g

and introducing notations

G =
g

1 + g

S =
s

1 + g

we have
y = Gx+ S (3.29)

So, the instantaneous response of the entire lowpass filter in Fig. 3.12 is again a
linear function of the input. We could use the expression (3.29) e.g. to solve the
zero-delay feedback problem for some larger feedback loop containing a 1-pole
lowpass filter.

3.10 Implementations

1-pole lowpass

We are now going to convert the structure in Fig. 3.12 into a piece of code. Let’s
introduce helper variables into Fig. 3.12 as shown in Fig. 3.30, where we have
used the already known to us fact that, given the integrator’s instantaneous
response gx+ s, the value of s equals the output of the z−1 element.

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •//

+ '!&"%#$//

z−1

OO

OO

oo

•//
−

OO //x[n] y[n]

ωcT/2 s

u

v

Figure 3.30: 1-pole TPT lowpass filter with helper variables.

We already know y from (3.29). Since g = ωcT/2, we have

v = g(x− y) = g (x−Gx− S) = g

(
x− g

1 + g
x− s

1 + g

)
=

= g

(
1

1 + g
x− s

1 + g

)
= g

x− s
1 + g

(3.30)

Now (3.30) gives a direct expression for v in terms of known signals, not using
y. In order to avoid unnecessary computations, we can simply reobtain y using
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the obvious from Fig. 3.30 fact that y is just a sum of v and s:

y = v + s (3.31)

We also need the z−1 input (which we need to store in the z−1’s memory) which
is also obtained from Fig. 3.30 in an obvious way:

u = y + v (3.32)

The equations (3.30), (3.31) and (3.32) can be directly expressed in program
code:

// perform one sample tick of the lowpass filter
// G = g/(1+g)
// the variable ’s’ contains the state of z^-1 block
v := (x-s)*G;
y := v + s;
s := y + v;

or instead expressed in a block diagram form (Fig. 3.31). Notice that the block
diagram doesn’t contain any delayless loops anymore.

+ '!&"%#$//
MMMqqq
// •// + '!&"%#$// •// //

+ '!&"%#$//

z−1

OO

•OO

OO

oo

−
OOx[n] y[n]

g/(1 + g)

Figure 3.31: 1-pole TPT lowpass filter with resolved zero-delay
feedback.

1-pole multimode

The highpass signal can be obtained from the structure in Fig. 3.31 in a trivial
manner, since yHP = x−yLP, thereby turning Fig. 3.31 into a multimode 1-pole.

1-pole highpass

If we need only the highpass signal, we could do it in a smaller number of
operations than in the multimode 1-pole. By noticing that

yHP = x−yLP = x−(v+s) = (x−s)−v = (x−s)− g

1 + g
(x−s) =

1
1 + g

(x−s)

and that
u = yLP + v = s+ 2v = s+

2g
1 + g
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we can implement the highpass filter as follows:

// perform one sample tick of the highpass filter
// Ghp = 1/(1+g)
// the variable ’s’ contains the state of z^-1 block
xs := x - s;
y := xs*Ghp;
s := s + y*2g;

however this way we have traded an addition/subtraction pair for one multipli-
cation, plus instead of one cutoff-dependent parameter G we need to store and
access Ghp and 2g. Therefore this is not necessarily a performance improve-
ment.

1-pole allpass

The allpass signal can be obtained from the multimode 1-pole in a trivial man-
ner, recalling that yAP = yLP−yHP. However, if we need only the allpass signal,
we could save a couple of operations. Noticing that

yAP = yLP − yHP = v + s− (x− (v + s)) = (s+ 2v)− (x− s)

and that s+ 2v = u is the new state of the z−1 block, we obtain

// perform one sample tick of the allpass filter
// 2Glp=2g/(1+g)
// the variable ’s’ contains the state of z^-1 block
xs := x - s;
s := s + xs*2Glp;
y := s - xs;

3.11 Direct forms

Consider again the equation (3.5), which describes the application of the bilin-
ear transform to convert an analog transfer function to a digital one. There is a
classical method of digital filter design which is based directly on this transfor-
mation, without using any integrator replacement techniques. In the author’s
experience, for music DSP needs this method typically has a largely inferior
quality, compared to the TPT. Nevertheless we will describe it here for com-
pleteness and for a couple of other reasons. Firstly, it would be nice to try to
analyse and understand the reasons for the problems of this method. Secondly,
this method could be useful once in a while. Particularly, its deficiencies mostly
disappear in the time-invariant (unmodulated or sufficiently slowly modulated)
case.

Having obtained a digital transfer function from (3.5), we could observe,
that, since the original analog transfer function was a rational function of s, the
resulting digital transfer function will necessarily be a rational function of z.
E.g. using the familiar 1-pole lowpass transfer function

Ha(s) =
ωc

s+ ωc
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we obtain

Hd(z) = Ha

(
2
T
· z − 1
z + 1

)
=

ωc
2
T ·

z−1
z+1 + ωc

=

=
ωcT
2 (z + 1)

(z − 1) + ωcT
2 (z + 1)

=
ωcT
2 (z + 1)(

1 + ωcT
2

)
z −

(
1− ωcT

2

)
Now, there are standard discrete-time structures allowing an implementation
of any given nonstrictly proper rational transfer function. It is easier to use
these structures, if the transfer function is expressed as a rational function of
z−1 rather than the one of z. In our particular example, we can multiply the
numerator and the denominator by z−1, obtaining

Hd(z) =
ωcT
2 (1 + z−1)(

1 + ωcT
2

)
−
(
1− ωcT

2

)
z−1

The further requirement is to have the constant term in the denominator equal
to 1, which can be achieved by dividing everything by 1 + ωcT/2:

Hd(z) =

ωcT
2

1+ωcT
2

(1 + z−1)

1− 1−ωcT2
1+ωcT

2
z−1

(3.33)

Now suppose we have an arbitrary rational nonstrictly proper transfer function
of z, expressed via z−1 and having the constant term in the denominator equal
to 1:

H(z) =

N∑
n=0

bnz
−n

1−
N∑
n=1

anz
−n

(3.34)

This transfer function can be implemented by the structure in Fig. 3.32 or by
the structure in Fig. 3.33. One can verify (by computing the transfer functions
of the respective structures) that they indeed implement the transfer function
(3.34). There are also transposed versions of these structures, which the readers
should be able to construct on their own.

Let’s use the direct form II to implement (3.33). Apparently, we have

N = 1

b0 = b1 =
ωcT
2

1 + ωcT
2

a1 =
1− ωcT

2

1 + ωcT
2

and the direct form implementation itself is the one in Fig. 3.34 (we have merged
the b0 and b1 coefficients into a single gain element).

In the time-invariant (unmodulated) case the performance of the direct form
filter in Fig. 3.34 should be identical to the TPT filter in Fig. 3.12, since both
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Figure 3.32: Direct form I (DF1).
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Figure 3.33: Direct form II (DF2), a.k.a. canonical form.

+ '!&"%#$// •// + '!&"%#$//

z−1

��
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111OO

OO OO
MMMqqq
// //x[n] y[n]
b0

a1

Figure 3.34: Direct form II 1-pole lowpass filter.

implement the same bilinear-transformed analog transfer function (2.5). When
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the cutoff is modulated, however, the performance will be different.

We have already discussed in Sections 2.7 and 2.16 that different topologies
may have different time-varying behavior even if they share the same transfer
function. Apparently, the difference in behavior between Fig. 3.34 and Fig. 3.12
is another example of that. Comparing the implementations in Figs. 3.34 and
3.12, we notice that the structure in Fig. 3.34 contains a gain element at the
output, the value of this gain being approximately proportional to the cutoff (at
low cutoffs). This will particularly produce unsmoothed jumps in the output in
response to jumps in the cutoff value. In the structure in Fig. 3.12, on the other
hand, the cutoff jumps will be smoothed by the integrator. Thus, the difference
between the two structures is similar to the just discussed effect of the cutoff
gain placement with the integrator.

We should conclude that, other things being equal, the structure in Fig. 3.34
is inferior to the one in Fig. 3.12 (or Fig. 3.31). In this respect consider that
Fig. 3.12 is trying to explicitly emulate the analog integration behavior, preserv-
ing the topology of the original analog structure, while Fig. 3.34 is concerned
solely with implementing a correct transfer function. Since Fig. 3.34 implements
a classical approach to the bilinear transform application for digital filter design
(which ignores the filter topology) we’ll refer to the trapezoidal integration re-
placement technique as the topology-preserving bilinear transform (or, shortly,
TPBLT). Or, even shorter, we can refer to this technique as simply the topology-
preserving transform (TPT), implicitly assuming that the bilinear transform is
being used.15

In principle, sometimes there are possibilities to “manually fix” the struc-
tures such as in Fig. 3.34. E.g. the time-varying performance of the latter is
drastically improved by moving the b0 gain to the input. The problem however
is that this kind of fixing quickly gets more complicated (if being possible at
all) with larger filter structures. On the other hand, the TPT method explicitly
aims at emulating the time-varying behavior of the analog prototype structure,
which aspect is completely ignored by the classical transform approach. Be-
sides, if the structure contains nonlinearities, preserving the topology becomes
absolutely critical, because otherwise these nonlinearites can not be placed in
the digital model.16 Also, the direct forms suffer from precision loss issues, the
problem growing bigger with the order of the system. For that reason in practice
the direct forms of orders higher than 2 are rarely used,17 but even 2nd-order
direct forms could already noticeably suffer from precision losses.

15Apparently, naive filter design techniques also preserve the topology, but they do a rather
poor job on the transfer functions. Classical bilinear transform approach does a good job on
the transfer function, but doesn’t preserved the topology. The topology-preserving transform
achieves both goals simultaneously.

16This is related to the fact that transfer functions can be defined only for linear time-
invariant systems. Nonlinear cases are obviously not linear, thus some critical information
can be lost, if the conversion is done solely based on the transfer functions.

17A higher-order transfer function is typically decomposed into a product of transfer func-
tions of 1st- and 2nd-order rational functions (with real coefficients!). Then it can be imple-
mented by a serial connection of the respective 1st- and 2nd-order direct form filters.
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3.12 Transient response

Looking at the 1-pole lowpass filter’s discrete-time transfer function (3.33) and
noticing that ωc = −p where p is the analog pole, we could rewrite (3.33) as

H(z) =

−pT
2

1− pT2
(1 + z−1)

1− 1+ pT
2

1− pT2
z−1

Comparing this to (3.9) we notice that

1 + pT
2

1− pT
2

= p̃

where p̃ is the result of the application of the inverse bilinear transform formula
(3.9) to p. Further noticing that

−pT
2

1− pT
2

=
1
2
·

(
1− pT

2

1− pT
2

−
1 + pT

2

1− pT
2

)
=

1− p̃
2

(3.35)

we rewrite H(z) as

H(z) =
1− p̃

2
· 1 + z−1

1− p̃z−1
=

1− p̃
2
· z + 1
z − p̃

Thus p̃ is the pole of H(z), as we should have expected.
On the other hand, applying trapezoidal integration to the 1-pole lowpass

differential equation in the pole form (2.14), we have

y[n]− y[n− 1] = pT ·
(
y[n] + y[n− 1]

2
− x[n] + x[n− 1]

2

)
from where(

1− pT

2

)
y[n] =

(
1 +

pT

2

)
y[n− 1]− pT

2
· (x[n] + x[n− 1])

y[n] =
1 + pT

2

1− pT
2

y[n− 1] +
−pT

2

1− pT
2

· (x[n] + x[n− 1]) =

= p̃y[n− 1] + (1− p̃)x[n] + x[n− 1]
2

where we have used (3.35).
Now consider a complex exponential x[n] = X(z)zn. For such x[n] we have

y[n] = p̃y[n− 1] + (1− p̃)1 + z−1

2
X(z)zn = p̃y[n− 1] + q̃zn (3.36)

where we introduced notation

q̃ = (1− p̃)1 + z−1

2
X(z)
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for conciseness. Recursively substituting (3.36) into itself at progessively de-
creasing values of n we obtain

y[n] = p̃y[n− 1] + q̃zn =

= p̃
(
p̃y[n− 2] + q̃zn−1

)
+ q̃zn =

= p̃2y[n− 2] +
(
p̃z−1 + 1

)
q̃zn =

= p̃2
(
p̃y[n− 3] + q̃zn−2

)
+
(
p̃z−1 + 1

)
q̃zn =

= p̃3y[n− 3] +
((
p̃z−1

)2
+ p̃z−1 + 1

)
q̃zn =

. . .

= p̃ny[0] +
((
p̃z−1

)n−1
+
(
p̃z−1

)n−2
+ . . .+ p̃z−1 + 1

)
q̃zn =

= p̃ny[0] +

(
p̃z−1

)n − 1
p̃z−1 − 1

q̃zn = p̃ny[0] +
p̃n − zn

p̃− z
q̃z =

= p̃ny[0] +
zn − p̃n

z − p̃
(1− p̃)z + 1

2
X(z) =

= p̃ny[0] + (zn − p̃n)H(z)X(z) =
= H(z)X(z)zn + (y[0]−H(z)X(z)) · p̃n =
= ys[n] + (y[0]− ys[0]) · p̃n = ys[n] + yt[n]

where

ys[n] = H(z)X(z)zn

yt[n] = (y[0]− ys[0]) · pn

are the steady-state and transient responses respectively.
Thus, the discrete-time 1-pole transient response is a decaying exponent p̃n,

provided the discrete-time system is stable and |p̃| < 1. If |p̃| > 1 the transient
response grows infinitely.

3.13 Instantaneously unstable feedback

Writing the solution (3.28) for the zero-delay feedback equation (3.27) we in fact
have slightly jumped the gun. Why? Let’s consider once again the structure in
Fig. 3.29 and suppose g gets negative and starts growing in magnitude further
in the negative direction.18 When g becomes equal to −1, the denominator of
(3.28) turns into zero. Something bad must be happening at this moment.

Instantaneous smoother

In order to understand the meaning of this situation, let’s consider the delayless
feedback path as if it was an analog feedback. An analog signal value can’t
change instantaneously. It can change very quickly, but not instantaneously,
it’s always a continuous function of time. We could imagine there is a smoother

18Of course, such lowpass filter formally has a negative cutoff value. It is also unstable.
However unstable circuits are very important as the linear basis for the analysis and imple-
mentation of e.g. nonlinear self-oscillating filters. Therefore we wish to be able to handle
unstable circuits as well.
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unit somewhere in the feedback path (Fig. 3.35). This smoother unit has a
very very fast response time. We introduce the notation ȳ for the output of the
smoother.

+ '!&"%#$// gξ + s// •//

σ̂ oo

−
OO //x[n] y[n]

ȳ

Figure 3.35: Digital 1-pole lowpass filter with a trapezoidal inte-
grator in the instantaneous response form and a smoother unit σ̂
in the delayless feedback path.

So, suppose we wish to compute a new output sample y[n] for the new input
sample x[n]. At the time x[n] “arrives” at the filter’s input, the smoother still
holds the old output value y[n− 1]. Let’s freeze the discrete time at this point
(which formally means we simply are not going to update the internal state
of the z−1 element). At the same time we will let the continuous time t run,
formally starting at t = 0 at the discrete time moment n.

In this time-frozen setup we can choose arbitrary units for the continuous
time t. The smoother equation can be written as

sgn ˙̄y(t) = sgn
(
y(t)− ȳ(t)

)
That is, we don’t specify the details of the smoothing behavior, however the
smoother output always changes in the direction from ȳ towards y at some (not
necessarily constant) speed.19 Particularly, we can simply define a constant
speed smoother:

˙̄y = sgn(y − ȳ)

or we could use a 1-pole lowpass filter as a smoother:

˙̄y = y − ȳ

The initial value of the smoother is apparently ȳ(0) = y[n− 1].
Now consider that

sgn ˙̄y(t) = sgn
(
y(t)− ȳ(t)

)
= sgn

(
g(x[n]− ȳ(t)) + s− ȳ(t)

)
=

= sgn
(
(gx[n] + s)− (1 + g)ȳ(t)

)
= sgn

(
a− (1 + g)ȳ(t)

)
where a = gx[n]+s is constant in respect to t. First, assume 1+g > 0. Further,
suppose a− (1+g)ȳ(0) > 0. Then ˙̄y(0) > 0 and then the value of the expression
a−(1+g)ȳ(t) will start decreasing until it turns to zero at some t, at which point
the smoothing process converges. On the other hand, if a−(1+g)ȳ(0) < 0, then
˙̄y(0) < 0 and the value of the expression a−(1+g)ȳ(t) will start increasing until
it turns to zero at some t, at which point the smoothing process converges. If
a− (1 + g)ȳ(0) = 0 then the smoothing is already in a stable equilibrium state.

19We also assume that the smoothing speed is sufficiently large to ensure that the smoothing
process will converge at all cases where it potentially can converge (this statement should
become clearer as we discuss more details).
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So, in case 1 + g > 0 the instantaneous feedback smoothing process always
converges. Now assume 1 + g ≤ 0. Further, suppose a− (1 + g)ȳ(0) > 0. Then
˙̄y(0) > 0 and then the value of the expression a− (1 + g)ȳ(t) will start further
increasing (or stay constant if 1 + g = 0). Thus, ȳ(t) will grow indefinitely.
Respectively, if a − (1 + g)ȳ(0) < 0, then ȳ(t) will decrease indefinitely. This
indefinite growth/decrease will occur within the frozen discrete time. Therefore
we can say that ȳ grows infinitely in an instant. We can refer to this as to an
instantaneously unstable zero-delay feedback loop.

The idea of the smoother introduced in Fig. 3.35 can be used as a general
means for analysing zero-delay feedback structures for instantaneous instability.
We will refer to this technique as instantaneous smoother.

1-pole lowpass as an instantaneous smoother

The analysis of the instantaneous stability can also be done using the analog
filter stability analysis means. Let the smoother be an analog 1-pole lowpass
filter with a unit cutoff (whose transfer function is 1

s+1 )20 and notice that in
that case the structure in Fig. 3.35 can be redrawn as in Fig. 3.36. This filter
has two formal inputs x[n] and s and one output y[n].

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •

1
s+1

oo

−
OO //��

x[n] y[n]

s

g

Figure 3.36: An instantaneous representation of a digital 1-pole
lowpass filter with a trapezoidal integrator and an analog lowpass
smoother.

We can now e.g. obtain a transfer function from the x[n] input to the y[n]
output. Ignoring the s input signal (assuming it to be zero), for a continuous-
time complex exponential input signal arriving at the x[n] input, which we
denote as x[n](t), we have a respective continuous-time complex exponential
signal at the y[n] output, which we denote as y[n](t):

y[n](t) = g

(
x[n](t)− 1

s+ 1
y[n](t)

)
from where

y[n](t) =
g

1 + g 1
s+1

x[n](t)

that is
H(s) =

g

1 + g 1
s+1

= g
s+ 1

s+ (1 + g)

20Apparently, the variable s used in the transfer function 1
s+1

is a different s than the one

used in the instantaneous response expression for the integrator. The author apologizes for
the slight confusion.
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This transfer function has a pole at s = −(1 + g). Therefore, the structure is
stable if 1 + g > 0 and not stable otherwise.

The same transfer function analysis could have been done between the s
input and the y[n] output, in which case we would have obtained

H(s) =
s+ 1

s+ (1 + g)

The poles of this transfer function however, are exactly the same, so it doesn’t
matter.21

Generalized zero-delay feedback loop

The zero-delay feedback instantaneous response structure in Fig. 3.29 can be
considered as a particular case of a general one, drawn in Fig. 3.37, where the
input signal x[n] has been incorporated into the s term of the instantaneous
response gξ+ s and the negative feedback has been incorporated into the factor
g. Indeed, Fig. 3.37 can be obtained from Fig. 3.29 via

G = −g
S = s+ gx

Gξ + S// •// // y[n]

Figure 3.37: General zero-delay feedback structure in the instan-
taneous response form.

The zero-delay feedback equation solution written for Fig. 3.37 is obviously

y =
S

1−G
(3.37)

From the previous discussion it should be clear that the structure becomes
instantaneously unstable for G ≥ 1, that is when the total instantaneous gain
of the feedback loop is 1 or more.

The solution form (3.37) therefore provides a generic means to check an
arbitrary zero-delay feedback loop for instantaneous instability. E.g. rewriting
(3.28) (which we had written for Fig. 3.29) in the form (3.37) we obtain

y =
gx+ s

1− (−g)

where −g is the total instantaneous gain of the feedback loop (including the
feedback inversion), and thus the structure is instantaneously unstable at−g ≥ 1
(or, equivalently, g ≤ −1).

21This is a common rule: the poles of a system with multiple inputs and/or multiple outputs
are always the same regardless of the particular input-output pair for which the transfer
function is being considered (exceptions in singular cases, arising out of pole/zero cancellation
are possible, though).
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It might be tempting to simply say that the instantaneously unstable zero-
delay feedback occurs whenever the denominator of the zero-delay feedback
equation’s solution becomes zero or negative. However, this actually depends
on how did we arrive at the solution expression. E.g. if we multiply both the
numerator and the denominator of (3.28) by −1, the instantaneously unstable
case will occur for zero or positive denominator values. Therefore, we need to
make sure that our solution is written in the form (3.37) (where we need to verify
that G is the total instantaneous gain of the feedback loop) and only then can
we say that zero or negative denominator values correspond to instantaneously
unstable feedback.

Limits of bilinear transform

We have seen that for 1-poles the continuous- and discrete-time transient re-
sponses are

yt(t) = (y(0)− ys(0)) · ept

yt[n] = (y[0]− ys[0]) · p̃n

where the the discrete-time pole p̃ is obtained from continuous-time pole p via
inverse bilinear transform (3.9).

In order to compare the transient responses we could compare the growth
of y over one sampling period T :

yt(t) = yt(t− T ) · epT

yt[n] = yt[n− 1] · p̃n

The comparison of epT vs. p̃ is done in Fig. 3.38. One can notice that as
p → 2/T − 0 the value of p̃ grows too quickly (compared to epT ), approaching
infinity. This means that discrete-time transient response is growing infinitely
fast at p = 2/T , or, respectively as pT/2 = 1. At p > 2/T the value of p̃
is getting completely different from epT , particulary the sign of y[n] begins to
alternate between successive samples.

Now recall that in the 1-pole zero-delay feedback equation (3.28) we had
g = ωcT/2 = −pT/2. Thus, as g = −pT/2→ −1+0 the discrete-time transient
response is becoming infinitely fast. Close to this point and further beyond
it, trapezoidal integration doesn’t deliver a reasonable approximation to the
continuous-time case anymore.

If we attempt to interpret the same in terms of bilinear transform, then we
already know (Fig. 3.38) that the inverse bilinear transform (3.9) is becoming
infinitely large at s = 2/T , that is the inverse bilinear transform formula has a
pole at s = 2/T . This means that, if we are having a continuous-time system
with a pole at s ≈ −2/T (which in case of the 1-pole lowpass corresponds to
g = ωcT/2 ≈ −1), then after the bilinear transform the system will have a pole
at z ≈ ∞, and the transformation result doesn’t work really well.

Avoiding instantaneously unstable feedback

Alright, so we have found out that zero-delay feedback structures are instan-
taneously unstable when the total instantaneous gain of the feedback loop is
greater than or equal to 1, but what can we do about it? Firstly, the problem
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p2/T
1

-1
0

Figure 3.38: e−pT (solid) vs. p̃ = (1 + pT/2)/(1 − pT/2) (thick
dashed) as functions of p. The two thin dashed lines are asymptotes
of (1 + pT/2)/(1− pT/2).

typically doesn’t occur. Mostly, in (3.37) we have G < 0, e.g. in the 1-pole
lowpass case we have G = −g < 0 for positive cutoff values. Even if G is or
can become positive, the situation G ≥ 1 occurs at really excessive parameter
settings. Therefore one can consider, whether these extreme parameter settings
are so necessary to support, and possibly simply clip the filter parameters in
such a way that the instantaneous instability doesn’t occur.

Secondly, let’s notice that g = ωcT/2. Therefore another solution could be to
increase the sampling rate, which reduces the sampling period T and respectively
the value of g (from an alternative point of view, it shifts the inverse bilinear
transform’s pole 2/T further away from the origin).

Unstable bilinear transform

There is yet another idea, which is not widely used, but we are going to discuss
it anyway.22 So, the instantaneous instability is occurring at the moment when
one of the analog filter’s poles hits the pole of the inverse bilinear transform (3.9),
which is located at s = 2/T . On the other hand, recall that the bilinear trans-
form is mapping the imaginary axis to the unit circle, thus kind-of preserving
the frequency response. If the system is not stable, then the frequency response
doesn’t make sense. Formally, the reason for this is that the inverse Laplace

22This idea has occurred to the author during the writing of the first revision of this book.
The author didn’t try it in practice yet, neither is he aware of other attempts.

Sufficient theoretical analysis is not possible here due to the fact that practical applications
of instantaneously unstable (or any unstable, for that matter) filters occur typically for non-
linear filters, and there are not many theoretical analysis means for the latter. Hopefully there
are no mistakes in the theoretical transformations, but even if there are mistakes, at least the
idea itself could maybe work.
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transform of transfer functions only converges for σ > max {Re pn} where pn
are the poles of the transfer function, and respectively, if max {Re pn} ≥ 0, it
doesn’t converge on the imaginary axis (σ = 0). However, instead of the imag-
inary axis Re s = σ = 0, let’s choose some other axis Re s = σ > max {Re pn}
and use it instead of the imaginary axis to compute the “frequency response”.

We also need to find a discrete-time counterpart for Re s = σ. Considering
that Re s defines the magnitude growth speed of the exponentials est we could
choose a z-plane circle, on which the magnitude growth speed of zn is the same
as for eσt. Apparently, this circle is |z| = eσT . So, we need to map Re s = σ
to |z| = eσT . Considering the bilinear transform equation (3.4), we divide z by
eσT to make sure ze−σT has a unit magnitude and shift the s-plane result by σ:

s = σ +
2
T
· ze

−σT − 1
ze−σT + 1

(3.38)

We can refer to (3.38) as the unstable bilinear transform, where the word “un-
stable” refers not to the instability of the transform itself, but rather to the
fact that it is designed to be applied to unstable filters.23 Notice that at σ = 0
the unstable bilinear transform turns into an ordinary bilinear transform. The
inverse transform is obtained by

(s− σ)T
2

(ze−σT + 1) = ze−σT − 1

from where

ze−σT
(

1− (s− σ)T
2

)
= 1 +

(s− σ)T
2

and

z = eσT
1 + (s−σ)T

2

1− (s−σ)T
2

(3.39)

Apparently the inverse unstable bilinear transform (3.39) has a pole at s = σ+ 2
T .

In order to avoid hitting that pole by the poles of the filter’s transfer function
(or maybe even generally avoid the real parts of the poles to go past that value)
we could e.g. simply let

σ = max {0, Re pn}

or we could position σ midways:

σ = max
{

0, Re pn −
1
T

}
In order to construct an integrator defined by (3.38) we first need to obtain

the expression for 1/s from (3.38):

1
s

=
1

σ + 2
T ·

ze−σT−1
ze−σT+1

= T
ze−σT + 1

σT (ze−σT + 1) + 2(ze−σT − 1)
=

= T
ze−σT + 1

(σT + 2)e−σT z + (σT − 2)
= T

1 + eσT z−1

(σT + 2)− (2− σT )eσT z−1
=

23Apparently, the unstable bilinear transform defines the same relationship between Im s
and arg z as the ordinary bilinear transform. Therefore prewarping can be done in the same
way as for the ordinary bilinear transform.
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=
T

2 + σT
· 1 + eσT z−1

1− 2−σT
2+σT e

σT z−1

That is
1
s

=
T

2 + σT
· 1 + eσT z−1

1− 2−σT
2+σT e

σT z−1
(3.40)

A discrete-time structure implementing (3.40) could be e.g. the one in Fig. 3.39.
Yet another approach could be to convert the right-hand side of (3.40) to the
analog domain by the inverse bilinear transform, construct an analog implemen-
tation of the resulting transfer function and apply the trapezoidal integrator
replacement to convert back to the digital domain. It is questionable, whether
this produces better (or even different) results than Fig. 3.39.
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Figure 3.39: Transposed direct form II-style “unstable” trapezoidal
integrator.

3.14 Other replacement techniques

The trapezoidal integrator replacement technique can be seen as a particular
case of a more general set of replacement techniques. Suppose we have two
filters, whose frequency response functions are F1(ω) and F2(ω) respectively.
The filters do not need to have the same nature, particularly one can be an
analog filter while the other can be a digital one. Suppose further, there is a
frequency axis mapping function ω′ = µ(ω) such that

F2(ω) = F1(µ(ω))

Typically µ(ω) should map the entire domain of F2(ω) onto the entire domain
of F1(ω) (however the exceptions are possible).

To make the subsequent discussion more intuitive, we will assume that µ(ω)
is monotone, although this is absolutely not a must.24 In this case we could say

24Strictly speaking, we don’t even care whether µ(ω) is single-valued. We could have instead
required that

F2(µ2(ω)) = F1(µ1(ω))

for some µ1(ω) and µ2(ω).
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that F2(ω) is obtained from F1(ω) by a frequency axis warping. Particularly,
this is exactly what happens in the bilinear transform case (the mapping µ(ω)
is then defined by the equation (3.6)). One cool thing about the frequency axis
warping is that it preserves the relationship between the amplitude and phase.

Suppose that we have a structure built around filters of frequency response
F1(ω), and the rest of the structure doesn’t contain any memory elements (such
as integrators or unit delays). Then the frequency response F (ω) of this struc-
ture will be a function of F1(ω):

F (ω) = Φ(F1(ω))

where the specifics of the function Φ(w) will be defined by the details of the
container structure. E.g. if the building-block filters are analog integrators, then
F1(ω) = 1/jω. For the filter in Fig. 2.2 we then have

Φ(w) =
w

w + 1

Indeed, substituting F1(ω) into Φ(w) we obtain

F (ω) = Φ(F1(ω)) = Φ(1/jω) =
1/jω

1 + 1/jω
=

1
1 + jω

which is the already familiar to us frequency response of the analog lowpass
filter.

Now, we can view the trapezoidal integrator replacement as a substitution
of F2 instead of F1, where µ(ω) is obtained from (3.6):

ωa = µ(ωd) =
2
T

tan
ωdT

2

The frequency response of the resulting filter is obviously equal to Φ(F2(ω)),
where F2(ω) is the frequency response of the trapezoidal integrators (used in
place of analog ones). But since F2(ω) = F1(µ(ω)).

Φ(F2(ω)) = Φ(F1(µ(ω)))

which means that the frequency response Φ(F2(·)) of the structure with trape-
zoidal integrators is obtained from the frequency response Φ(F1(·)) of the struc-
ture with analog integrators simply by warping the frequency axis. If the warp-
ing is not too strong, the frequency responses will be very close to each other.
This is exactly what is happening in the trapezoidal integrator replacement and
generally in the bilinear transform.

Differentiator-based filters

We could have used some other two filters, with their respective frequency re-
sponses F1 and F2. E.g. we could consider continuous-time systems built around
differentiators rather than integrators.25 The transfer function of a differentia-
tor is apparently simply H(s) = s, so we could use (3.4) to build a discrete-time

25The real-world analog electronic circuits are “built around” integrators rather than dif-
ferentiators. However, formally one still can “invert” the causality direction in the equations
and pretend that ẋ(t) is defined by x(t), and not vice versa.
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“trapezoidal differentiator”. Particularly, if we use the direct form II approach,
it could look similarly to the integrator in Fig. 3.9. When embedding the cutoff
control into a differentiator (in the form of a 1/ωc gain), it’s probably better
to position it after the differentiator, to avoid the unnecessary “de-smoothing”
of the control modulation by the differentiator. Replacing the analog differen-
tiators in a structure by such digital trapezoidal differentiators we effectively
perform a differentiator-based TPT.

E.g. if we replace the integrator in the highpass filter in Fig. 2.9 by a dif-
ferentiator, we essentially perform a 1/s← s substitution, thus we should have
obtained a (differentiator-based) lowpass filter. Remarkably, if we perform a
differentiator-based TPT on such filter, the obtained digital structure is fully
equivalent to the previously obtained integrator-based TPT 1-pole lowpass fil-
ter.

Allpass substitution

One particularly interesting case occurs when F1 and F2 define two different
allpass frequency responses. That is |F1(ω)| ≡ 1 and |F2(ω)| ≡ 1. In this case
the mapping µ(ω) is always possible. Especially since the allpass responses (de-
fined by rational transfer functions of analog and digital systems) always cover
the entire phase range from −π to π.26 In intuitive terms it means: for a filter
built of identical allpass elements, we can always replace those allpass elements
with an arbitrary other type of allpass elements (provided all other elements are
memoryless, that is there are only gains and summators). We will refer to this
process as allpass substitution. Whereas in the trapezoidal integrator replace-
ment we have replaced analog integrators by digital trapezoidal integrators, in
the allpass substitution we replace allpass filters of one type by allpass filters of
another type.

We can even replace digital allpass filters with analog ones and vice versa.
E.g., noticing that z−1 elements are allpass filters, we could replace them with
analog allpass filters. One particularly interesting case arises out of the inverse
bilinear transform (3.9). From (3.9) we obtain

z−1 =
1− sT

2

1 + sT
2

(3.41)

The right-hand side of (3.41) obviously defines a stable 1-pole allpass filter,
whose cutoff is 2/T . We could take a digital filter and replace all z−1 elements
with an analog allpass filter structure implementing (3.41). By doing this we
would have performed a topology-preserving inverse bilinear transform.

We could then apply the cutoff parametrization to these underlying analog
allpass elements:

sT

2
← s

ωc

so that we obtain

z−1 =
1− s/ωc
1 + s/ωc

26Actually, for −∞ < ω < +∞, they cover this range exactly N times, where N is the order
of the filter.
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The expression s/ωc can be also rewritten as sT/2α, where α is the cutoff scaling
factor:

z−1 =
1− sT/2α
1 + sT/2α

(3.42)

Finally, we can apply the trapezoidal integrator replacement to the cutoff-scaled
analog filter, converting it back to the digital domain. By doing so, we have
applied the cutoff scaling in the digital domain! On the transfer function level
this is equivalent to applying the bilinear transform to (3.42), resulting in

z−1 =
1− sT/2α
1 + sT/2α

←
1− z−1

α(z+1)

1 + z−1
α(z+1)

=

=
α(z + 1)− (z − 1)
α(z + 1) + (z − 1)

=
(α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

That is, we have obtained a discrete-time allpass substitution

z−1 ← (α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

which applies cutoff scaling in the digital domain.27 The allpass filter

H(z) =
(α− 1)z + (α+ 1)
(α+ 1)z + (α− 1)

should have been obtained, as described, by the trapezoidal integrator replace-
ment in an analog implementation of (3.42), alternatively we could use a direct
form implementation. Notice that this filter has a pole at z = (α− 1)/(α+ 1).
Since |α− 1| < |α+ 1| ∀α > 0, the pole is always located inside the unit circle,
and the filter is always stable.

SUMMARY

We have considered three essentially different approaches to applying time-
discretization to analog filter models: naive, TPT (by trapezoidal integrator
replacement), and the classical bilinear transform (using direct forms). The
TPT approach combines the best features of the naive implementation and the
classical bilinear transform.

27Differently from the analog domain, the digital cutoff scaling doesn’t exactly shift the
response along the frequency axis in a logarithmic scale, as some frequency axis warping is
involved. The resulting frequency response change however is pretty well approximated as
shiting in the lower frequency range.
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Chapter 4

State variable filter

After having discussed 1-pole filters, we are going to instroduce a 2-pole filter.
With 2-pole filters there is more freedom in choosing the filter topology than
with 1-poles, where any implementation of the latter would essentially be based
on a feedback loop around an integrator. A 2-pole topology of fundamental
importance and high usability is a classical analog model, commonly referred to
as state-variable filter (SVF). It can also serve as a basis for building arbitrary
2-pole filters by means of modal mixture.

4.1 Analog model

The block diagram of the state-variable filter is shown in Fig. 4.1. The three
outputs are the highpass, bandpass and lowpass signals. As usual, one can apply
transposition to obtain a filter with highpass, bandpass and lowpass inputs
(Fig. 4.2).

+ '!&"%#$// •//
∫

// •//
∫

// •//

111 



��

+ '!&"%#$�� oo

−
OO //

// //

x(t) yLP(t)

2R

yHP(t) yBP(t)

Figure 4.1: 2-pole multimode state-variable filter.

The differential equations implied by Fig. 4.1 are

yHP = x− 2RyBP − yLP

ẏBP = ωc · yHP

ẏLP = ωc · yBP

(4.1)

95
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y(t) xLP(t)
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−1

xHP(t) xBP(t)

Figure 4.2: Transposed 2-pole multimode state-variable filter.

Rewriting them in terms of the lowpass signal y = yLP and combining them
together we obtain

ÿ

ωc

2

+ 2R
ẏ

ωc
+ y = x (4.2)

or
ÿ + 2Rωcẏ + ω2

cy = ω2
cx (4.3)

In a similar fashion one can easily obtain the transfer functions for the output
signals in Fig. 4.1. Assuming unit cutoff and complex exponential signals, we
have

yHP = x− 2RyBP − yLP

yBP =
1
s
yHP

yLP =
1
s
yBP

from where
yHP = x− 2R · 1

s
yHP −

1
s2
yHP

from where (
1 +

2R
s

+
1
s2

)
yHP = x

and

HHP(s) =
yHP

x
=

1

1 +
2R
s

+
1
s2

=
s2

s2 + 2Rs+ 1

Thus

HHP(s) =
s2

s2 + 2Rs+ 1
=

s2

s2 + 2Rωcs+ ω2
c

(ωc = 1)

HBP(s) =
s

s2 + 2Rs+ 1
=

ωcs

s2 + 2Rωcs+ ω2
c

(ωc = 1)

HLP(s) =
1

s2 + 2Rs+ 1
=

ω2
c

s2 + 2Rωcs+ ω2
c

(ωc = 1)
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Notice that yLP(t)+2RyBP(t)+yHP(t) = x(t), that is, the input signal is split
into lowpass, bandpass and highpass components. The same can be expressed
in the transfer function form:

HLP(s) + 2RHBP(s) +HHP(s) = 1 (4.4)

Amplitude responses

The amplitude responses of the state-variable filter are plotted in Figs. 4.3, 4.4
and 4.5. The pass-, stop- and transition bands of the low- and high-pass filters
are defined in the same manner as for the 1-poles, where the transition band now
can contain a peak in the amplitude response. For the bandpass the passband is
located in the middle (around the cutoff), and there is a stop- and a transition
band on each side of the cutoff. The slope rolloff speed is obviously −12dB/oct
for the low- and high-pass, and −6dB/oct for the bandpass.

ω

|H(jω)|, dB

R = 1

R = 0.1

ωcωc/8 8ωc

0

-6

-12

-18

+6

+12

Figure 4.3: Amplitude response of a 2-pole lowpass filter.

One could observe that the highpass response is a mirrored version of the
lowpass response, while the bandpass response is symmetric by itself. The sym-
metry between the lowpass and the highpass amplitude responses has a clear
algebraic explanation: applying the LP to HP substitution to a 2-pole lowpass
produces a 2-pole highpass and vice versa. The symmetry of the bandpass am-
plitude response has the same explanation: applying the LP to HP substitution
to the 2-pole bandpass converts it into itself.

Since

|s2 + 2Rs+ 1|

∣∣∣∣∣
s=j

= | − 1 + 2Rj + 1| = 2R

the amplitude response at the cutoff is 1/2R for all three filter types. Except
for the bandpass, the cutoff point ω = 1 is not exactly the peak location but it’s
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Figure 4.4: Amplitude response of a 2-pole highpass filter.
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Figure 4.5: Amplitude response of a 2-pole bandpass filter.

pretty close (the smaller the value of R, the closer is the true peak to ω = 1).
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Phase responses

The phase response of the lowpass is

argHLP(jω) = arg
1

1 + 2Rjω − ω2
= − arg(1 + 2Rjω − ω2) =

= − arctan
2Rω

1− ω2
= − arccot

1− ω2

2Rω
= − arccot

ω−1 − ω
2R

(4.5)

where we had to switch from arctan to arccot, since the principal value of arctan
gives wrong results for ω > 1. Fig. 4.6 illustrates.

ω

argH(jω)

R = 5

R = 0.2

R = 1

ωcωc/8 8ωc

0

−π/2

−π

Figure 4.6: Phase response of a 2-pole lowpass filter. Bandpass
and highpass responses are the same, except that they are shifted
by +90◦ and 180◦ respectively.

We could notice the 2-pole phase response has the same kind of symmetry
around the cutoff point in the logarithmic frequency scale as the 1-pole filters.
This property can be explained from (4.5) by noticing that the substitution
ω ← 1/ω changes the sign of the argument of arccot and by using the property
of arccot

arccotx+ arccot(−x) = π

We also could notice that the steepness of the phase response is affected by the
parameter R. Explicitly writing the phase response in a logarithmic frequency
scale we have

argHLP(jex) = − arccot
e−jx − ejx

2R
= − arccot

− sinhx
R

(4.6)

thus R simply scales the argument of arccot which results in stretching or shrink-
ing of the phase response.

The bandpass phase response is a +90◦-shifted lowpass response:

argHBP(jω) = arg
jω

1 + 2Rjω − ω2
=
π

2
+ argHLP(s)
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The bandpass phase response is a 180◦-shifted lowpass response:

argHHP(jω) = arg
(jω)2

1 + 2Rjω − ω2
= π + argHLP(s)

The phase response at the cutoff is −90◦ for the lowpass:

argHLP(j) = arg
1

1 + 2Rj − 1
= arg

1
2Rj

= −π
2

respectively giving 0◦ for the bandpass and +90◦ for the highpass.
It can be also observed in Fig. 4.6 that the lowpass phase response is close

to zero in the passband, the same as for the 1-pole lowpass. As we shuld
have expected, the same also holds for the highpass’s passband. Somewhat
remarkably, as we just established by evaluating the bandpass phase response
at the cutoff, the same property also holds for the bandpass’s passpand, although
at small values of R the phase will be close to zero only in a small neighborhood
of the cutoff.

4.2 Resonance

With a 1-pole lowpass or highpass filter, the only parameter to control was the
filter cutoff, shifting the amplitude response to the left or to the right in the
logarithmic frequency scale. With 2-pole filters there is an additional parameter
R, which, as the reader could have noticed from Figs. 4.3, 4.4 and 4.5 controls
the height of the amplitude response peak occuring closely to ω = ωc. A narrow
peak in the amplitude response is usually referred to as resonance. Thus, we
can say that the R parameter controls the amount of resonance in the filter.

On the other hand, from the same figures we can notice that the resonance
increases (the peak becomes higher and more narrow) as R decreases. It is easy
to verify that at R = 0 the resonance peak becomes infinitely high. A little bit
later we will also establish the fact that the state variable filter is stable if and
only if R > 0. Thus, the parameter R actually has the function of decreasing
or damping the resonance. For that reason we refer to the R parameter as
the damping.1 By controlling the damping parameter we effectively control the
filter’s resonance.2

Damping and selfoscillation

At R = 0 and x(t) ≡ 0 the equation (4.3) turns into

ÿ = −ω2
cy

1A more correct term, used in theory of harmonic oscillations, is damping ratio, where the
commonly used notation for the same parameter is ζ.

2The “resonance” control for the SVF filter can be introduced in a number of different
ways. One common approach is to use the parameter Q = 1/2R, however this doesn’t allow
to go easily into the selfoscillation range in the nonlinear versions of this filter, also the
math is generally more elegant in terms of R than in terms of Q. Another option is using
r = 1−R, which differs from the resonance control parameter k of SKF/TSK filters (discussed
in Section 5.8) just by a factor of 2, the selfoscillation occuring at r = 1. Other, more
sophisticated mappings, can be used for a “more natural feel” of the resonance control.
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which is effectively a spring-mass equation

mÿ = −ky

or
ÿ = − k

m
y

where respectively ωc =
√
k/m. Starting from a non-zero initial state such

system will oscillate around the origin infinitely long. Thus, in the absence of
the damping signal path (Fig. 4.7), the filter will be constantly selfoscillating.3

Notably, the selfoscillation is appearing at the setting R = 0 where the resonance
peak is getting infinitely high. This is a general property of resonating filters
and has to do with the relationship between the filter poles and the filter’s
transient response, both covered later in this chapter and additionally and in a
more general form in Chapter 7.

+ '!&"%#$// •//
∫

// •//
∫

// •//
−

OO //

// //

x(t) yLP(t)

yHP(t) yBP(t)

Figure 4.7: 2-pole multimode state-variable filter without the
damping path (selfoscillating).

The introduction of the damping signal

ÿ = −ω2
cy − 2Rẏ

reduces the amount of resonance in the filter, which in terms of a spring-mass
system works as a 1st-order energy dissipation term:

mÿ = −ky − 2cẏ

This should give a better idea of why the R parameter is referred to as damping.
By further adding an external force to the spring-mass system one effectively

adds the input signal.4

3The selfoscillating state at R = 0 is a marginally stable state. As mentioned earlier, due
to the noise present in the system (such as numerical errors in a digital implementation),
we shouldn’t expect to be able to exactly hold a system in a marginally stable state. In
order to have reliable selfoscillation one usually needs to introduce nonlinear elements into
the system. E.g. by introducing the saturating behavior one would be able to lower R below
0, thereby increasing the resonance even further, without making the filter explode. So,
while selfoscillation formally appears at R = 0, it is becoming reliable at R < 0, given that
nonlinearities prevent the filter from exploding.

4Thereby the differential equation becomes formally equivalent to an SVF, but there still
is an essential difference. The state of a spring-mass system consists of a position y(t) and a
velocity ẏ(t). Changes to the system parameters will therefore directly change the kinetic and
potential energies, which can result in a sudden increase or reduction of the amplitude of the
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Resonance peak

We can find the exact position and the height of the resonance peak by looking
for the local maximum of the (squared) amplitude response. E.g. for the lowpass
amplitude response:

|HLP(jω)|2 =
1

|(jω)2 + 2Rjω + 1|2
=

1
(1− ω2)2 + 4R2ω2

Instead of looking for the maximum of |HLP(jω)|2 we can look for the minumum
of the reciprocal function:

|HLP(jω)|−2 = ω4 + 2(2R2 − 1)ω2 + 1

Clearly, |HLP(jω)|−2 is a quadratic polynomial in ω2 with the minimum at
ω2 = 1− 2R2. The resonance peak position is thus

ωpeak =
√

1− 2R2

where for R ≥ 1/
√

2 (we are considering only positive values of R) there is no
minimum at ω2 > 0 and respectively no resonance peak. Note that the peak
thereby starts at ω = 0 at R = 1/

√
2 and, as R decreases to zero, moves towards

ω = 1.
The resonance peak height is simply the value of the amplitude response

evaluated at ωpeak:

|HLP(jωpeak)|2 =
1

(1− (1− 2R2))2 + 4R2(1− 2R2)
=

1
4R4 + 4R2 − 8R4

=

=
1

4R2 − 4R4
=

1
4R2(1−R2)

(R < 1/
√

2)

and
|HLP(jωpeak)| = 1

2R
√

1−R2
(R < 1/

√
2)

Thus at R = 1/
√

2 the peak height is formally |HLP(jωpeak)| = 1, correspond-
ing to the amplitude response not having the peak yet. At R → 0 we have
|HLP(jωpeak)| ∼ 1/2R. The above expression also allows us to find the value of
R given a desired peak height A. Starting from

A =
1

2R
√

1−R2
(4.7)

we have
2R
√

1−R2 = A−1

R2(1−R2) =
A−2

4

R4 −R2 +
A−2

4
= 0

swinging. In comparison, in the SVF the system state consists of the “lowpass” integrator’s
state y(t) and “bandpass” integrator’s state, which according to (4.1) is ẏ(t)/ωc. In this
case changes to the filter parameters will affect the filter’s output in a more gradual way.
Particulary, according to (2.29), changes to the cutoff will not affect the output amplitude at
all.
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R2 =
1±
√

1−A−2

2
Taking into account the allowed range of R (which is 0 < R < 1/

√
2), we obtain

R =

√
1−
√

1−A−2

2
(A ≥ 1) (4.8)

Recalling that the amplitude response of the 2-pole highpass is simply a
symmetrically flipped amplitude response of the 2-pole lowpass, we realize that
the same considerations apply to the 2-pole highpass, except that the expres-
sion for ωpeak needs to be reciprocated. For the bandpass filter the amplitude
response peak is always exactly at the cutoff.

Butterworth filter

The threshold value R = 1/
√

2 at which the resonance peak starts to appear has
another interesting property. At this setting the (logarithmic frequency scale)
amplitude responses of the 2-pole lowpass and highpass are shrunk horizontally
two times around the cutoff point, as compared to those of 1-poles (the phase
response is transformed in a more complicated way, which is of little interest to
us here). This is a particular case of a Butterworth filter. Butterworth filters
will be discussed in a generalized form in Chapter 8, but we can also show this
shrinking property explicitly here. Indeed, for R = 1/

√
2 we have∣∣∣s2 +

√
2 · s+ 1

∣∣∣2 ∣∣∣∣∣
s=jω

=
∣∣∣1− ω2 + j

√
2 · ω

∣∣∣2 = (1− ω2)2 + 2ω2 =

= 1 + ω4 =
∣∣1 + jω2

∣∣2 = |1 + s|2
∣∣∣∣∣
s=jω2

Now, the substitution ω ← ω2 corresponds to the two times shrinking in the
logarithmic frequency scale: logω ← 2 logω. Thus, for the lowpass 2-pole we
have ∣∣∣∣ 1

s2 +
√

2 · s+ 1

∣∣∣∣
∣∣∣∣∣
s=jω

=
∣∣∣∣ 1
1 + s

∣∣∣∣
∣∣∣∣∣
s=jω2

and for the highpass filter we have∣∣∣∣ s2

s2 +
√

2 · s+ 1

∣∣∣∣
∣∣∣∣∣
s=jω

=
∣∣∣∣ s

1 + s

∣∣∣∣
∣∣∣∣∣
s=jω2

The readers can refer to Fig. 8.13 for the illustration of the shrinking effect.
Since for R < 1/

√
2 the amplitude response obtains a resonance peak, the

Butterworth 2-pole filter is the one with the “sharpest” possible cutoff among
all non-resonating 2-poles.

4.3 Poles

Solving s2 + 2Rs+ 1 = 0 we obtain the poles of the filter at

p1,2 = −R±
√
R2 − 1 =

{
−R±

√
R2 − 1 if |R| ≥ 1

−R± j
√

1−R2 if −1 ≤ R ≤ 1
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Thus, the poles are located in the left semiplane if and only if R > 0. As with
1-poles, the location of the poles in the left semiplane is sufficient and necessary
for the filter to be stable.5

For |R| ≤ 1 the poles are located on the unit circle

(Re p)2 + (Im p)2 = (−R)2 + (
√

1−R2)2 = 1

This also implies that R is equal to the cosine of the angle between the negative
real axis and the direction to the pole (Fig. 4.8).

α

−α

−1 1

−j

j

0 Re s

Im s

cosα = R

Figure 4.8: Poles of a resonating 2-pole filter (ωc = 1).

As R is getting close to zero, the poles are getting close to the imaginary
axis. By definition of a pole, the transfer function is infinitely large at the
poles, which means it is also having large values on the imaginary axis close to
the poles. This corresponds to the resonance peak appearing in the amplitude
response. At R = 0 the poles are located right on the imaginary axis and the
filter selfoscillates.

At |R| ≥ 1 the poles are real and mutually reciprocal:6

(−R−
√
R2 − 1) · (−R+

√
R2 − 1) = 1

(Fig. 4.9). The filter thus “falls apart” into a serial combination of two 1-pole
filters:

HLP(s) =
1

s2 + 2Rs+ 1
=

1
s− p1

· 1
s− p2

5Later we will discuss the transient response of the SVF and the respective effects of the
poles position on the stability.

6Actually, the poles are mutually reciprocal at any R (since their product should be equal
to the constant term of the denominator). For complex poles the reciprocal property manifests
itself as conjugate symmetry of the poles, since the poles are lying on the unit circle and the
reciprocation does not change their absolute magnitude.
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HBP(s) =
s

s2 + 2Rs+ 1
=

s

s− p1
· 1
s− p2

HHP(s) =
s2

s2 + 2Rs+ 1
=

s

s− p1
· s

s− p2

where p1p2 = 1.7 These 1-pole filters become visible in the amplitude responses
at sufficiently large R as two different “cutoff points” (Fig. 4.10).
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Figure 4.9: Poles of a non-resonating 2-pole filter (ωc = 1).
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Figure 4.10: Amplitude response of a non-resonating 2-pole low-
pass filter.

7Of course the same decomposition is formally possible for complex poles, but a 1-pole
filter with a complex pole cannot be implemented as a real system.
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Resonance redefined

The pole positions can give us another way of defining the point where we
consider the resonance to appear. Previously we have found that the resonance
peak appears at R < 1/

√
2. However, the amplitude response peak is only one

manifestation of the resonance effect. Another aspect of resonance is that, as we
shall see later, the transient response of the filter contains sinusoidal oscillation,
which occurs whenever the poles are complex. Therefore, using the presence of
transient oscillations as the alternative definition of the resonance, we can say
that the resonance occurs when R < 1.

Similarly to R = 1/
√

2, the threshold setting R = 1 has a special property.
At this setting both poles are located at s = −1 and the transfer function of the
2-pole lowpass becomes equal to the transfer function of two serially connected
1-pole lowpasses:

1
s2 + 2s+ 1

=
(

1
s+ 1

)2

while the transfer function of the 2-pole highpass becomes equal to the transfer
function of two serially connected 1-pole highpasses:

s2

s2 + 2s+ 1
=
(

s

s+ 1

)2

This means that at this value of R the (decibel-scale) amplitude responses of
the 2-pole lowpass and highpass are stretched vertically two times compared to
those of the 1-pole lowpass and highpass (Fig. 4.11), and the same holds for the
phase responses (Fig. 4.12).

ω
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ωcωc/8 8ωc

0
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Figure 4.11: Amplitude response of the 2-pole lowpass filter at
R = 1 (solid line) compared to the amplitude response of the 1-
pole lowpass filter (dashed line).

Non-unit cutoff

If ωc 6= 1 then the transfer function denominator becomes s2 + 2Rωcs+ ω2
c (or

(s/ωc)2 + 2Rs/ωc + 1, if no simplifications are performed on the entire transfer
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Figure 4.12: Phase response of the 2-pole lowpass filter at R =
1 (solid line) compared to the amplitude response of the 1-pole
lowpass filter (dashed line).

function) and the formula for the poles becomes

p1,2 = ωc · (−R±
√
R2 − 1) =

{
ωc · (−R±

√
R2 − 1) if |R| ≥ 1

ωc · (−R± j
√

1−R2) if −1 ≤ R ≤ 1
(4.9)

The formula (4.9) can be obtained either by directly solving the quadratic equa-
tion or by noticing that the cutoff substitution s ← s/ωc scales the poles ac-
cording to p← pωc. Complex poles are therefore located on the circle of radius
ωc (Fig. 4.13), while real poles have a geometric mean equal to ωc (Fig. 4.14).
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Figure 4.13: Poles of a resonating 2-pole filter (ωc 6= 1).
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Figure 4.14: Poles of a non-resonating 2-pole filter (ωc 6= 1).

Transfer function in terms of poles

Writing the lowpass transfer funtion in terms of poles we have for ωc = 1

HLP(s) =
1

s2 + 2Rs+ 1
=

1
s− p1

· 1
s− p2

=
1

s2 − (p1 + p2)s+ 1

and for an arbitrary ωc respectively

HLP(s) =
ω2
c

s2 + 2Rωcs+ ω2
c

=
p1p2

s2 − (p1 + p2)s+ p1p2

Respectively

−(p1 + p2) = 2Rωc (4.10a)

p1p2 = ω2
c (4.10b)

from where

ωc =
√
p1p2 (4.11a)

R = −p1 + p2

2ωc
= − (p1 + p2)/2

√
p1p2

(4.11b)

In terms of ω1 = −p1 and ω2 = −p2 the same turns into

ω1 + ω2 = 2Rωc
ω1ω2 = ω2

c

and

ωc =
√
ω1ω2 (4.12a)
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R =
ω1 + ω2

2ωc
=

(ω1 + ω2)/2
√
ω1ω2

(4.12b)

Notice that thereby ωc is a geometric mean of the 1-pole cutoffs, and R is a
ratio of their arithmetic and geometric means. Equations (4.12) can be used to
represent a series of two 1-poles with given cutoffs by an SVF.8

Pole cutoff and damping

A pair of complex poles of an SVF must be a conjugate pair, therefore we have
|p1| = |p2|, Re p1 = Re p2 and Im p1 = − Im p2. The equations (4.10) in this
case turn into

−2 Re pn = 2Rωc
|pn|2 = ω2

c

(n = 1, 2)

These relationships motivate the introduction of the notion of the “associated
cutoff and damping” of an arbitrary pair of conjugate poles p and p∗, where we
would have

−2 Re p = 2Rωc
|p|2 = ω2

c

(n = 1, 2)

and
ωc = |p|

R =
−Re p
|p|

(n = 1, 2) (4.13)

(Fig. 4.13 can serve as an illustration).
This idea is particularly convenient, if we imply that a particular high-order

transfer function is to be implemented as a cascade of 2-poles (further discussed
in Section 8.2), in which case (4.13) gives us ready formulas for the computation
of the cutoff and damping of the respective 2-pole. Also, unless the high-order
transfer function is having coinciding complex poles, the separation of complex
poles into pairs of conjugate poles is unambiguous.

The same can be done for real poles, if desired, where we can use (4.11)
instead of (4.13) but this would work only under the restriction that both poles
are having the same sign (Fig. 4.14 can serve as an illustration).9 Also the
grouping of such poles into pairs can be done in different ways.

Sometimes the same terminology is also convenient for zeros. Even though
formally it is not correct, since zeros are not directly associated with a cutoff or
damping, it is sometimes handy to treat a pair of zeros as roots of a polynomial
s2 + 2Rωcs+ ω2

c .

4.4 Digital model

Skipping the naive implementation, which the readers should be perfectly capa-
ble of creating and analyzing themselves by now, we proceed with the discussion
of the TPT model.

8Apparently, (4.12) defines only the denominator of the SVF’s transfer function. The
numerator would need to be computed separately.

9Apparently (4.11) can be used all the time, regarless of whether the poles are complex
or real. It’s just that in case of complex poles we have simpler and more intuitive formulas
(4.13).
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Assuming gξ+sn instantaneous responses for the two trapezoidal integrators
one can redraw Fig. 4.1 to obtain the discrete-time model in Fig. 4.15.

+ '!&"%#$// •// gξ + s1// •// gξ + s2// •//

111 
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x[n] yLP[n]

2R
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Figure 4.15: TPT 2-pole multimode state-variable filter in the in-
stantaneous response form.

Picking yHP as the zero-delay feedback equation’s unknown10 we obtain from
Fig. 4.15:

yHP = x− 2R(gyHP + s1)− g(gyHP + s1)− s2
from where (

1 + 2Rg + g2
)
yHP = x− 2Rs1 − gs1 − s2

from where

yHP =
x− (2R+ g)s1 − s2

1 + 2Rg + g2
(4.14)

Apparently (4.14) has the form (3.37), where the total instantaneous gain of
the zero-delay feedback loop in Fig. 4.15 is G = −(2Rg + g2) and thus the
instantaneously unstable case occurs when the denominator of (4.14) is negative.
However, as long as g > 0 and R > −1, the denominator of (4.14) is always
positive:

1 + 2Rg + g2 > 1 + 2 · (−1) · g + g2 = (1− g)2 ≥ 0

thus under these conditions the filter in not becoming instantaneously unstable.
Using yHP we can proceed defining the remaining signals in the structure,

in the same way as we did for the 1-pole in Section 3.9. Assuming that we are
using trasposed direct form II integrators (Fig. 3.11), sn are the states of the z−1

elements in the respective integrators and g = ωcT/2 (prewarped). Therefore
by precomputing the values 1/(1+2Rg+g2) and 2R+g in advance, the formula
(4.14) can be computed in 2 subtractions and 2 multiplications. What remains
is the processing of both integrators. A transposed direct form II integrator
can be computed in 1 multiplication and 2 additons. Thus, the entire SVF
processing routine needs 4 multiplications and 6 additions/subtractions:

// perform one sample tick of the SVF
HP := (x-g1*s1-s2)*d; // g1=2R+g, d=1/(1+2Rg+g^2)

10The state-variable filter has two feedback paths sharing a common path segment. In order
to obtain a single feedback equation rather than an equation system we should pick a signal
on this common path as the unknown variable.
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v1 := g*HP; BP := v1+s1; s1 := BP+v1; // first integrator
v2 := g*BP; LP := v2+s2; s2 := LP+v2; // second integrator

If we are not interested in the highpass signal, we could obtain a more optimal
implementation by solving for yBP instead:

yBP = g(x− 2RyBP − gyBP − s2) + s1

(1 + 2Rg + g2)yBP = g(x− s2) + s1

yBP =
g(x− s2) + s1
1 + 2Rg + g2

This gives us:

// perform one sample tick of the SVF BP/LP
BP := (g*(x-s2)+s1)*d; // d=1/(1+2Rg+g^2)
v1 := BP-s1; s1 := BP+v1; // first integrator
v2 := g*BP; LP := v2+s2; s2 := LP+v2; // second integrator

This implementation has 3 multiplications and 6 additions/subtractions.
If we need only the BP signal, then we could further transform the expres-

sions used to update the integrators:

// perform one sample tick of the SVF BP
BP := (g*(x-s2)+s1)*d; // d=1/(1+2Rg+g^2)
BP2 := BP+BP; s1 := BP2-s1; // first integrator
v22 := g*BP2; s2 := s2+v22; // second integrator

That’s 3 multiplications and 5 additions/subtractions.

4.5 Normalized bandpass filter

By multiplying the bandpass filter’s output by 2R:

HBP1(s) = 2RHBP(s) =
2Rs

s2 + 2Rs+ 1
(4.15)

we obtain a bandpass filter which has a unit gain (and zero phase response) at
the cutoff:

HBP1(j) =
2Rj

j2 + 2Rj + 1
= 1

For that reason this version of the 2-pole bandpass filter is referred to as a
unit-gain or normalized bandpass. Fig. 4.16 illustrates the amplitude response.

The normalized bandpass has a better defined passband than the ordinary
bandpass, since here we can define the frequency range where |HBP1(jω)| ≈ 1 as
the passband. Notably, in Fig. 4.16 one observes that the width of the passband
grows with R. At the same time from Fig. 4.6 one can notice that the width
of the band where the bandpass phase response is close to zero also grows with
R. Thus, the phase response of the normalized bandpass filter is close to zero
in the entire passband of the filter, regardless of R.11

11This can be confirmed in a more rigorous manner by the fact (which we establish in
Section 4.6) that the frequency response of the 2-pole normalized bandpass filter can be
obtained from the frequency response of the 1-pole lowpass filter by a frequency axis mapping.
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ω

|H(jω)|, dB
R = 5

R = 1
R = 0.1

ωcωc/8 8ωc
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-12

-18

Figure 4.16: Amplitude response of a 2-pole unit gain bandpass
filter.

Rewriting (4.4) in terms of the normalized bandpass we get

HLP(s) +HBP1(s) +HHP(s) = 1

that is
x(t) = yLP(t) + yBP1(t) + yHP(t)

Topology

Notice that the unit gain bandpass signal can be directly picked up at the output
of the 2R gain element as shown in Fig. 4.17.
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Figure 4.17: State-variable filter with a normalized bandpass out-
put.

If the damping parameter is to be modulated at high rate, rather than
multiplying the bandpass output by 2R, it might be better to multiply the
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filter’s input by 2R:
MMMqqq
// HBP(s)// //

2R

The reasoning is pretty much the same as for positioning the cutoff gains before
the integrators or for preferring the transposed (multi-input) filters for modal
mixing: we let the integrator smooth the jumps or quick changes in the signal.
This will be given for granted if we use the transposed version of Fig. 4.17.

Instead of using the transposed version, we could inject the input signal into
the Fig. 4.17 filter structure as shown in Fig. 4.18. However, by multplying
the input rather than the output by 2R we have not only changed the “BP”
output signal to normalized bandpass, we have also changed the amplitudes of
the LP and HP outputs. Notably, Fig. 4.18 is essentially the transposed version
of Fig. 4.17, except for the relative placement of the second integrator and an
invertor.

∫
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∫
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Figure 4.18: Normalized bandpass state-variable filter with pre-
filter 2R gain.

Prewarping

The standard application of the bilinear transform prewarping technique implies
that we want the cutoff point to be positioned exactly at ωc on the digital
frequency axis. However with the normalized bandpass filter the positioning
of the left and right transition band slopes is more important than the exact
positioning of the cutoff. At the same time, the damping parameter doesn’t
seem to have much (or any) vertical effect on the amplitude response, mainly
controlling the distance between the slopes. Thus we have two degrees of control
freedom (the cutoff and the damping) which we could attempt to use to position
the two slopes as exactly as possible. Instead of developing the corresponding
math just for the normalized bandpass filter, though, we are going to do this in
a more general manner in Section 4.6.
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4.6 LP to BP/BS substitutions

The 2-pole unit gain bandpass response can be obtained from the lowpass re-
sponse 1/(1 + s) by the so-called LP to BP (lowpass to bandpass) substitution:

s← 1
R
· s+ s−1

2
(4.16)

We will also occasionally refer to the LP to BP substitution as the LP to BP
transformation, making no particular disctinction between both terms.

Since s and 1/s are used symmetrically within the right-hand side of (4.16),
it immediately follows that the result of the substitution is invariant relative
to the LP to HP substitution s ← 1/s. Therefore the result of the LP to BP
substitution has an amplitude response which is symmetric in the logarithmic
frequency scale.

Using s = jω, we obtain

jω ← 1
R
· jω + 1/jω

2
or

ω ← 1
R
· ω − ω

−1

2
Denoting the new ω as ω′ we write

ω =
1
R
· ω
′ − ω′−1

2
(4.17)

Instead of trying to understand the mapping of ω to ω′ it is easier to understand
the inverse mapping from ω′ to ω, as explicitly specified by (4.17). Furthermore,
it is more illustrative to express ω′ in the logarithmic scale:

ω =
1
R
· e

lnω′ − e− lnω′

2
=

1
R

sinh lnω′ if ω > 0

ω = − 1
R
· e

ln |ω′| − e− ln |ω′|

2
= − 1

R
sinh ln |ω′| if ω < 0

Thus
ω =

1
R

sinh (sgnω′ · ln |ω′|) (4.18)

Since ln |ω′| takes up the entire real range of values in each of the cases ω > 0
and ω < 0 and respectively, so does sinh(sgnω′ · ln |ω′|),

ω′ ∈ (0,+∞) ⇐⇒ ω ∈ (−∞,+∞)
ω′ ∈ (−∞, 0) ⇐⇒ ω ∈ (−∞,+∞)

This means that the entire range ω ∈ (−∞,+∞) is mapped once onto the
positive frequencies ω′ and once onto the negative frequencies ω′. Furthermore,
the mapping and its inverse are strictly increasing on each of the two segments
ω > 0 and ω < 0, since dω/dω′ > 0. The unit frequencies ω′ = ±1 are mapped
from ω = 0.

Since we are often dealing with unit-cutoff transfer functions (ωc = 1), it’s
interesting to see to which frequencies ω′c the unit cutoff is mapped. Recalling
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that the entire bipolar range of ω is mapped to the positive range of ω′, we need
to include the negative cutoff point (ωc = −1) into our transformation. On the
other hand, we are interested only in positive ω′c, since the negative-frequency
range of the amplitude response is symmetric to the positive-frequency range
anyway. Under these reservations, from (4.18) we have:

1
R

sinh lnω′c = ±1

from where lnω′c = ± sinh−1R, or, changing the logarithm base:

log2 ω
′
c = ± sinh−1R

ln 2

Note that the above immediately implies that the two points ω′c are located at
mutually reciprocal positions.

The distance in octaves between the two ω′c points can be defined as the
bandwidth of the transformation:

∆ =
2

ln 2
sinh−1R (4.19)

Since the points ω′c are mutually reciprocal, they are located at ±∆/2 octaves
from ω = 1.

Inverting (4.19) we can obtain the damping, given the bandwidth ∆:

R = sinh
∆ · ln 2

2
=

2Δ/2 − 2−Δ/2

2
(4.20)

Frequency axis warping and parameter prewarping

An important consequence of the fact that the LP to BP substitution can be
seen as a mapping of the ω axis is that the only effect of the variation of the R
parameter is the warping of the frequency axis. This means that (like in the bi-
linear transform) the amplitude and phase responses are warped identically and
the relationship between amplitude and phase responses is therefore preserved
across the entire range of ω.

If LP to BP substitution is involved, the resulting frequency response has
two points of interest which are the images ω′1 of the original point at ω1 = 1,
which often is the cutoff point of the original frequency response.12 Given a
digital implementation of such LP to BP substitution’s result, we can prewarp
the R parameter of the substitution in such a way that the distance between the
ω′1 points in the digital frequency response is identical to the distance between
those in analog frequency response.

Indeed, given the original value of R, we can use (4.19) to compute the
distance ∆ between the ω′1 points. We know that the points are positioned
at ±∆/2 octaves from ω = 1, or, if the substitution result has its own cutoff
parameter, from ωc. That is

ω′1 = ωc · 2±Δ/2

12We are using ω1 and ω′1 instead of previously used ω′c and ωc notation for the respective
point, since we are going to need ωc to denote the substitution result’s cutoff.
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So, these are the frequencies at which the unit frequency’s image points would
be normally located on an analog filter’s response and where we want them to
be located on the digital filter’s response. If ω′1 are the points on the digital
frequency response, then by (3.10) the corresponding analog points should be
located at

ω̃′1 = µ(ω′1) = µ
(
ωc · 2±Δ/2

)
At unit cutoff ω̃c the points ω̃′1 would have been mutually reciprocal. If the
cutoff is not unity, then it must be equal to the geometric mean of ω̃′1:

ω̃c =
√
µ
(
ωc · 2Δ/2

)
· µ
(
ωc · 2−Δ/2

)
while the bandwidth is simply the logarithm of the ratio of ω̃′1:

∆̃ = log2

µ
(
ωc · 2Δ/2

)
µ
(
ωc · 2−Δ/2

)
Given ∆̃, we obtain R̃ from (4.20).

So, we have obtained the prewarped parameters ω̃c and R̃, which can be used
to control a bilinear transform-based digital implementation of an LP to BP
substitution’s result, thereby ensuring the correct positioning of the ω′1 points.
Particularly, treating the normalized bandpass filter as the result of LP to BP
substitution’s application to a 1-pole lowpass 1/(1 + s), we could prewarp the
bandpass filter’s parameters to have exact positioning of the −3dB points on
the left and right slopes (since these are the images of the 1-pole lowpass’s unit
cutoff point).

In principle, any other two points could have been chosen as prewarping
points, where the math is much easier if these two points are located symmet-
rically relatively to the cutoff in the logarithm frequency scale. We will not go
into further detail of this, as the basic ideas of deriving the respective equations
are exactly the same.

Poles and stability

The transformation of the poles and zeros by the LP to BP transformation can
be obtained from

s =
1
R
· s
′ + s′−1

2
(4.21)

resulting in
s′ = Rs±

√
R2s2 − 1

Regarding the stability preservation consider that the sum (s′ + 1/s′) in
(4.21) is located in the same complex semiplane (left or right) as s′. Therefore,
as long as R > 0, the original value s is located in the same semiplane as its
images s′. which implies that the stability is preserved. On the other hand,
negative values of R “flip” the stability.

Topological LP to BP substitution

As for performing the LP to BP substitution in a block diagram, differently from
the LP to HP substitution, here we don’t need differentiators. The substitution
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can be performed by replacing all (unit-cutoff) integrators in the system with
the structure in Fig. 4.19, thereby substituting 2Rs/(s2 + 1) for 1/s, which is
algebraically equivalent to (4.16).13

MMMqqq
// + '!&"%#$//

∫
// •//

∫
oo

−
OO //

2R

Figure 4.19: “LP to BP” integrator.

LP to BS substitution

The LP to BS (lowpass to bandstop) substitution14 is obtained as a series of
LP to HP substitution followed by an LP to BP substitution. Indeed, applying
the LP to BP substitution to a 1-pole highpass, we obtain the 2-pole notch
(“bandstop”) filter. Therefore, applying a series of LP to HP and LP to BP
substitutions to a 1-pole lowpass we also obtain the 2-pole notch filter.

Combining the LP to HP and LP to BP substitutions expressions in the
mentioned order gives an algebraic expression for the LP to BS substitution:

1
s
← 1

R
· s+ s−1

2
(4.22)

The bandwidth considerations of the LP to BS substitution are pretty much
equivalent to those of LP to BP substitution and can be obtained by considering
the LP to BS substitution as an LP to BP substitution applied to a result of
the LP to HP substitution.

The block-diagram form of the LP to BS substitution can be obtained by
directly implementing the right-hand expression in (4.22) as a replacement for
the integrators. This however requires a differentiator for the implementation
of the s term of the sum.

4.7 Further filter types

By mixing the lowpass, bandpass and highpass outputs one can obtain further
filter types. We are now going to discuss some of them.

Often it will be convenient to also include the input signal and the normalized
bandpass signal into the set of the mixing sources. Apparently this doesn’t
bring any new possibilities in terms of the obtained transfer functions, since the
input signal can be obtained as a linear combination of LP, BP and HP signals.
However the mixing coefficients might look simpler in certain cases. One can

13For a differentiator, a similar substitution structure (containing an integrator and a dif-
ferentiator) is trivially obtained from the right-hand side of (4.16).

14Notice that BS here stands for “bandstop” and not for “band-shelving”. The alternative
name for the substitution could have been “LP to notch”, but “LP to bandstop” seems to be
commonly used, so we’ll stick to that one.
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also go further and consider using different topologies implementing a given 2-
pole transfer function. Such topologies could differ not only in which specific
signals are mixed, but also whether certain mixing coefficients are used at the
input or at the output, whether transposed or non-transposed SVF is being
used, etc. We won’t go here into addressing this kind of detail, however the
discussion of the topological aspects of the normalized bandpass in Section 4.5
could serve as an example.

Band-shelving filter

By adding/subtracting the unit gain bandpass signal to/from the input signal
one obtains the band-shelving filter (Fig. 4.20):

HBS(s) = 1 +K ·HBP1(s) = 1 + 2RKHBP(s) = 1 +
2RKs

s2 + 2Rs+ 1
As with 1-pole shelving we can also specify the shelving boost in decibel:

GdB = 20 log10(K + 1)

ω

|H(jω)|, dB

ωcωc/8 8ωc
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Figure 4.20: Amplitude response of a 2-pole band-shelving filter
for R = 1 and varying K.

The immediately noticeable problem in Fig. 4.20 is that the bandwidth of
the filter varies with the shelving boost K. A way to address this issue will be
described in Chapter 10.

Low- and high-shelving filters

Attempting to obtain 2-pole low- and high-shelving filters in a straightforward
fashion:

HLS(s) = 1 +K ·HLP(s) HHS(s) = 1 +K ·HHP(s)
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we notice that the amplitude responses of such filters have a strange dip (for
K > 0) or peak (forK < 0) even at a non-resonating setting of R = 1 (Fig. 4.21).
This peak/dip is due to a steeper phase response curve of the 2-pole lowpass
and highpass filters compared to 1-poles. A way to build 2-pole low- and high-
shelving filters, which do not have this problem, is described in Chapter 10.
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|H(jω)|, dB

ωcωc/8 8ωc
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Figure 4.21: Amplitude response of a naive 2-pole low-shelving
filter for R = 1 and varying K.

Notch filter

At K = −1 the band-shelving filter turns into a notch (or bandstop) filter
(Fig. 4.22):

HN(s) = 1−HBP1(s) = 1− 2RHBP(s) =
s2 + 1

s2 + 2Rs+ 1

Allpass filter

At K = −2 the band-shelving filter turns into an allpass filter (Fig. 4.23):

HAP(s) = 1− 2HBP1(s) = 1− 4RHBP(s) =
s2 − 2Rs+ 1
s2 + 2Rs+ 1

(4.23)

It is not difficult to show that for purely imaginary s the absolute magin-
tudes of the transfer function’s numerator and denominator are equal and thus
|HAP(jω)| = 1.

We could also notice that the phase respose of the 2-pole allpass is simply
the doubled 2-pole lowpass phase response:

argHAP(jω) = arg
1− 2Rjω − ω2

1 + 2Rjω − ω2
=

= arg(1− 2Rjω − ω2)− arg(1 + 2Rjω − ω2) =
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Figure 4.22: Amplitude response of a 2-pole notch filter. The
amplitude scale is linear.
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Figure 4.23: Phase response of a 2-pole allpass filter.

= −2 arg(1 + 2Rjω − ω2) = 2 argHLP(jω) (4.24)

Thus the allpass phase response has the same symmetry around the cutoff point
and the damping parameter has a similar effect on the phase response slope.

At R ≥ 1 the 2-pole allpass can be decomposed into the product of 1-pole
allpasses:

HAP(s) =
s− ω1

s+ ω1
· s− ω2

s+ ω2
=
ω1 − s
ω1 + s

· ω2 − s
ω2 + s

where ωn = −pn. At R = 1 we have ω1 = ω2 = 1 and the filter turns into the
squared 1-pole allpass:

HAP(s) =
(
s− 1
s+ 1

)2

=
(

1− s
1 + s

)2
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Peaking filter

By subtracting the highpass signal from the lowpass signal (or also vice versa)
we obtain the peaking filter (Fig. 4.24):

HPK(s) = HLP(s)−HHP(s) =
1− s2

s2 + 2Rs+ 1
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Figure 4.24: Amplitude response of a 2-pole peaking filter.

The peaking filter is a special kind of bandshelving filter. However, as one
can see from Fig. 4.24, the bandwidth of the filter varies drastically with R,
which often may be undesired. A “properly built” bandshelving filter allows to
avoid this problem. This topic is further discussed in Chapter 10.

Arbitrary 2-pole transfer functions

It’s easy to see that the state-variable filter can be used to implement any 2nd-
order stable differential filter. Indeed, consider the generic 2nd-order transfer
function

H(s) =
b2s

2 + b1s+ b0
s2 + a1s+ a0

where we assume a0 > 0.15 Then

H(s) =
b2s

2 + b1s+ b0

s2 + 2
a1

2
√
a0

√
a0s+

√
a0

2
=

b2s
2 + b1s+ b0

s2 + 2Rωcs+ ω2
c

=

15If a0 = 0, this means that either one or both of the poles of H(s) are at s = 0. If a0 < 0
this means that we are having two real poles of opposite signs. Both situations correspond to
pretty exotic unstable cases.
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= b2
s2

s2 + 2Rωcs+ ω2
c

+
b1
ωc
· ωcs

s2 + 2Rωcs+ ω2
c

+
b0
ω2
c

· ω2
c

s2 + 2Rωcs+ ω2
c

=

= b2HHP(s) +
b1
ωc
HBP(s) +

b0
ω2
c

HLP(s)

where we introduced ωc =
√
a0 and R = a1/ωc.

4.8 Transient response

In the transient response analysis of the state-variable filter we will concentrate
on the lowpass output. The bandpass and highpass can be obtained from the
lowpass using (4.1):

yBP = ẏLP/ωc (4.25a)

yHP = ẏBP/ωc = ÿLP/ω
2
c (4.25b)

Using (4.10) we rewrite (4.3) in terms of poles, obtaining

ÿ − (p1 + p2)ẏ + p1p2 = p1p2x (4.26)

where y = yLP. Let16

u1 = ẏ − p2y (4.27a)
u2 = ẏ − p1y (4.27b)

Therefore

u̇1 = ÿ − p2ẏ

u̇2 = ÿ − p1ẏ

and

(u̇1 + u̇2)− (p1u1 + p2u2) = (2ÿ − (p1 + p2)ẏ)− ((p1 + p2)ẏ − 2p1p2y) =
= 2ÿ − 2(p1 + p)2)ẏ + 2p1p2y (4.28)

Noticing that the last expression is simply the doubled left-hand side of (4.26)
we obtain an equivalent form of (4.26):

(u̇1 + u̇2)− (p1u1 + p2u2) = 2p1p2x (4.29)

Splitting the latter in two halves we have:

u̇1 − p1u1 = p1p2x (4.30a)
u̇2 − p2u2 = p1p2x (4.30b)

Adding both equations (4.30) back together, we obtain (4.29), which is equiva-
lent to (4.26). This means that if u1 and u2 are solutions of (4.30) then using
(4.27) we can find y from u1 and u2, which will be the solution of (4.26).

16The substitution (4.27) can be obtained, knowing in advance the transient response form
y = C1ep1t + C2ep2t and expressing epnt via y and ẏ. Alternatively, it can be found by
diagonalizing the state-space form.
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Now, each of the equations (4.30) is a Jordan 1-pole with input signal p1p2x.
Applying (2.22) we obtain

un(t) = un(0)epnt + p1p2

∫ t

0

epn(t−τ)x(τ) dτ (n = 1, 2)

or, for x(t) = X(s)est, we have from (2.23):

un(t) = Hn(s)x(t) +
(
un(0)−Hn(s)x(0)

)
epnt = usn(t) + utn(t) (4.31)

where
Hn(s) =

p1p2

s− pn
and where usn(t) and utn(t) denote the steady-state and transient response
parts of un(t) respectively. Expressing y via un from (4.27) we have

y =
u1 − u2

p1 − p2
(4.32)

For the steady-state response we therefore obtain from (4.31):

ys(t) =
us1 − us2
p1 − p2

=
H1(s)−H2(s)

p1 − p2
x(t) = H(s)x(t)

where

H(s) =
H1(s)−H2(s)

p1 − p2
=

p1p2

s− p1
− p1p2

s− p2

p1 − p2
=

=
p1p2

p1 − p2
· (s− p2)− (s− p1)
s2 − (p1 + p2)s+ p1p2s

=

=
p1p2

s2 − (p1 + p2)s+ p1p2s
=

ω2
c

s2 + 2Rωc + ω2
c

(4.33)

is the familiar 2-pole lowpass transfer function. The steady-state response ys(t)
is therefore having the same form H(s)x(t) for a complex exponential x(t) =
X(s)est as in case of the 1-pole filter. For signals of general form we respectively
obtain the same formula (2.20a) as for 1-poles.

For the transient response we have

yt(t) =
ut1 − ut2
p1 − p2

=

=
ẏ(0)− p2y(0)−H1(s)x(0)

p1 − p2
· ep1t − ẏ(0)− p1y(0)−H2(s)x(0)

p1 − p2
· ep2t =

=
ẏ(0)− p2(y(0)−G1(s)x(0))

p1 − p2
· ep1t − ẏ(0)− p1(y(0)−G2(s)x(0))

p1 − p2
· ep2t

(4.34)

where we introduce the ordinary (except that pn may be complex) 1-pole lowpass
transfer functions

Gn(s) =
−pn
s− pn
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Provided Re p1,2 < 0 we are having a sum of two exponentially decaying
terms. Since y(0) = ys(0) + yt(0), the initial value of this sum is yt(0) =
y(0) − ys(0), the same as in the 1-pole case, so we’re having an exponentially
decaying discrepancy between the output signal and the steady-state response.
However the decaying is now being “distributed” between two exponents ep1t

and ep2t. Also notice that while in the 1-pole case the decaying was only affected
by the initial state y(0), in the 2-pole case ẏ(0) is also a part of the initial state
and therefore also affects the decaying shape. Apparently, y(0) is the state of
the second (“lowpass”) integrator of the SVF, while, according to (4.25a), ẏ(0)
is essentially the state of the first (“bandpass”) integrator.

At Re p1,2 > 0 the transient response grows infinitely and the filter explodes.

Steady-state response

In regards to the choice of the steady-state response, there is a similar ambiguity
arising out of evaluating the inverse Laplace transform of H(s)X(s) to the left
or to the right of the poles of H(s). We won’t specifically go into the analysis
of this situation for the real poles occurring in the case |R| > 1. Complex poles
occurring in the case |R| < 1 deserve some specical attention.

Apparently Re p1 = Re p2 in this case, and we wish to know how much does
the inverse Laplace transform change when we switch the integration path from
Re s < Re pn to Re s > Re pn. By the residue theorem this change will be equal
to the sum of the residues of H(s)X(s)est at s = p1 and s = p2 respectively,
which is

Res
s=p1

H(s)X(s)est + Res
s=p2

H(s)X(s)est =
p1p2

p1 − p2

(
X(p1)ep1t −X(p2)ep2t

)
(4.35)

(where we have used (4.33)). That is we are again obtaining the terms which
already exist in the transient response and the integration path choice only
affects the amplitudes of the transient response partials, as long as we are staying
within the region of convergence of X(s).

The case of coinciding poles requires a separate analysis which can be done
as a limiting case R → ±1. The respective discussion is occurring later in this
section. Even though we don’t specifically address the question of evaluation of
the inverse Laplace transform in the steady-state response there, it should be
clear what the principles would be.

Continuity

Since the input signal of an SVF passes through two integrators on the way to
the lowpass output, the lowpass signal should not only always be continuous but
should also always have a continuous 1st derivative. Therefore the appearance
of ẏ(0) besides y(0) in the transient response expression must have somehow
taken care of that. Let’s verify that this is indeed the case.

Evaluating (4.34) at t = 0 using we obtain

yt(0) =
ẏ(0)− p2y(0)−H1(s)x(0)

p1 − p2
− ẏ(0)− p1y(0)−H2(s)x(0)

p1 − p2
=

= y(0)− H1(s)−H2(s)
p1 − p2

x(0) = y(0)−H(s)x(0) = y(0)− ys(0)
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where we have used (4.33). Evaluating the derivative of (4.34) at t = 0 we
obtain

ẏt(0) = p1
ẏ(0)− p2y(0)−H1(s)x(0)

p1 − p2
− p2

ẏ(0)− p1y(0)−H2(s)x(0)
p1 − p2

=

= ẏ(0) +
−p1H1(s) + p2H2(s)

p1 − p2
· p1p2x(0) =

= ẏ(0) +

−p1

s− p1
− −p2

s− p2

p1 − p2
· p1p2x(0) =

= ẏ(0) +
(−p1)(s− p2)− (−p2)(s− p1)

p1 − p2
· p1p2

(s− p1)(s− p2)
x(0) =

= ẏ(0)− p1p2 · s
s2 − (p1 + p2)s+ p1p2

x(0) = ẏ(0)− ω2s

s2 + 2Rωc + ω2
c

x(0) =

= ẏ(0)− ω2

s2 + 2Rωc + ω2
c

· sX(s)est
∣∣∣
t=0

= ẏ(0)− ẏs(0)

which confirms our expectations.

Complex vs. real poles

If p1,2 are complex we have

epnt = etRe pn · (cos(t Im pn) + j sin(t Im pn))

The mutual conjugate property of poles will ensure that the two terms of (4.34)
are mutually conjugate as well, therefore the addition result is purely real and
has the form

yt(t) = a · etRe p1 · cos (| Im p1| · t+ ϕ) =

= a · etRe p2 · cos (| Im p2| · t+ ϕ) =

= a · e−Rωct · cos
(
ωc
√

1−R2 · t+ ϕ
)

(4.36)

The transient response therefore is a sinusoidal oscillation of frequency | Im pn|
decaying (or exploding) as etRe pn . Fig. 4.25 illustrates.

For purely real poles the transient response contains just two real exponents
of the form epnt, thereby having no oscillations. However, it can still contain
one “swing” at certain combinations of the amplitudes of the transient partials
ep1t and ep2t (Fig. 4.26).

Strong resonance case

The decay speed of the transient response oscillation (4.36) gets slower as R
decreases, which leads to an increased perceived duration of the transient in
the output signal. Therefore at high resonance settings a transient in the input
signal will produce audible ringing at resonance frequency, even if the steady-
state signal doesn’t contain it.
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y(0)−ys(0)

t

yt(t)

0

Figure 4.25: Transient response of a resonating 2-pole lowpass filter
(dashed line depicts the unstable case).

y(0)−ys(0)

t

yt(t)

0

Figure 4.26: Transient response of a non-resonating 1-pole lowpass
filter (for the case of a single zero-crossing).

A pretty characteristic and easy to analyse case occurs if we suddenly switch
off the filter’s input signal. At this moment the steady-state response instanta-
neously turns to zero and (4.34) turns into

yt(t) =
ẏ(0)− p2y(0)

p1 − p2
· ep1t − ẏ(0)− p1y(0)

p1 − p2
· ep2t =

=
ẏ(0)− p∗1y(0)

2j Im p1
· ep1t − ẏ(0)− p1y(0)

2j Im p1
· ep

∗
1t =

=
ẏ(0)− p∗1y(0)

2j Im p1
· ep1t +

ẏ(0)− p1y(0)
2j∗ Im p1

· ep
∗
1t =
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= 2 Re
(
ẏ(0)− p∗1y(0)

2j Im p1
ep1t

)
= Re

(
ẏ(0)− p∗1y(0)

j Im p1
ep1t

)
Therefore

y(t) = ys(t) + yt(t) = 0 + yt(t) = Re
(
ẏ(0)− p∗1y(0)

j Im p1
ep1t

)
Unless both y(0) = 0 and ẏ(0) = 0, the signal y(t) will have a non-zero ampli-
tude and according to (4.36) we are having a sinusoid of frequency ωc

√
1−R2

decaying as e−Rωct.
The opposite situation of a signal being turned on is a kind of a dual case

of turning a signal off. Indeed, let x0(t) be some infinitlely long (that is t ∈
(−∞,∞)) steady input signal and let y0(t) be the respective output signal.
Assuming that the filter is stable and that the initial time moment was at
t = −∞, by any finite time moment t the transient response component of y0(t)
has decayed to zero, and y0(t) consists solely of the steady-state response. Let

x1(t) =

{
x0(t) if t < 0
0 if t ≥ 0

be another infinitely long signal decribing the case of the signal x0(t) being
turned off and let y1(t) be the respective output signal. The signal x1(t) contains
a transient at t = 0, thus y1(t) contains a non-zero transient response component
for t ≥ 0. The case of x0(t) being turned on is respectively described by

x2(t) = x0(t)− x1(t) =

{
0 if t < 0
x0(t) if t ≥ 0

and we let y2(t) denote the corresponding output signal. Since the system is
linear, the output signals are related in the same way as the input signals:

y2(t) = y0(t)− y1(t)

However y0(t) doesn’t contain any transient response, therefore the only tran-
sient response present in y2(t) is coming from y1(t), simply having the opposite
sign.

The effect of the transient response is particularly remarkable if the input
signal is a sinusoid of the same frequency ωc

√
1−R2 as the transient response.

First considering the case of turning such sinusoid off we take

x0(t) = ain cos(ωc
√

1−R2 · t+ ϕin)

x1(t) =

{
x0(t) if t < 0
0 if t ≥ 0

We must have the same sinusoid at the output:

y0(t) = aout cos(ωc
√

1−R2 · t+ ϕout)

y1(t) =

{
aout cos(ωc

√
1−R2 · t+ ϕout) if t < 0

ate
−Rωct · cos(ωc

√
1−R2 · t+ ϕt) if t ≥ 0
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where the transient response’s amplitude and phase at and ϕt may differ from
the steady-state response’s aout and ϕout due to the additional factor e−Rωct

appearing in the signal. However from the requirement of continuity of y1(t)
and ẏ1(t) at t = 0 we may conclude that at → aout and ϕt → ϕout for R→ 0.

Now let’s consider the case of turning the signal on. We let x2(t) = x0(t)−
x1(t). Since we already know that y2(t) = 0 for t < 0, we are interested only in
y2(t) for t ≥ 0 where we have

y2(t) = y0(t)− y1(t) =

= aout cos(ωc
√

1−R2 · t+ ϕout)− ate−Rωct · cos(ωc
√

1−R2 · t+ ϕt)

Since at R ≈ 0 we have at ≈ aout and ϕt ≈ ϕout, we may in this case rewrite
the above as

y2(t) ≈ (1− e−Rωct) · aout cos(ωc
√

1−R2 · t+ ϕout) (R ≈ 0)

That is the sinusoid in the output signal is exponentially fading in as 1−e−Rωct.
Effectively the transient response is suppressing the steady state signal in the
beginning and then slowly lets it fade in (Fig. 4.27).

t

y(t)

0

Figure 4.27: Initial suppression of the steady-state signal at ω =
ωc
√

1−R2 by the transient response.

Selfoscillation

At R = 0 the transient response oscillates at a constant amplitude, the frequency
of the oscillation being ωc and coinciding with the infinitely high peak of the
amplitude response. Thus, if in the absence of the input signal the system
is somehow in a non-zero state, it will stay in this state forever, producing a
sinusoid of frequency ωc. Such state of oscillating without an input signal is
referred to as selfoscillation.

At R < 0 the transient response turns into an infinitely growing signal,
while the oscillation frequency becomes lower than ωc according to (4.36). In
nonlinear filters at−1 < R < 0 the growing amplitude of the oscillating transient
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response will be limited by the saturation, which thereby prevents the filter
from exploding. In either case, apparently it is the transient response which is
responsible for the selfoscillation of the filter.

We can therefore refer to −1 < R ≤ 0 as the selfoscillation range of the
filter. The boundary R = 0 at which the selfoscillation appears may be referred
to as selfoscillation point.17

At the selfoscillation point the poles of the system are located right on the
imaginary axis and we can “hit” them with an input sinusoidal signal of fre-
quency ωc. Since H(±jωc) = ∞, the steady-state response H(s)X(s)est be-
comes infinite too and we need a different choice of the steady-state response
signal.

A real sinusoidal signal of frequency ωc consists of two complex sinusoidal
signals of frequencies ±ωc. Each of these two signals hits the respective complex
pole of the system at p1,2 = ±jωc. As we should recall from the discussion in
Section 2.15, when a system pole p is hit by an input ept, the output of the
system consists of a linear combination of partials ept and tept, where we cannot
unambigously select the steady-state response part. From two conjugate poles
p1 and p2 we’ll get a linear combination of ep1t and tep1t and another one of
ep2t and tep2t. After these signals are further combined by (4.32) we’ll get a
real signal of the form

y(t) = a1 · cos(ωct+ ϕ1) + a2 · t cos(ωct+ ϕ2)

Thus, the output signal is a sinusoid of frequency ωc with the amplitude asymp-
totically growing as a linear function of time.18 Clearly, this is a marginal case
between the sinusoidal output stabilizing with time if R > 0, as e.g. shown in
Fig. 4.27, and exponentially exploding if R < 0.

Coinciding poles

A special situation occurs if R = ±1 and thus p1 = p2. The denominator p1−p2

therefore turns to zero, but we can treat this as a limiting case of R→ ±1. Let
p1,2 = p±∆ (where p1,2 → p and ∆→ 0). Noticing that

G1(s)→ −p
s− p

G2(s)→ −p
s− p

we can replace Gn(s) in (4.34) with −p/(s− p) before taking the limit:

yt(t) =
ẏ(0)− p2(y(0)− −p

s−px(0))

p1 − p2
· ep1t −

ẏ(0)− p1(y(0)− −p
s−px(0))

p1 − p2
· ep2t =

= ẏ(0) · e
p1t − ep2t

p1 − p2
+
(
y(0)− −p

s− p
x(0)

)
· −p2e

p1t + p1e
p2t

p1 − p2
(4.37)

In the first term of (4.37) we have

ep1t − ep2t

p1 − p2
=
eΔt − e−Δt

2∆
· ept =

17The other boundary R = −1 is hardly ever being reached, therefore we won’t introduce a
special name for it.

18Notice that as the ratio of the amplitudes of the two sinusoids changes, the phase of their
sum (which in principle is a sinusoid of the same frequency but of a different amplitude and
phase) will slightly drift.
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=
eΔt − e−Δt

2∆t
· tept =

sinh ∆t
∆t

· tept → tept (∆→ 0)

and in the second term respectively

−p2e
p1t + p1e

p2t

p1 − p2
=
−(p−∆)eΔt + (p+ ∆)e−Δt

2∆
· ept =

= −pe
Δt − e−Δt

2∆
· ept + ∆

eΔt + e−Δt

2∆
· ept =

= −p sinh ∆t
∆t

· tept + cosh ∆t · ept → −ptept + ept (∆→ 0)

and (4.37) at ∆ = 0 can be rewritten as

yt(t) = ẏ(0) · tept +
(
y(0)− −p

s− p
x(0)

)
· (−ptept + ept) =

=
(
y(0)− −p

s− p
x(0)

)
· ept +

(
ẏ(0)− p ·

(
y(0)− −p

s− p
x(0)

))
· tept

Thus, in the case of p1 = p2 the terms contained in the transient response are
having the form ept or tept.

The change (4.35) in the inverse Laplace transform in the steady-state re-
sponse as we take the integral to the left or to the right of the poles of H(s)
respectively becomes

Res
s=p+Δ

H(s)X(s)est + Res
s=p−Δ

H(s)X(s)est ∼

∼ p2

2∆

(
X(p+ ∆)e(p+Δ)t −X(p−∆)e(p−Δ)t

)
=

= p2X(p+ ∆)e(p+Δ)t −X(p−∆)e(p−Δ)t

2∆
→

→ p2X
′(p)ept +X(p)tept +X ′(p)ept +X(p)tept

2
=

= p2
(
X ′(p)ept +X(p)tept

)
(∆→ 0)

where we have used l’Hôpital’s rule.19 Thus, the change is again solely in the
amplitudes of the transient response partials.

It is important to realize that the different form of the transient response
components at R = ±1 doesn’t imply that the filter behavior is abruptly
switched at this point. The switching of the mathematical expression is solely
due to the limitations of the mathematical notation, but doesn’t correspond to
a jump in any of the signals.

The same result could have been obtained formally by introducing the helper
variables u1 and u2 differently:20

u1 = ẏ − py
19More rigorously speaking, we have used l’Hôpital’s rule as a short way to express the

following: we expand X(p±Δ) and e(p±Δ)t into Taylor series with respect to Δ, followed by
expanding the respective products and cancelling the terms containing Δ with the denomi-
nator. One also could expand just X(p ± Δ) into Taylor series with respect to Δ and then
convert e(p±Δ)t into sinh and cosh in the same way as in the transient response derivation.

20This corresponds to using Jordan normal form in the state space representation.
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u2 = y

(where p = p1 = p2) thereby obtaining the equations

u̇1 − pu1 = p2x

u̇2 − pu2 = u1

which can be solved using 1-pole techniques. Since u2 is the input signal for u1

we have a serial connection of 1-poles, building up a Jordan chain. As we should
remember from the discussion of Jordan chains in Section 2.15, the transient
response will consist of the partials of the form ept and tept. However, due to a
completely different substitution of variables, we wouldn’t have known, whether
the output is changing in a continuous way as R crosses the point R = 1. On
the other hand, obtaining the result as a limiting case, as we did earlier, gives
an answer to that question.

Bandpass and highpass

Notice that (4.25) can be applied separately to steady-state and transient re-
sponses (in the sense that the results will still give correct separation of the
signal into the steady-state and transient parts). Indeed, e.g. applying (4.25a)
to a complex exponential yLP = Y (s)est we obtain

ẏLP/ωc = sY (s)est/ωc = yLP · s/ωc

which matches HBP(s) = s/ωc ·HLP(s). Therefore ẏLP/ωc, when applied to a
lowpass steady-state response yLPs(t), will give bandpass steady-state response,
etc.

This means that the transient response for the bandpass and highpass signals
can be obtained by differentiating the lowpass transient response according to
(4.25), resulting in a sum of the same kind of exponential terms ep1t and ep2t (or
ept and tept in case p1 = p2). We won’t write the resulting expressions explicitly
here.

SUMMARY

The state-variable filter has the structure shown in Fig. 4.1. Contrarily to the
ladder filter, the resonance strength in the SVF is controlled by controlling the
damping signal. The multimode outputs have the transfer functions

HHP(s) =
s2

s2 + 2Rs+ 1

HBP(s) =
s

s2 + 2Rs+ 1

HLP(s) =
1

s2 + 2Rs+ 1

and can be combined to build further filter types.
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Chapter 5

Ladder filter

In this chapter we are going to discuss the most classical analog filter model:
the transistor ladder filter. The main idea of this structure, which is to create
resonance by means of a feedback loop, is encountered in many other filter
designs, some of which we are also going to discuss. We will be referring to the
class of such filters as simply ladder filters.1

5.1 Analog model

The most classical example of a ladder filter is transistor ladder filter, which
implements a 4-pole lowpass structure shown in Fig. 5.1.2 The structure in
Fig. 5.1 is not limited to transistor-based analog implementations. Particularly,
there are many implementations of the same structure based on OTAs (oper-
ational transconductance amplifiers). The difference between transistor- and
OTA-based ladders is, however, lying in the nonlinear behavior, which we are
not touching at this point yet. The linear aspects of both are identical.

The LP1 blocks denote four identical (same cutoff) 1-pole lowpass filters
(Fig. 2.2). The k coefficient controls the amount of negative feedback, which
creates resonance in the filter. Typically k ≥ 0, although k < 0 is also sometimes
used.

+ '!&"%#$// LP1
// LP1

// LP1
// LP1

// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 5.1: Transistor (4-pole lowpass) ladder filter.

1Quite unfortunately, there is already another class of filter structures commonly referred
to as “ladder filters”. Fortunately, this class is not so widely encountered in the synth filter
context, on the other hand “transistor ladder” is also a commonly used term. Therefore we’ll
stick with using the term “ladder filters” for the flters based on a resonating feedback loop.

2A widely known piece of work describing this linear model is Analyzing the Moog VCF
with considerations for digital implementation by T.Stilson and J.Smith.
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Let
H1(s) =

1
1 + s

be the 1-pole lowpass transfer function. Assuming complex exponential x and
y we write

y = H4
1 (s) · (x− ky)

from where
y(1 + kH4

1 (s)) = H4
1 (s) · x

and the transfer function of the ladder filter is

H(s) =
y

x
=

H4
1 (s)

1 + kH4
1 (s)

=
1

(1+s)4

1 + k 1
(1+s)4

=
1

k + (1 + s)4
(5.1)

At k = 0 the filter behaves as 4 serially connected 1-pole lowpass filters.
The poles of the filter are respectively found from

k + (1 + s)4 = 0

giving
s = −1 + (−k)1/4

where the raising to the 1/4th power is understood in the complex sense, there-
fore giving 4 different values:

s = −1 +
±1± j√

2
k1/4 (k ≥ 0) (5.2)

(this time k1/4 is understood in the real sense). Thus there are 4-poles and we
can also refer to this filter as a 4-pole lowpass ladder filter.

At k = 0 all poles are located at s = −1, as k grows they move apart in 4
straight lines,all going at “45◦ angles” (Fig. 5.2). As k grows from 0 to 4 the
two of the poles (at s = −1 + 1±j√

2
k1/4) are moving towards the imaginary axis,

producing a resonance peak in the amplitude response (Fig. 5.3). At k = 4 they
hit the imaginary axis:

Re
(
−1 +

1± j√
2

41/4

)
= 0

and the filter becomes unstable.3

In Fig. 5.3 one could notice that, as the resonance increases, the filter gain at
low frequencies begins to drop. Indeed, substituting s = 0 into (5.1) we obtain

H(0) =
1

1 + k

This is a general issue with ladder filter designs.

3This time we will not develop an explicit expression for the transient response, since it’s
getting too involved. Still, the general rule, which we will develop in Section 7.7, is that the
transient response is always a linear combination of partials of the form epnt (and tνepnt in
case of repeated poles), where pn are the filter poles. Respectively, as soon as some of the
poles leave the left complex semiplane, the filter becomes unstable.
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Figure 5.2: Poles of the 4-pole lowpass ladder filter.
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Figure 5.3: Amplitude response of the 4-pole lowpass ladder filter
for various k.

5.2 Feedback and resonance

Before we continue with discussing more practical aspects of the ladder filter,
we’d like to make one important observation considering the resonance peaks
created by the ladder filter feedback.

In Fig. 5.3 we can see that, similarly to the 2-pole case, the resonance fre-
quency is approaching the filter cutoff frequency as the filter approaches selfos-
cillation at k = 4. This is a manifestation of a more general principle concerning
ladder filters as such. Consider a general ladder filter in Fig. 5.4, where G(s) de-
notes a more or less arbitrary structure, whose transfer function is G(s). Notice
that the feedback in Fig. 5.4 is not inverted.
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Figure 5.4: Structure of a generic ladder filter.

The transfer function of the entire structure is therefore

H(s) =
G(s)

1− kG(s)
=

1
G−1(s)− k

(5.3)

and the poles are defined by the equation

G−1(s) = k (5.4)

That is at k = 0 the poles of H(s) are the zeros of G−1(s) (the latter obviously
simply being the poles of G(s)). As k begins to deviate from zero, the solutions
of (5.4) will move in the s-plane, usually in a continuous fashion. E.g. for the
4-pole lowpass ladder (Fig. 5.1) we had G−1(s) = (s + 1)4 and (5.4) takes the
form (s + 1)4 = −k, where we take −k instead of k because of the inverted
feedback in Fig. 5.1.

The value of k at which the filter starts to selfoscillate should correspond
to some of the poles being located on the imaginary axis. At this moment the
infinitely high resonance peak in the amplitude response is occurring exactly
at these pole positions. Denoting a purely imaginary pole position as jω, we
rewrite (5.4) for such poles as

G−1(jω) = k

or
kG(jω) = 1 (5.5)

We can refer to (5.5) as the selfoscillation equation for a feedback loop. This
equation implies that selfoscillation appears at the moment when the total fre-
quency response across the feedback loop kG(jω) exactly equals 1 at some
frequency ω. That is the total amplitude gain must be 1, and the total phase
shift must be 0◦.

This is actually a pretty remarkable result. Of course it is quite intuitive that
selfoscillation tends to occur at frequencies where the feedback signal doesn’t
cancel the input signal, but rather boosts it. And such boosting tends to be
strongest at frequencies where we have a 0◦ total phase shift across the feedback
loop. However, what is quite counterintuitive, is that selfoscillation can appear
(as k is reaching the respective threshold value) only at such frequencies.4

Therefore for k > 0 the selfoscillation appears at frequencies where the phase
response of G(s) is 0◦. For k < 0 the selfoscillation appears at frequencies where

4As k continues to grow into the unstable range, the frequencies of the exploding (or still
selfoscillating, if the filter is nonlinear) sinusoidal transient response partials can change, since
the imaginary part of the resonating poles can change as the poles move beyond the imaginary
axis.
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the phase response of G(s) is 180◦. The respective value of k can be found from
(5.5) giving

k =
1

G(jω)
(5.6)

or, rewriting (5.6) in terms of the amplitude response of G(s):

k = ± 1
|G(jω)|

(5.7)

where we take the plus sign if the phase response of G(s) at ω is 0◦ and the
minus sign if the phase response of G(s) at ω is 180◦.

The just discussed effects are the reason that we used negative feedback in
the 4-pole lowpass ladder filter. We want the resonance to occur at the filter’s
cutoff. The phase response of a single 1-pole lowpass at the cutoff frequency
is −45◦, respectively the phase response of a chain of four 1-poles is −180◦,
exactly what we need for the resonance peak, if we use negative feedback.

At the same time, the amplitude response of a 1-pole lowpass at the cutoff
is |1/(1 + j)| = 1/

√
2, respectively the amplitude response of a chain of four

1-poles is (1/
√

2)4 = 1/4. According to (5.7), the infinite resonance is attained
at k = 1/(1/4) = 4.

At ω = 0 a chain of four 1-pole lowpasses will have a phase shift of 0◦, while
the amplitude response at ω = 0 is 1. Therefore, in Fig. 5.1 the “selfoscillation”
at ω = 0 will occur at k = −1. However the amplitude response peak at ω = 0
hardly can count as resonance.

5.3 Digital model

A naive digital implementation of the ladder filter shouldn’t pose any problems.
We will therefore immediately skip to the TPT approach.

Recalling the instantaneous response of a single 1-pole lowpass filter (3.29),
we can construct the instantaneous response of a serial connection of four of
such filters. Indeed, let’s denote the instantaneous responses of the respective
1-poles as fn(ξ) = gξ + sn (obviously, the coefficient g is identical for all four,
whereas sn depends on the filter state and therefore cannot be assumed identi-
cal). Combining two such filters in series we have

f2(f1(ξ)) = g(gξ + s1) + s2 = g2ξ + gs1 + s2

Adding the third one:

f3(f2(f1(ξ))) = g(g2ξ + gs1 + s2) + s3 = g3ξ + g2s1 + gs2 + s3

and the fourth one:

f4(f3(f2(f1(ξ)))) = g(g3ξ + g2s1 + gs2 + s3) =

= g4ξ + g3s1 + g2s2 + gs3 + s4 = Gξ + S

where

G = g4
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S = g3s1 + g2s2 + gs3 + s4

Using the obtained instantaneous response Gξ+ S of the series of 4 1-poles, we
can redraw the ladder filter structure as in Fig. 5.5.

+ '!&"%#$// Gξ + S// •//

qqq
MMM oo

−
OO //x[n] y[n]

k

u[n]

Figure 5.5: TPT 4-pole ladder filter in the instantaneous response
form.

Rather than solving for y, let’s solve for the signal u at the feedback point.
From Fig. 5.5 we obtain

u = x− ky = x− k(Gu+ S)

from where

u =
x− kS
1 + kG

(5.8)

We can then use the obtained value of u to process the 1-pole lowpasses one
after the other, updating their state, and computing y[n] as the output of the
fourth lowpass.

Apparently the total instantaneous gain of the zero-delay feedback loop in
Fig. 5.5 and in (5.8) is −kG. As we should recall from the discussion of 1-pole
lowpass filters, 0 < g < 1 for positive cutoff settings. Respectively 0 < G < 1
and the filter doesn’t become instantaneously unstable provided k ≥ −1.

5.4 Feedback shaping

We have observed that at high resonance settings the amplitude gain of the filter
at low frequencies drops (Fig. 5.3). An obvious way to fix this problem would be
e.g. to boost the input signal by the (1+k) factor.5 However there’s another way
to address the same issue. We could “kill” the feedback for the low frequencies
only by introducing a highpass filter into the feedback path (Fig. 5.6). In the
simplest case this could be a 1-pole highpass.

The cutoff of the highpass filter can be static or vary along with the cutoff
of the lowpasses. The static version has a nice feature that it kills the resonance
effect at low frequencies regardless of the master cutoff setting, which may be
desirable if the resonance at low frequencies is considered rather unpleasant
(Fig. 5.7).

In principle one can also use other filter types in the feedback shaping. One
has to be careful though, since this changes the total phase and amplitude re-
sponses of the feedback path, thus the frequency of the resonance peak and the

5We boost the input rather than the output signal for the same reason as when preferring
to place the cutoff gains in front of the integrators.
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Figure 5.6: Transistor ladder filter with a highpass in the feedback.
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Figure 5.7: Amplitude response of the ladder filter with a static-
cutoff highpass in the feedback for various lowpass cutoffs.

value of k at which selfoscillation is reached may be changed. E.g., quite coun-
terintuitively, inserting a 1-pole lowpass into the feedback path can destabilize
an otherwise stable filter.

In order to establish and analyse the latter fact mathematically, we’d need
to find the total amplitude response across the feedback loop at the point where
the total phase shift is 180◦. Let H1(s) = 1/(1 + s) be the underlying 1-pole
lowpass of the ladder filter and let Hf (s) = 1/(1 + s/ωcf ) be the lowpass in
the feedback, with a generally speaking different cutoff ωcf . The 180◦ point is
found from the equation

4 argH1(jω) + argHf (jω) = 4 arg
1

1 + jω
+ arg

1
1 + jω/ωcf

=

= −4 arctanω − arctan
ω

ωcf
= −π (5.9)

where we have used (2.8). The equation (5.9) looks a bit daunting, if having
an analytic solution at all. Fortunately, we don’t actually need to know the
frequency of the 180◦ point, it would suffice to know the respective amplitude
responses.

Let ϕ1(ω) be the negated phase response of H1(s):

ϕ1(ω) = − argH1(jω) = arctanω > 0 ∀ω

Expressing ω as a function of ϕ1 we have ω = tanϕ1. Respectively, expressing
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the amplitude response as a function of the (negated) phase response we have

A1 = |H1(jω)| = 1√
1 + ω2

=
1√

1 + tan2 ϕ2
1

= cosϕ1 (5.10)

Thus, the total amplitude response of the four 1-poles in the feedforward path
of the ladder filter is

A4
1(ω) =

1

(1 + ϕ2
1)2

and the total phase response of the feedforward path is 4ϕ1.
Since (5.10) is cutoff-independent, it also holds for Hf (s):

Af = cosϕf

where Af = |Hf (jω)|, ϕf = − argHf (jω). Now let ω0 be the (unknown to us)
solution of (5.9), that is the total phase shift at ω0 is 180◦. In terms of the just
introduced functions ϕ1(ω) and ϕf (ω) equation (5.9) can be rewritten as

4ϕ1(ω0) + ϕf (ω0) = π (5.11)

Since ϕf (ω) > 0 ∀ω, the 180◦ phase shift is achieved earlier than without the
feedback filter, that is ω0 < 1 (whatever the value of ωcf is).

Computing the total amplitude response of all five 1-pole lowpasses at ω0

we have

A4
1(ω0) ·Af (ω0) = cos4 ϕ1(ω0) · cosϕf (ω0) = cos4

(
π

4
− ϕf (ω0)

4

)
· cosϕf (ω0)

Considering only the first factor we have

cos4
(π

4
− ϕf

4

)
=

1 + cos
(π

2
− ϕf

2

)
2

2

=

1 + sin
ϕf
2

2

2

(where we dropped the argument ω0, understanding it implicity). Respectively

A4
1 ·Af =

1
4
·
(

1 + sin
ϕf
2

)2

· cosϕf (ω = ω0) (5.12)

Fig. 5.8 contains the graph of (5.12). The interpretation of this graph is like
follows. Suppose the feedback lowpass’s cutoff ωcf is very large (ωcf → +∞).
In the limit the feedback lowpass has no effct and

ω0 = 1 ϕf (ω0) = 0 Af (ω0) = 1 A4
1(ω0)Af (ω0) =

1
4

(for ωcf = +∞)

As we begin to lower ωcf back from the infinity, the value of ϕf (ω0) grows
from zero into the positive value range. The graph in Fig. 5.8 plots the total
amplitude response of the five 1-pole lowpasses in the feedback loop against the
growing ϕf (ω0). We see that the amplitude response grows for quite a while.
As long as it is above 1/4, the filter will explode at k = 4. The zero amplitude
response at ϕf = π/2 corresponds to ωcf = 0, where the extra lowpass is fully
closed, thus the entire feedback loop is muted.
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Figure 5.8: Total amplitude response of the four feedforward low-
pass 1-poles plus the feedback lowpass 1-pole at the 180◦ phase
shift point, plotted against the phase shift by the feedback 1-pole.

At ωcf = 1 (equal cutoffs of all 1-poles) from (5.11) we have ϕf (ω0) =
ϕ1(ω0) = π/5. In Fig. 5.8 one can see that this is the “most unstable” situation
among all possible ωcf .

In comparison, if we had a 1-pole highpass in the feedback, then we would
have argHf (jω) > 0 and respectively ϕf (ω) < 0 ∀ω. Therefore the 180◦ point
would be shifted to the right: ω0 > 1. Therefore A4

1(ω0) < A4
1(1) < 1/4, while

Af (ω) < 1 ∀ω, thus the total amplitude response A4
1Af at the 180◦ point would

decrease and the filter won’t become “more unstable” than it was before the
introduction of the extra highpass filter.

5.5 Multimode ladder filter

Warning! The multimode functionality of the ladder filter is a somewhat special
feature. There are more straightforward ways to build bandpass and highpass
ladders, discussed later in this chapter.

By picking up intermediate signals of the ladder filter as in Fig. 5.9 we obtain
the multimode version of this filter. We then can use linear combinations of
signals yn to produce various kinds of filtered signal.6

Suppose k = 0. Apparently, in this case, the respective transfer functions

6Actually, instead of y0 we could have used the input signal x for these linear combinations.
However, it doesn’t matter. Since y0 = x−ky4, we can express x via y0 or vice versa. It’s just
that some useful linear combinations have simpler (independent of k) coefficients if y0 rather
than x is being used.
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Figure 5.9: Multimode ladder filter.

associated with each of the yn outputs are

Hn(s) =
1

(1 + s)n
(n = 0, . . . , 4) (5.13)

If k 6= 0 then from

H4(s) =
1

k + (1 + s)4

using the obvious relationship Hn+1(s) = Hn(s)/(s+ 1) we obtain

Hn(s) =
(1 + s)4−n

k + (1 + s)4
(5.14)

4-pole highpass mode

Considering that the 4th order lowpass transfer function (under the assumption
k = 0) is built as a product of four 1st order lowpass transfer functions 1/(1+s)

HLP(s) =
1

(1 + s)4

we might decide to build the 4th order highpass transfer function as a product
of four 1st order highpass transfer functions s/(1 + s):

HHP(s) =
s4

(1 + s)4

Let’s attempt to build HHP(s) as a linear combination of Hn(s). Apparently,
a linear combination of Hn(s) must have the denominator k + (1 + s)4, so let’s
instead construct

HHP(s) =
s4

k + (1 + s)4
(5.15)

which at k = 0 will turn into s4/(1 + s)4. We also have HHP(∞) = 1 while the
four zeros at s = 0 provide a 24dB/oct rolloff at ω → 0, thus we are still having
a more or less reasonable highpass. In order to express HHP(s) as a sum of the
modes we write

s4

k + (1 + s)4
=
a0(1 + s)4 + a1(1 + s)3 + a2(1 + s)2 + a3(1 + s) + a4

k + (1 + s)4
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that is

s4 = a0(1 + s)4 + a1(1 + s)3 + a2(1 + s)2 + a3(1 + s) + a4

We need to find an from the above equation, which generally can be done by
equating the coefficients at equal powers of s in the left- and right-hand sides.
However, for the specific equation that we’re having here we could do a shortcut
by simply formally replacing s+ 1 by s (and respectively s by s− 1):

(s− 1)4 = a0s
4 + a1s

3 + a2s
2 + a3s+ a4

from where immediately

a0 = 1, a1 = −4, a2 = 6, a3 = −4, a4 = 1

The amplitude response corresponding to (5.15) is plotted in Fig. 5.10.
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Figure 5.10: Amplitude response of the highpass mode of the lad-
der filter for various k.

4-pole bandpass mode

A bandpass filter can be built as

HBP(s) =
s2

k + (1 + s)4
(5.16)

The two zeros at s = 0 will provide for a−12dB/oct rolloff at low frequencies and
will reduce the −24dB/oct rolloff at high frequencies to the same −12dB/oct.
Notice that the phase response at the cutoff is zero:

HBP(j) =
−1

k + (1 + j)4
=

1
4− k

The coefficients are found from

s2 = a0(1 + s)4 + a1(1 + s)3 + a2(1 + s)2 + a3(1 + s) + a4

(s− 1)2 = a0s
4 + a1s

3 + a2s
2 + a3s+ a4

The amplitude response corresponding to (5.16) is plotted in Fig. 5.11.
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Figure 5.11: Amplitude response of the bandpass mode of the lad-
der filter for various k.

Lower-order modes

Recalling the transfer functions of the modal outputs yn in the absence of the
resonance (5.13), we can consider the modal signals yn and their respective
transfer functions (5.14) as a kind of “n-pole lowpass filters with 4-pole reso-
nance”.

“Lower-order” highpasses can be build by considering the zero-resonance
transfer functions

HHP(s) =
sN

(s+ 1)N
=

(s+ 1)4−NsN

(s+ 1)4

which for k 6= 0 turn into

HHP(s) =
(s+ 1)4−NsN

k + (s+ 1)4

In a similar way we can build a “2-pole” bandpass

HBP(s) =
s

(s+ 1)2
=

(s+ 1)2s
(s+ 1)4

(k = 0)

HBP(s) =
(s+ 1)2s

k + (s+ 1)4
(k 6= 0)

Other modes

Continuing in the same fashion we can build further modes (the transfer func-
tions are given for k = 0):

s

(s+ 1)3
3-pole bandpass, 6/12 dB/oct

s2

(s+ 1)3
3-pole bandpass, 12/6 dB/oct
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(s+ 1)4 +Ks2

(s+ 1)4
band-shelving

s4 − 1
(s+ 1)4

notch

(s2 + 1)2

(s+ 1)4
notch

(s2 + 2Rs+ 1)2 + (s2 − 2Rs+ 1)2

2(s+ 1)4
2 notches, neutral setting R = 1

s2 + 1
(s+ 1)4

2-pole lowpass + notch

(1 + 1/s2)s4

(s+ 1)4
2-pole highpass + notch

(s+ 1/s)s2

(s+ 1)4
2-pole bandpass + notch

etc. The principles are more or less similar. We are trying to attain a desired
asymptotic behavior at ω → 0 and ω → +∞ by having the necessary orders and
coefficients of the lowest-order and highest-order terms in the numerator. E.g.
by having s2 as the lowest-order term of the numerator we ensure a 12dB/oct
rolloff at ω → 0, or by having s4 as the highest-order term we ensure H(∞) = 1.
The notch at ω = 1 is generated by placing a zero at s = ±j. The 2-notch version
is obtained by explicitly writing out the transfer function of a 4-pole multinotch
described in Section 11.3.

5.6 HP ladder

Performing an LP to HP transformation on the lowpass ladder filter we ef-
fectively perform it on each of the underlying 1-pole lowpasses, thus turning
them into 1-pole highpasses. Thereby we obtain a “true” highpass ladder fil-
ter (Fig. 5.12). Obviously, the amplitude response of the ladder highpass is
symmetric to the amplitude response of the ladder lowpass (Fig. 5.13).
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Figure 5.12: A “true” highpass ladder filter.

The instantaneous gain of a 1-pole highpass is complementary to the instan-
taneous gain of the 1-pole lowpass:

1− g

1 + g
=

1
1 + g
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Figure 5.13: Amplitude response of the 4-pole highpass ladder filter
for various k.

where g = ωcT/2. Thus the instantaneous gain of a single 1-pole highpass
is varying within the range (0,1) and so does the gain of the chain of four
highpasses: 0 < G < 1. Therefore, 4-pole highpass ladder doesn’t get instanta-
neously unstable for k > −1.

5.7 BP ladder

In order to build a “true” 4-pole bandpass ladder, we replace only half of the
lowpasses with highpasses (it doesn’t matter which two of the four 1-pole low-
passes are replaced). The total transfer function of the feedforward path is
thereby

s2

(1 + s)4
=

s

(1 + s)2
· s

(1 + s)2

where each of the s/(1+s)2 factors is built from a serial combination of a 1-pole
lowpass and a 1-pole highpass:

s

(1 + s)2
=

s

1 + s
· 1

1 + s

Apparently s/(1 + s)2 = s/(1 + 2s + s2) is a 2-pole bandpass with damping
R = 1 and a serial combination of two of them makes a 4-pole bandpass. The
frequency response of s/(1 + s)2 at ω = 1 is 1/2, that is there is no phase-shift.
Respectively the frequency response of s2/(1 + s)4 at ω = 1 is 1/4, also without
a phase shift. Therefore we need to use positive rather than negative feedback
(Fig. 5.14), the selfoscillation still occuring at k = 4, the same as with lowpass
and highpass ladders.

Noticing that the filter structure is invariant relative to the LP to HP trans-
formation, we conclude that its amplitude response must be symmetric (around
ω = 1) in the logarithmic frequency scale (Fig. 5.15).

The question of instantaneous instability is more critical for the bandpass
ladder, since the feedback is positive. The instantaneous gain of a lowpass-
highpass pair is a product of the instantaneous gains of a 1-pole lowpass and a
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Figure 5.14: A “true” bandpass ladder filter.
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Figure 5.15: Amplitude response of the 4-pole bandpass ladder
filter for various k.

1-pole highpass:
g

1 + g
· 1

1 + g

(where g = ωcT/2). It’s not difficult to verify that the maximum gain of this
pair is attained at g = 1 and is equal to 1/4. The maximum instantaneous gain
of two of these pairs is therefore 1/16, and thus the instantaneously unstable
case doesn’t occur provided k < 16.

Bandwidth control

Using (5.3) and the fact that the frequency response of s2/(1 + s)4 at ω = 1
is 1/4 we obtain the frequency response of the 4-pole bandpass ladder at the
cutoff

H(j) =
1

4− k
Therefore, by multiplying the output (or the input signal) of the 4-pole bandpass
ladder by 4−k we can turn it into a normalized bandpass, where the bandwidth
is controlled by varying k.

There is another way, however. Recall that the normalized 2-pole bandpass
(4.15) is an LP to BP transformation of the 1-pole lowpass 1/(1 + s). At the
same time,

1
1 + s

· s

1 + s
=

s

(1 + s)2
=

s

1 + 2s+ s2
=

1
2
· 2s

1 + 2s+ s2
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is simply a halved version of (4.15) taken at R = 1 and therefore is an LP to BP
transformation fo the halved 1-pole lowpass 1/2(1+s). This means that Fig. 5.14
can be replaced by Fig. 5.16 which in turn is an LP to BP transformation of
Fig. 5.17.
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Figure 5.16: 4-pole bandpass ladder filter expressed in terms of
normalized 2-pole bandpasses.
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Figure 5.17: LP to BP transformation applied to this structure
produces the 4-pole bandpass ladder in Fig. 5.16.

We don’t even specifically care to analyse the structure Fig. 5.17. What is
important is that the damping parameter of the LP to BP transformation con-
trols the transformation bandwidth and thereby the bandwidth of the bandpass
ladder in Fig. 5.16. Thus, introducing the damping control into the normalized
2-pole bandpasses in Fig. 5.16 we can control the bandpass ladder’s bandwidth
by simply varying the damping parameter of the underlying 2-pole bandpasses.

At the same time we still have the k parameter available, which we still can
use to control the bandwidth of the normalized bandpass (Fig. 5.18). Thus, k
and R provide two different ways of bandwidth control, resulting in somewhat
different amplitude response shapes (Fig. 5.19).7

Obviously, normalized 2-pole bandpasses with damping control could be im-
plemented using an SVF. If nonlinearities are involved, however, using TSK/SKF
2-pole bandpasses might be a better option. Since we didn’t introduce the latter
yet, we need to postpone the respective discussion. We will return to this ques-
tion, however, in the discussion of 8-pole bandpass ladder in Section 5.9, where
the bandwidth control via the 2-pole bandpass damping will be a particularly
desired feature compared to being somewhat academic in the case of a 4-pole
bandpass.

7In principle, k and R have very similar effects. Fundamentally, they both affect the band-
width and the resonance peak height. In Fig. 5.18 their effect on the resonance peak height is
compensated, the compensation for k being the 4 − k gain at the output, the compensation
for R being embedded into the normalized bandpasses. By removing the normalization from
the bandpasses we effectively introduce the 1/R2 gain into the feedback, and the damping R
thereby will control the resonance peak height too.
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+ '!&"%#$// BPn//
MMMqqq
// BPn//

MMMqqq
// •//

qqq
MMM oo

OO
MMMqqq
// //x(t) y(t)

k

4− k1/2 1/2

Figure 5.18: 4-pole normalized bandpass ladder filter expressed in
terms of normalized 2-pole bandpasses.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 5.19: Amplitude response of the 4-pole normalized bandpass
ladder filter in Fig. 5.18 for two different combinations of k and R
resulting in comparable bandwidths.

5.8 Sallen–Key filters

In this section we are going to introduce two special kinds of 2-pole bandpass
ladder filters, the Sallen–Key filter and its transpose.8 They are important
because of their nonlinear versions, since, as linear digital 2-pole filters go, the
SVF filter could be sufficient for most applications, and it also provides probably
the best performance among different TPT 2-poles.

For now we shall develop the linear versions of these filters. The Sallen–Key
filter is more famous than its transpose, but we’ll start with the transpose, for
the sake of a more systematic presentation of the material.

Transposed Sallen–Key (TSK) filters

Attempting to build a 2-pole lowpass ladder filter (Fig. 5.20) we don’t end up
with a useful filter.

8Despite essentially being bandpass ladder filters, the Sallen–Key filter and its transpose
can be (and are) used to deliver lowpass and highpass responses as well.
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+ '!&"%#$// LP1
// LP1

// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 5.20: 2-pole lowpass ladder filter (not very useful).

Indeed, the transfer function of this filter is

H(s) =
1

k + (1 + s)2

and the poles are respectively at

s = −1±
√
−k = −1± j

√
k (k ≥ 0)

Interpreting these pole positions in terms of 2-pole cutoff and damping (which
we can do using (4.13)), we obtain

ωc =
∣∣∣−1± j

√
k
∣∣∣ =
√

1 + k

R =
−Re

(
−1± j

√
k
)

∣∣∣−1± j
√
k
∣∣∣ =

1√
1 + k

Thus, firstly, there is coupling between the feedback amount and the effective
cutoff of the filter. Secondly, as k grows, R stays strictly positive, thus the filter
poles never go into the right semiplane (and, as with the 4-pole ladder filter,
this would be quite desired once we make the filter nonlinear). So, all in all, not
a very useful structure.

A similar situation occurs in an attempt to use two 1-pole highpasses instead
of two 1-pole lowpass in the same structure (the readers may wish verify this
on their own as an exercise).

This result is no wonder, considering that the transfer function of a chain
of two 1-pole lowpasses is 1/(1 + s)2, with the phase response being 0◦ only
at ω = 0 and being 180◦ only at ω = ∞ (for the highpasses the situation is
opposite, we have 180◦ only at ω = 0 and 0◦ only at ω = ∞, which doesn’t
make a big difference for our purposes). Thus we don’t get a good resonance
peak at any finite location. This however hints at the idea that we might still
try to build a 2-pole bandpass ladder filter from a chain of a 1-pole lowpass and
a 1-pole highpass, as the total phase shift at the cutoff would be 0◦ in this case:(

1
1 + s

· s

1 + s

) ∣∣∣∣∣
s=j

=
s

(1 + s)2

∣∣∣∣∣
s=j

=
j

(1 + j)2
=

1
2

The respective structure is shown in Fig. 5.21. Notice that we don’t invert the
feedback.

Computing the transfer function of this filter we have

H(s) =

s

(1 + s)2

1− k s

(1 + s)2
=

s

(1 + s)2 − ks
=

s

s2 + (2− k)s+ 1
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+ '!&"%#$// LP1
// HP1

// •//

qqq
MMM

OO //x(t) y(t)

k

Figure 5.21: 2-pole bandpass ladder filter.

The obtained expression is identical to the transfer function of a 2-pole bandpass
filter with a damping gain 2R = 2− k. That is, the filter in Fig. 5.21 is pretty
much the same as a linear 2-pole SVF bandpass, at least from the frequency
response perspective. Notice that k = 0 corresponds to the resonance-neutral
setting (R = 1) while k = 2 is the self-oscillation point (R = 0). As we should
remember from the 4-pole bandpass ladder discussion, the maximum possible
instantaneous gain of the lowpass-highpass pair is 1/4, therefore under the condi-
tion k < 4 the TPT implementation of Fig. 5.21 doesn’t become instantaneously
unstable.

It might seem that we have failed to construct a 2-pole lowpass filter using
the above approach, but in fact with a slight modification we can obtain one
from the bandpass filter in Fig. 5.21. Let’s replace the 1-pole highpass with a
1-pole multimode with highpass and lowpass outputs (Fig. 5.22).

+ '!&"%#$// LP1
// MM1

//
•//

qqq
MMM

OO //
//LP

HP
x(t)

y(t)
y1(t)

k

Figure 5.22: 2-pole bandpass ladder filter with an extra output
mode.

Obviously, the signal y(t) is not affected by this replacement. Let’s find out
what kind of signal is y1(t). In order to simplify the computation of the transfer
function of the entire structure at y1, consider first the transfer functions of the
1-pole multimode filter used in isolation:

HLP(s) =
1

1 + s
HHP(s) =

s

1 + s

or, for complex sinusoidal signals of the form est

YLP(s) =
1

1 + s
X(s) YHP(s) =

s

1 + s
X(s)

where X(s)est is the input signal of the multimode 1-pole and YLP(s)est and
YHP(s)est are the respective output signals. This means that

YLP(s) =
YHP(s)
s
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Therefore a similar relationship exists between the outputs y1(t) and y(t) of the
filter in Fig. 5.22:

Y1(s) =
Y (s)
s

and there is the same relationship between their respective transfer functions

H1(s) =
H(s)
s

=
1
s
· s

s2 + (2− k)s+ 1
=

1
s2 + (2− k)s+ 1

where H1(s) the the transfer function for the signal y1(t) in respect to the input
signal x(t). Therefore y1(t) is an ordinary 2-pole lowpass signal with damping
gain 2R = 2− k.

Thus we have obtained a multimode 2-pole ladder filter with the lowpass and
bandpass outputs. We redraw the structure in Fig. 5.22 once again as Fig. 5.23
to reflect what we have just found out about this structure.

+ '!&"%#$// LP1
// MM1

//
•//

qqq
MMM

OO //
//LP

HP
x(t)

yBP(t)
yLP(t)

k

Figure 5.23: Transposed Sallen–Key (TSK) filter.

The structure in Fig. 5.23 happens to be a transpose of the Sallen–Key
filter, therefore we will refer to it as the transposed Sallen–Key (TSK) filter.9

The transfer functions of the TSK filter are, as we have found out:

HLP(s) =
1

s2 + (2− k)s+ 1

HBP(s) =
s

s2 + (2− k)s+ 1

A 2-pole highpass output mode cannot be picked up in a straightforward way,
but can be obtained with some extra effort. Let’s also turn the first lowpass into
a multimode (Fig. 5.24). It is not difficult to realize that the transfer function
for the signal at the LP output of MM1a, which is simultaneously the input
signal of MM1b, is

HMM1aLP(s) = HLP(s) ·
(

1
s+ 1

)−1

=
s+ 1

s2 + (2− k)s+ 1

respectively for the signal at the HP output of MM1a we have

HMM1aHP(s) = s ·HMM1aLP(s) =
(s+ 1)s

s2 + (2− k)s+ 1

9The author has used the works of Tim Stinchcombe as the information source on the
Sallen–Key filter. The idea to introduce TSK filters as a systematic concept arose from
discussions with Dr. Julian Parker.
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Thus we obtain

HHP(s) = HMM1aHP(s)−HBP(s) =
(s+ 1)s

s2 + (2− k)s+ 1
− s

s2 + (2− k)s+ 1
=

=
s2

s2 + (2− k)s+ 1

MM1b
MM1a //+ '!&"%#$// //

•//

qqq
MMM

OO
//
//LP

HP

HP

LP

+ '!&"%#$
−

OO// //

x(t)
yBP(t)
yLP(t)

yHP(t)

k

Figure 5.24: Fully multimode TSK filter.

Alternative representations

Recall that 1-pole highpass signal can be obtained as the difference of the 1-pole
lowpass filter’s input and output signals:

s

1 + s
= 1− 1

1 + s

Then we can replace the multimode 1-pole in Fig. 5.23 by a 1-pole lowpass,
constructing the highpass signal “manually” by subtracting the lowpass output
from the lowpass input (Fig. 5.25). A further modification of Fig. 5.25 is formally
using negative feedback (Fig. 5.26)

+ '!&"%#$// LP1
// •// LP1

// •//

+ '!&"%#$�� −oo•ooqqq
MMM oo

OO //

//

x(t) yLP(t)

yBP(t)
k

Figure 5.25: TSK filter (alternative representation).

Highpass TSK filter

Let’s take the filter in Fig. 5.21 and switch the order of lowpass and highpass
1-pole filters (Fig. 5.27). Since this doesn’t change the transfer function of
the entire chain of 1-poles, the filter output stays the same, it is still a 2-pole
bandpass.
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+ '!&"%#$// LP1
// •// LP1

// •//

+ '!&"%#$− �� ooqqq
MMM oo

−
OO //x(t) yLP(t)

k

Figure 5.26: TSK filter (alternative representation, negative feed-
back form).

+ '!&"%#$// HP1
// LP1

// •//

qqq
MMM

OO //x(t) y(t)

k

Figure 5.27: 2-pole bandpass ladder filter with a different order of
1-pole lowpass and highpass filters.

Turning the 1-pole lowpass into a multimode we obtain the structure in
Fig. 5.28. It’s not difficult to see that the signal at the other output of the
multimode is a 2-pole highpass one. Therefore, in order to distinguish between
the filters in Figs. 5.23 and 5.28 we will refer to the former more specifically as
a lowpass TSK filter and to the latter as a highpass TSK filter. If necessary, we
can add the lowpass output, using a way similar to Fig. 5.24.

+ '!&"%#$// HP1
// MM1

//
•//

qqq
MMM

OO //
//HP

LP
x(t)

yBP(t)
yHP(t)

k

Figure 5.28: Highpass TSK filter.

The highpass versions of Fig. 5.25 and Fig. 5.26 could have been built by
performing transformations of Fig. 5.28 similarly to how we did with Fig. 5.23.
However it’s easier just to apply the LP to HP substitution (s ← 1/s) to
Figs. 5.25 and 5.26.

Sallen–Key filter (SKF)

We could take the structure in Fig. 5.27 and convert the 1-pole highpass filter
into a tranposed multimode 1-pole (Fig. 5.29). By doing this one obtains a
transpose of Fig. 5.23 which is (apparently) called Sallen–Key filter or shortly
SKF. If necessary, the highpass input can be added, turning Fig. 5.23 into a
transpose of Fig. 5.24.

If instead we take the structure in Fig. 5.21 and convert the lowpass into a
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MM1+ '!&"%#$ LP1
// •//

qqq
MMM oo

OO// // ////LP

HP
xBP(t)
xLP(t)

y(t)

k

Figure 5.29: Sallen–Key filter.

transposed multimode 1-pole, we can obtain the structure in Fig. 5.30. In order
to distinguish between Fig. 5.29 and Fig. 5.30, we will, as we did with their
transposes, refer to the structure in Fig. 5.29 more specifically as a lowpass
Sallen–Key filter and to the structure in Fig. 5.30 as a highpass Sallen–Key
filter. The lowpass input can be added to the highpass SKF using the transposed
version of the idea of Fig. 5.24.

MM1+ '!&"%#$ HP1
// •//

qqq
MMM oo

OO// // ////HP

LP
xBP(t)
xHP(t)

y(t)

k

Figure 5.30: Highpass SKF.

The transposed versions of Fig. 5.25 and Fig. 5.26 make alternative repre-
sentations of the lowpass SKF. E.g. by transposing the structure in Fig. 5.25 we
obtain the one in Fig. 5.31.

+ '!&"%#$// LP1
// + '!&"%#$// LP1

// •// //

qqq
MMM oo+ '!&"%#$oo•oo

OO
−

OO

OO

xLP(t)

xBP(t)

y(t)

k

Figure 5.31: Sallen–Key filter (alternative representation).

MIMO Sallen–Key filters

By turning both 1-poles in Fig. 5.27 into multimodes we’ll obtain a MIMO
(multiple input multiple output) Sallen–Key filter, as illustrated in Fig. 5.32.

Note that the labelling of the inputs and outputs xLP, xHP, yLP, yHP is
thereby formal. The actual transfer functions are defined for signal paths from
a given input to a given output:
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MM1a+ '!&"%#$ MM1b
//

•//

qqq
MMM oo

OO// // //
////LP

HP

HP

LP
xHP(t)
xLP(t)

yLP(t)
yHP(t)

k

Figure 5.32: MIMO Sallen–Key filter (HP-LP).

yLP yHP

xLP 2-pole lowpass 2-pole bandpass
xHP 2-pole bandpass 2-pole highpass

By putting the feedback path around lowpass-highpass chain rather than
lowpass-highpass, Fig. 5.32 is turned into Fig. 5.33.

MM1a+ '!&"%#$ MM1b
//

•//

qqq
MMM oo

OO// // //
////HP

LP

LP

HP
xLP(t)
xHP(t)

yHP(t)
yLP(t)

k

Figure 5.33: MIMO Sallen–Key filter (LP-HP).

Allpass TSK/SKF

Consider again the 2-pole bandpass ladder filter structure in Fig. 5.21. Suppose
that we use 1-pole allpasses (1− s)/(1 + s) instead of low- and highpass filters.
We also use negative, rather than positive feedback, although this is more a
matter of convention. The result is shown in Fig. 5.34, where we also prepared
the modal outputs.

+ '!&"%#$// •// AP1
// •// AP1

// •//

qqq
MMM

−
OO //

// //

x(t) y2(t)

y0(t) y1(t)

k

Figure 5.34: 2-pole ladder filter based on allpasses (not so useful).
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The transfer function of the main output is

H2(s) =

(
1−s
1+s

)2

1 + k
(

1−s
1+s

)2 =
(1− s)2

(1 + s)2 + k(1− s)2
=

=
(1− s)2

(1 + k)s2 + 2(1− k)s+ (1 + k)
=

1
1 + k

· (1− s)2

s2 + 2
1− k
1 + k

s+ 1

which is not exactly a 2-pole allpass transfer function. The denominator of H(s)
however looks pretty usable, it’s a classical 2-pole transfer function denominator
with damping R = (1− k)/(1 + k).

The transfer functions at the other two outputs can be obtained by “reverse
application” of the transfer functions of the 1-pole allpasses to H2(s):

H1(s) =
(

1− s
1 + s

)−1

·H2(s) =
1

1 + k
· (1 + s)(1− s)

s2 + 2
1− k
1 + k

s+ 1

H0(s) =
(

1− s
1 + s

)−1

·H1(s) =
1

1 + k
· (1 + s)2

s2 + 2
1− k
1 + k

s+ 1

We can try building the desired transfer function

H(s) =
s2 − 2Rs+ 1
s2 + 2Rs+ 1

=
s2 − 2

1− k
1 + k

s+ 1

s2 + 2
1− k
1 + k

s+ 1

as a linear combination of H0(s), H1(s) and H2(s):

a0H0(s) + a1H1(s) + a2H2(s) = H(s)

Noticing that the denominators of H0(s), H1(s), H2(s) are all identical to the
desired denominator already, we can discard the common denominator from the
equation and simply write:

a0
(1 + s)2

1 + k
+ a1

(1 + s)(1− s)
1 + k

+ a2
(1− s)2

1 + k
= s2 − 2

1− k
1 + k

s+ 1

or

a0(1 + 2s+ s2) + a1(1− s2) + a2(1− 2s+ s2) = (1 + k)s2 − 2(1− k)s+ (1 + k)

From where a0 = k, a1 = 0, a2 = 1. Thus

H(s) = H0(s) + kH2(s) =
s2 − 2

1− k
1 + k

s+ 1

s2 + 2
1− k
1 + k

s+ 1

and the corresponding structure is shown in Fig. 5.35.1011 The main idea of
this structure is very similar to the one of a TSK filter with some “embedded”
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+ '!&"%#$// •// AP1
// AP1

// •//

qqq
MMM oo

−
OO

MMMqqq
//

+ '!&"%#$��// //x(t) y(t)

k

k

Figure 5.35: Allpass TSK filter.

modal mixture. For that reason we can refer to the filter Fig. 5.35 as a allpass
TSK filter, or we could call it a 2-pole allpass ladder filter.

The 2-pole damping parameter R is related to k via

R = (1− k)/(1 + k)
k = (1−R)/(1 +R)

so that for k = −1 . . . +∞ the damping varies from +∞ to −1. The stable
range R = +∞ . . . 0 corresponds to k = −1 . . . 1.

Transposing the structure in Fig. 5.35 we obtain the structure Fig. 5.36
which for obvious reasons we will refer to as an allpass SKF.

•// + '!&"%#$// AP1
// AP1

// + '!&"%#$// •//

qqq
MMM oo

−
OO

MMMqqq
//

�� //x(t) y(t)

k

k

Figure 5.36: Allpass SKF.

5.9 8-pole ladder

Connecting eight 1-pole lowpass filters in series instead of four we can build an
8-pole lowpass ladder filter (Fig. 5.37).

The transfer function of the 8-pole lowpass ladder is obviously

H(s) =
1

k + (1 + s)8

10It is easy to notice that this structure is very similar to the one of a multinotch filter with
some specific dry/wet mixing ratio.

11The same structure can be obtained from a direct form II 1-pole allpass filter by the
allpass substitution z−1 ← (1 − s)2/(1 + s)2. It is also interesting to notice that, applying
the allpass substitution principle to the structure in Fig. 5.35, we can replace the series of the
two 1-pole allpass filters in Fig. 5.35 by any other allpass filter, and the modified structure
will still be an allpass filter.
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+ '!&"%#$// 8× LP1
// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 5.37: 8-pole lowpass ladder filter.

and the pole positions are defined by

k + (1 + s)8 = 0

giving
s = −1 + (−k)1/8

where (−k)1/8 is understood in the multivalued complex root sense:

(−k)1/8 = |k|1/8ejα

where
α =

π + 2πn
8

The main difference from the 4-pole ladder lowpass, besides the steeper cutoff
slope, is that the 180◦ phase shift by the chain of 1-pole lowpasses is no longer
occurring at the cutoff. Instead, the phase response of the lowpass chain at
the cutoff is 360◦. In order to find the frequency at which 180◦ phase shift is
occurring we need to solve

arg
(

1
1 + jω

)8

= −π

that is
arg(1 + jω) = π/8 or arg(1 + jω) = 3π/8

(apparently the values 5π/8 an larger cannot be attained by arg(1 + jω)). This
gives

ω = tanπ/8 or ω = tan 3π/8

The value of tanπ/8 can be easily found using the formula for the tangent of
double angle:

tan 2α =
2 tanα

1− tan2 α

where letting α = π/8 we obtain

2 tanπ/8
1− tan2 π/8

= 1

2 tanπ/8 = 1− tan2 π/8

tan2 π/8 + 2 tanπ/8− 1 = 0

ω = tanπ/8 =
√

2− 1 ≈ 0.4142
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For tan 3π/8 we can use the formula for the tangent of the complementary angle:

ω = tan 3π/8 = tan(π/2− π/8) =
1

tanπ/8
=

1√
2− 1

=
√

2 + 1 ≈ 2.4142

Thus the resonance peak can occur at ω = tan(π/4± π/8) =
√

2± 1. Let’s find
the values of k at which the respective poles hit the imaginary axis. According
to (5.7), k is the reciprocal of the amplitude amplitude response of the chain of
eight 1-pole lowpasses at the respective frequencies:

k =

(∣∣∣∣ 1
1 + jω

∣∣∣∣8
)−1

=
(

1√
1 + ω2

)−8

=
(√

1 + ω2
)−8

=

=
(√

1 + tan2(π/4± π/8)
)8

= cos−8(π/4± π/8)

finally giving

ω1 ≈ 0.4142 k1 ≈ 1.884
ω2 ≈ 2.4142 k2 ≈ 2174

Thus the selfoscillation at ω1 is occurring way much earlier than the one at ω2.
It is very unlikely that even in a nonlinear version of this filter, which allows
going into unstable range of k, we will use k as large as 2174. It also hints
to the fact that the second resonance is way much weaker than the first one.
Therefore, for practical purposes we will simply ignore the second resonance and
say that the infinite resonance is occuring at ω =

√
2− 1 ≈ 0.4142 at k ≈ 1.884.

Fig. 5.38 illustrates the amplitude response behavior for various k.

ω

|H(jω)|, dB

ωcωc/8 8ωc(
√

2− 1)ωc

+6

0

-6

-12

-18

Figure 5.38: Amplitude response of the 8-pole lowpass ladder filter
for various k.

Considering that at k = 0 the amplitude response of a chain of eight 1-
poles at the cutoff is (1/

√
2)8 = 1/16, which is ca. −24dB, we could treat the

resonance frequency ω =
√

2 − 1 as the “user-facing” cutoff frequency instead,
and in practical implementations of the filter let the cutoff of the underlying 1-
poles equal the “user-facing” cutoff multiplied by 1/(

√
2−1) =

√
2+1 ≈ 2.4142.
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One could ask the following question: the phase response of the chain of
eight 1-poles at ω = 1 is 0◦, therefore why don’t we simply use positive feed-
back to create the resonance peak at ω = 1? The problem is that the phase
response at ω = 0 is also 0◦. Since the amplitude response at ω = 0 is 1, the
selfoscillation will occur already at k = 1, whereas at ω = 1 it will occur only
at k = 1/(1/

√
2)8 = 16.

The instantaneously unstable range of k is found similarly to the 4-pole
lowpass ladder and is k < −1.

Various modal mixtures for the 8-pole lowpass ladder filter can be built in
a similar way to the 4-pole ladder filter. However the fact that the resonance
frequency is noticeably lower than the cutoff frequency of the underlying 1-poles
will affect the shapes of the resulting modal mixtures. Some smart playing
around with the modal mixture coefficients can sometimes reduce the effect of
this discrepancy.

8-pole highpass ladder

Replacing the 1-pole lowpasses with highpasses we obtain an 8-pole highpass
ladder filter (Fig. 5.39). As we already know from the discussion of the 4-pole
highpass, it essentially the same as lowpass except for the s← 1/s substitution.
The instantaneously unstable range of k is found similarly to the 4-pole highpass
ladder and is k < −1.

+ '!&"%#$// 8×HP1
// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 5.39: 8-pole highpass ladder filter.

8-pole bandpass ladder

Replacing half of the lowpasses with highpasses in Fig. 5.37 we obtain the 8-pole
bandpass ladder filter, where we shouldn’t forget that in a bandpass ladder the
feedback shouldn’t be inverted (Fig. 5.40).

+ '!&"%#$// 4× LP1HP1
// •//

qqq
MMM oo

OO //x(t) y(t)

k

Figure 5.40: 8-pole bandpass ladder filter.

The total gain at the cutoff of the 1-pole chain is(
s

(1 + s)2

)4
∣∣∣∣∣
s=j

=
(

1
2

)4

=
1
16
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therefore selfoscillation occurs at k = 16. Fig. 5.41 illustrates the amplitude
response behavior at various k. Note that the amplitude response is pretty low
(particularly, for k = 0 it peaks at −24dB), therefore additional boosting of the
output signal may be necessary in practical usage.

ω

|H(jω)|, dB

ωcωc/8 8ωc

-12

-18

-24

-30

-36

Figure 5.41: Amplitude response of the 8-pole bandpass ladder
filter for various k ≥ 0.

The instantaneously unstable range of k is found similarly to the 4-pole
bandpass ladder and is k ≥ 28 = 256.

An interesting feature of the 8-pole bandpass ladder is that at negative k
the filter obtains two resonance peaks (Fig. 5.42).12 Indeed, notice that the
phase response of the 8-pole lowpass-highpass chain is the same as the one of
the 8-pole lowpass chain:

arg
s4

(1 + s)8
= arg

1
(1 + s)8

s = jω, ω ∈ R

Thus we still have a 180◦ phase shift at ω =
√

2± 1.
The amplitude response of a single lowpass-highpass pair at ω =

√
2± 1 is∣∣∣∣∣∣

 s

(1 + s)2

∣∣∣∣∣
s=j(

√
2±1)

∣∣∣∣∣∣ =
√

2± 1
1 + (

√
2± 1)2

=
1

(
√

2∓ 1) + (
√

2± 1)
=

1
2
√

2

therefore selfoscillation occurs at k = −(2
√

2)4 = −64.

8-pole bandpass ladder with bandwidth control

The occurence of two resonance peaks in an 8-pole bandpass ladder at k < 0
motivates the introduction of the possibility to control the distance between
these two peaks. In Section 5.7 we have introduced two different approaches
to control the 4-pole bandpass ladder’s bandwidth. Apparently, the approach
using the k parameter is not good for our goal here, since we don’t want to affect

12In nonlinear versions of this filter this can generate a particularly complex sound, as the
two resonance peaks and the input signal fight for the saturation headroom.



5.9. 8-POLE LADDER 163
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ωcωc/8 8ωc(
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-30
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Figure 5.42: Amplitude response of the 8-pole bandpass ladder
filter for various k < 0.

the amplitude response shape in the vertical direction. Also, from Fig. 5.42
it seems that the variation of k in the negative range has little effect on the
actual bandwidth. On the other hand, the approach using the damping of the
underlying 2-pole bandpasses looks much more promising.

Representing the 8-pole bandpass ladder in terms of normalized 2-pole band-
passes (Fig. 5.43) we notice that it is an LP to BP transformation of the filter
in Fig. 5.44. The filter in Fig. 5.44 is essentially the same as the ordinary 4-pole
lowpass ladder (Fig. 5.1), except that

- the feedback is positive, so that selfoscillation at ω = 1 occurs at some
negative value of k

- the output signal amplitude and the feedback amount are 16 times lower,
thus selfoscillation at ω = 1 doesn’t occur at k = −4 but at k = −64
(which matches the already established fact of selfoscillation of Fig. 5.40
and equivalently Fig. 5.43 at k = −64).

Therefore by controlling the bandwidth of the LP to BP transformation, we will
control the distance between the resonance peaks in Fig. 5.42.

+ '!&"%#$// BPn//
MMMqqq
// •//

qqq
MMM oo

OO //x(t) y(t)

k

1/2
___________

�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _

�
�
�
�
�
�

×4 times

Figure 5.43: 8-pole bandpass ladder filter expressed in terms of
normalized 2-pole bandpasses.
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+ '!&"%#$// LP1
//

MMMqqq
// •//

qqq
MMM oo

OO //x(t) y(t)

k

1/2
___________
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�
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�
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�

×4 times

Figure 5.44: 4-pole lowpass ladder filter with positive feedback and
additional gains of 1/2. The LP to BP substitution applied to this
filter produces the filter in Fig. 5.43.

Since the resonance peak in Fig. 5.44 is occurring at ω = 1, the formula
(4.20) expresses R in terms of the distance between the two images of this peak
after the LP to BP transformation. Therefore we can directly use the formula
(4.20) to control the distance between the resonance peaks in Fig. 5.43. The
prewarping techniques described in Section 4.6 also apply, thereby allowing us
to achieve the exact positioning of the resonance peaks (in the limit k → −64).

There is an important question concerning the choice of the specific topology
for the normalized bandpasses BPn. Of course, the most obvious choice would
be to use an SVF. This should work completely fine in the linear case. In a
nonlinear case, however, we might want to use a different topology. Particularly,
we might want that at R = 1 our controlled-bandwidth topology becomes fully
identical to Fig. 5.40 (therefore obtaining the sound, which is identical to the
one of the structure in Fig. 5.40 even in the presence of nonlinear effects).

Assuming that Fig. 5.40 implies interleaved 1-pole low- and highpasses (as
shown in Fig. 5.45), a good solution is provided by the TSK/SKF filters. E.g.
considering the structure in Fig. 5.21 (which is essentially the TSK filter from
Fig. 5.23), we can notice that at k = 0 it becomes fully equivalent to a sin-
gle lowpass-highpass pair. This suggests that we could use this structure to
construct a halved normalized bandpass (Fig. 5.46), where expressing the TSK
feedback k in terms of damping R we have k = 2(1 − R). Note that at R = 1
not only the feedback path in Fig. 5.46 is disabled, but also the output gain
element R is becoming transparent. Using the halved normalized bandpass in
Fig. 5.46, we could reimplement Fig. 5.45 as Fig. 5.47.

5.10 Diode ladder

In the diode ladder filter the serial connection of four 1-pole lowpass filters (im-
plemented by the transistor ladder) is replaced by a more complicated structure
of 1-pole filters (implemented by the diode ladder). The block diagram of the
diode ladder is shown in Fig. 5.48, while the diode ladder filter adds the feed-
back loop around that structure, feeding the fourth output of the diode ladder
into the diode ladder’s input (Fig. 5.49).
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+ '!&"%#$// LP1
// HP1

// •//

qqq
MMM oo

OO //x(t) y(t)
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Figure 5.45: Fig. 5.40 implemented by interleaved 1-pole low- and
high-passes.
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// •//
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R

Figure 5.46: Halved normalized TSK bandpass.
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×4 times

Figure 5.47: 8-pole bandpass ladder filter expressed in terms of
halved normalized TSK bandpasses.

It is instructive to write out the 1-pole equations implied by Fig. 5.48:

ẏ1 = ωc
(
(x+ y2)− y1

)
ẏ2 = ωc

(
(y1 + y3)/2− y2

)
ẏ3 = ωc

(
(y2 + y4)/2− y3

)
ẏ4 = ωc

(
y3/2− y4

) (5.18)

In this form it’s easier to guess the reason for the gain elements 1/2 used in
Fig. 5.48, they perform the averaging between the feedforward and feedback
signals. However this averaging in (5.18) and Fig. 5.48 is not done fully consis-
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+ '!&"%#$// LP1// •// + '!&"%#$// MMqq// LP1// •// + '!&"%#$// MMqq// LP1// •//
MMqq// LP1// •//

�� �� ��

�� �� �� ��
x(t) y1(t) y2(t) y3(t) y4(t)

1/2 1/2 1/2

Figure 5.48: Diode ladder.

+ '!&"%#$// Diode ladder// •//

qqq
MMM oo

−
OO //x(t) y(t)

y4(t)

k

Figure 5.49: Diode ladder filter.

tently. It would have been more consistent to have no 1/2 gain element at the
input of the fourth lowpass, rather than of the first one:

ẏ1 = ωc
(
(x+ y2)/2− y1

)
ẏ2 = ωc

(
(y1 + y3)/2− y2

)
ẏ3 = ωc

(
(y2 + y4)/2− y3

)
ẏ4 = ωc

(
y3 − y4

) (5.19)

in which case the first lowpass would take (x + y2)/2 as its input, the second
lowpass would take (y1 + y3)/2 as its input, the third lowpass would take (y2 +
y4)/2 as its input, and the fourth lowpass would take y3 as its input. However,
(5.18) is a more traditional way to implement a diode ladder filter. Anyway, the
difference between (5.18) and (5.19) is actually not that large, since (as we are
going to show below) they result in one and the same transfer function,

The more complicated connections between the 1-pole lowpasses present in
the diode ladder “destroy” the frequency response of the ladder in a remarkable
form, which, is responsible for the characteristic diode ladder filter sound.13

Generally, the behavior of the diode ladder filter is less “straightforward” than
the one of the transistor ladder filter.

Transfer function

We are going to develop the transfer function for the diode ladder in a gen-
eralized form (Fig. 5.50), where Hn(s) denote blocks with respective transfer
functions. In the case of Fig. 5.48 and (5.18) we would have

H1(s) = G(s) H2(s) = H3(s) = H4(s) =
G(s)

2
(5.20)

13One could argue that the characteristic sound of diode ladder filters is due to nonlinear
behavior, however the nonlinear aspects do not show up unless the filter is driven hot enough.
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while in the case of (5.19) we would respectively have

H1(s) = H2(s) = H3(s) =
G(s)

2
H4(s) = G(s) (5.21)

where
G(s) =

1
1 + s

(5.22)

+ '!&"%#$// H1(s)// •// + '!&"%#$// H2(s)// •// + '!&"%#$// H3(s)// •// H4(s)// •//
�� �� ��

�� �� �� ��
x(t) y1(t) y2(t) y3(t) y4(t)

Figure 5.50: Generalized diode ladder in transfer function form.

Assuming complex exponential signals est, for the H4(s) block we have

y4 = H4y3

(where H4 is short for H4(s)), therefore

1
H4

y4 = y3 (5.23)

For the H3(s) block we have

y3 = H3(y2 + y4)

Substituting (5.23) we have

1
H4

y4 = H3(y2 + y4)

1
H34

y4 = y2 + y4

1−H34

H34
y4 = y2 (5.24)

where H34 is a short notation for H3H4.
For the H2(s) block we have

y2 = H2(y1 + y3)

Substituting (5.23) and (5.24) we have

1−H34

H34
y4 = H2

(
y1 +

1
H4

y4

)
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1−H34

H234
y4 = y1 +

1
H4

y4

1−H34 −H23

H234
y4 = y1 (5.25)

For the H1(s) block we have

y1 = H1(x+ y2)

Substituting (5.24) and (5.25) we have

1−H34 −H23

H234
y4 = H1

(
x+

1−H34

H34
y4

)
1−H34 −H23

H1234
y4 = x+

1−H34

H34
y4

1−H34 −H23 −H12(1−H34)
H1234

y4 = x

1−H12 −H23 −H34 +H1234

H1234
y4 = x

∆(s) =
y4
x

=
H1234

1−H12 −H23 −H34 +H1234
(5.26)

where ∆(s) is the diode ladder’s transfer function. It is easy to see that sub-
stituting (5.20) or (5.21) into (5.26) gives identical results, therefore transfer
functions arising out of (5.18) and (5.19) are identical. Formula (5.26) also
gives one more hint at the reason to use a 1/2 gain with all 1-poles except the
first or the last one, as in this case we get unit amplitude response at ω = 0:

∆(0) =

1
8

1− 1
2
− 1

4
− 1

4
+

1
8

= 1

Since we are specifically interested in Fig. 5.48, let’s write its transfer func-
tion in a more detailed form. Substituting first (5.20) and then (5.22) into (5.26)
we have

∆(s) =
G4/8

1−G2 +G4/8
=

1
8G−4 − 8G−2 + 1

=

=
1

8(1 + s)4 − 8(1 + s)2 + 1
=

1
T4(s+ 1)

(5.27)

where T4(x) = 8x4 − 8x2 + 1 is the fourth-order Chebyshev polynomial.14 The
poles of ∆(s) are therefore found from s + 1 = xn or s = −1 + xn where
xn ∈ (−1, 1) are the roots of the Chebyshev polynomial T4(x):

xn = ±1
2
± 1

2
√

2
14Although the denominator of Δ(s) is a Chebyshev polynomial, this has nothing to do

with Chebyshev filters, despite the name.
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Therefore the poles of ∆(s) are purely real and located within (−2, 0):

pn = −1± 1
2
± 1

2
√

2
(5.28)

Since the poles of ∆(s) are located on the negative real semiaxis and there are
no zeros, |∆(jω)| is monotonically decreasing to zero on ω ∈ [0,+∞). Thus
∆(s) is a lowpass.15

In Section 2.16 we have seen that two linear systems sharing the same trans-
fer function are equivalent as long as the only modulation which is happening is
the cutoff modulation. Therefore, as long as our implementation is purely linear,
we could replace the complicated diode ladder feedback system in Fig. 5.50 with
simply a serial connection of four 1-poles, whose cutoffs are defined by (5.28).16

Further details of replacement of the diode ladder by a series of 1-poles can be
taken from Section 8.2 where general principles of building serial filter chains
are discussed.

The transfer function of the diode ladder filter is obtained from (5.27) giving

H(s) =
∆

1 + k∆
=

1
k + ∆−1

=
1

k + T 4(1 + s)
=

1
8(1 + s)4 − 8(1 + s)2 + 1 + k

(5.29)
The corresponding amplitude response is plotted in Fig. 5.51.

ω

|H(jω)|, dB

k = 16

k = 0

ωcωc/8 8ωc

0

-6

-12

-18

-24

Figure 5.51: Amplitude response of the diode ladder filter for var-
ious k.

The poles of the diode ladder filter, if necessary, can be obtained by solving

8(1 + s)4 − 8(1 + s)2 + 1 + k = 0

which is a biquadratic equation in (1 + s).

15The amplitude response of Δ(s) can be seen in Fig. 5.51 at k = 0.
16Note that such replacement only gives a correct modal output y4, which is the one we

usually need. Other modal outputs, if needed at all, would have to be obtained in a more
complicated way by combining the output signals of the 1-poles.
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In regards to the multimode diode ladder filter, notice that the transfer
functions corresponding to the yn(t) outputs are different from the ones of the
transistor ladder, therefore the mixing coefficients which worked for the modes
of the transistor ladder filter, are not going to work the same for the diode
ladder.

Resonance

In order to obtain the information about the resonating peak, we need to find
frequencies at which the phase response of ∆(s) is 0◦ or 180◦. Therefore we are
interested in the solutions to the equation

Im
(
8(1 + s)4 − 8(1 + s)2 + 1

)
= 0 where s = jω, ω ∈ R

Substituting jω for s we have

Im
(
8(1 + s)4 − 8(1 + s)2 + 1

)
= 8 Im

(
(1 + jω)4 − (1 + jω)2

)
=

= Im
(
(1− ω2 + 2jω)2 − (1− ω2 + 2jω)

)
= 4(1− ω2)ω − 2ω = 0

The solution ω = 0 is not very interesting. Therefore we cancel the common
factor 2ω obtaining

2(1− ω2) = 1

and therefore
ω = ± 1√

2
Now, in order to find the selfoscillation boundary value of k we need to find the
frequency response of ∆(s) at ω = 1/

√
2. Substituting s = j/

√
2 into (5.27)

and using (5.6) we have

k = 8(1 + s)4 − 8(1 + s)2 + 1 = 8
(

1 +
j√
2

)4

− 8
(

1 +
j√
2

)2

+ 1 =

= 8
(

1
2

+ j
√

2
)2

− 8
(

1
2

+ j
√

2
)

+ 1 =

= 8
(
−7

4
+ j
√

2
)
− 8

(
1
2

+ j
√

2
)

+ 1 = 1− 14− 4 = −17

Now, since we are already having negative feedback in Fig. 5.48, the selfoscilla-
tion occurs at k = 17.

Note that the amplitude response in Fig. 5.51 is matching the above analysis
results.

TPT model

Converting Fig. 5.48 to the instantaneous response form we obtain the structure
in Fig. 5.52. From Fig. 5.52 we wish to obtain the instantaneous response of
the entire diode ladder. Then we could use this response to solve the zero-delay
feedback equation for the main feedback loop of Fig. 5.49.

The structure in Fig. 5.52 looks a bit complicated to solve. Of course we
could always write a system of linear equations and solve it in a general way,
e.g. using Gauss elimination, but this has its own complications. Therefore we
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+ '!&"%#$// 2gξ+s1// •// + '!&"%#$// gξ+s2// •// + '!&"%#$// gξ+s3// •// gξ+s4// •//
�� �� ��

�� �� �� ��
x y1 y2 y3 y4

Figure 5.52: Diode ladder in the instantaneous response form.
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�� �� �� ��
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Figure 5.53: Diode ladder in the nested instantaneous response
form.

would rather like to see if we somehow could still use the approach of nested
zero-delay feedback loops, as we have been doing with other filters until now.

Introducing the nested systems, as shown in Fig. 5.53 by dashed lines, we
can first treat the innermost system which has input y2 and outputs y3 and y4.
The equations for this system are

y3 = g(y2 + y4) + s3

y4 = gy3 + s4

Solving for y3, we obtain

y3 =
g

1− g2
y2 +

gs4 + s3
1− g2

= g23y2 + s23

where g23 and s23 are new variables introduced as shown above. Since gξ + sn
denote 1-pole lowpasses with halved input signals, 0 < g < 1/2. Respectively
0 < g2 < 1/4 and thus the zero-delay feedback loop doesn’t get instantaneously
unstable. The range of g23 is

0 < g23 =
g

1− g2
<

1/2
1− (1/2)2

=
1/2
3/4

=
2
3

Going outside to the next nesting level we have

y2 = g(y1 + y3) + s2 = gy3 + gy1 + s2 = g(g23y2 + s23) + gy1 + s2

Solving for y2:

y2 =
g

1− gg23
y1 +

gs23 + s2
1− gg23

= g12y1 + s12
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where 0 < gg23 < 1/2 · 2/3 = 1/3, thus the zero-delay feedback loop doesn’t get
instantaneously unstable. The range of g12 is

0 < g12 =
g

1− gg23
<

1/2

1− 1
2
· 2

3

=
1/2

1− 1/3
=

1/2
2/3

=
3
4

Going outside to the outermost level we have

y1 = 2g(x+ y2) + s1 = 2gy2 + 2gx+ s1 = 2g(g12y1 + s12) + 2gx+ s1

Solving for y1:

y1 =
2g

1− 2gg12
x+

2gs12 + s1
1− 2gg12

= g01x+ s01

where 0 < 2gg12 < 2 · 1/2 · 3/4 = 3/4, thus the zero-delay feedback loop doesn’t
get instantaneously unstable. The range of g01 is

0 < g01 =
2g

1− 2gg12
<

1

1− 2 · 1
2
· 3

4

=
1

1− 3/4
=

1
1/4

= 4

Introducing for consistency the notation y4 = gy3 + s4 = g34y3 + s34, we
obtain the instantaneous response for the entire ladder

y4 = g34y3 + s34 =
= g34(g23y2 + s23) + s34 = g34g23y2 + (g34s23 + s34) = g24y2 + s24 =
= g24(g12y1 + s12) + s24 = g24g12y1 + (g24s12 + s24) = g14y1 + s14 =
= g14(g01x+ s01) + s14 = g14g01x+ (g14s01 + s14) = g04x+ s04

it’s not difficult to realize that

0 < g04 = g01g12g23g34 < 4 · 3
4
· 2

3
· 1

2
= 1

Now g04 is the instantaneous gain of the entire diode ladder. Respectively the
total gain of the of the zero-delay feedback loop in Fig. 5.49 is −kg04 and thus
the feedback doesn’t get instantaneously unstable provided k ≥ −1.

SUMMARY

The transistor ladder filter model is constructed by placing a negative feedback
around a chain of four identical 1-pole lowpass filters. The feedback amount
controls the resonance.

The same idea of a feedback loop around a chain of several filters also results
in further filter types such as 8-pole ladder, diode ladder and SKF/TSK.



Chapter 6

Nonlinearities

The filters which we were discussing until now were all linear. Formally this
means that if we consider a filter as an operator, this operator is a linear one.
Practically this meant that the structures of our filters were consisting of gains,
summators and integrators. However, filters used in synthesizers often show no-
ticeably nonlinear behavior. In terms of block diagrams, introducing nonlinear
behavior means that we should add nonlinear elements to the set of our block
diagram primitives.

Nonlinear filters have more complicated behavior and are capable of produc-
ing richer sound than the linear ones. Usually they exhibit complex overdriving
effects, when driven with an input signal of a sufficiently high level. Another
special feature of many nonlinear filters is their ability to increase the resonance
beyond a formally infinite amount, entering the so-called self-oscillation.

6.1 Waveshaping

We just mentioned that in order to build non-linear filters we need to introduce
nonlinear elements into the set of our block diagram primitives. In fact we are
going to introduce just one new type of element, the waveshaper :

f(x)// //x(t) y(t)

A waveshaper is simply applying a given function to its input signal, and sends
the respective function value as its output signal:

y(t) = f(x(t))

The function f(x) can be any “reasonable” function, e.g. f(x) = |x| or f(x) =
sinx etc.

Usually the function f cannot vary with time, that is, the function’s pa-
rameters, if it has any, are fixed. E.g. if f(x) = sin ax, then a is usually fixed
to some particular value, e.g. a = 2, which doesn’t vary. Often, this is just a
matter of convention. e.g. the waveshaper sin ax can be represented as a serial
connection of a gain element and the waveshaper itself:

MMMqqq
// f(x)// //x(t) y(t)
a

173



174 CHAPTER 6. NONLINEARITIES

in which case the waveshaper itself is time-invariant.
Still, if necessary, it’s no problem for the waveshaper to contain time-varying

parameters, as long as the time-varying parameters are “externally controlled”
(in the same way how e.g. filter cutoff is controlled). That is, the waveshaper’s
parameters cannot depend on the values of the signals within the block diagram.
If one needs the parameter dependency on the signals of the block diagram, then
one should consider such dependencies as additional inputs of the nonlinear
element and we end up with a multi-input element of the block diagram. It is
no problem to use such elements, but normally we should not refer to them as
waveshapers, since commonly, waveshapers have one input and one output.

In order to be representable as a function of the input signal, a waveshaper
clearly shouldn’t have any dependency on its own the past. That is waveshaper
is a memoryless element.

6.2 Saturators

The probably most commonly used category of waveshapers is saturators. There
is no precise definition of what kind of waveshaper is referred to as saturator,
it’s easier to give an idea of what a saturator is by means of example.

Bounded saturators

One of the most classical saturators is the hyperbolic tangent function:

y(t) = tanhx(t) (6.1)

(Fig. 6.1). Even if the input signal of this saturator is very large, the output
never exceeds ±1. Thus, this element saturates the signal, which is the origin
of the term saturator.

x

y

0 1−1 2−2

1

−1

Figure 6.1: Hyperbolic tangent y = tanhx.

Other saturators with shapes similar to the hyperbolic tangent include:

y = sin arctanx = x/
√

1 + x2 (6.2a)
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y =

{
x · (1− |x|/4) if |x| ≤ 2
sgnx if |x| ≥ 2

(Parabolic saturator) (6.2b)

y = x/(1 + |x|) (Hyperbolic saturator) (6.2c)

(this list is by no means exhaustive). Is is not difficult to see that the values of
the hyperbolic tangent (6.1) and the saturators (6.2) do not exceed 1 in absolute
magnitude. That is, their ranges are bounded. We are going to refer to such
saturators as bounded-range saturators or simply bounded saturators.

From the four introduced saturation functions the parabolic saturator (6.2b)
stands out in that the full saturation is achieved at |x| = 2, whereas for other
shapes it’s not achieved at finite input signal levels. Thus, the range of (6.2b)
is [−1, 1], therefore being compact. We will refer to such saturators as compact-
range monotonic saturators.

Another important distinction of the parabolic saturator is that it has three
discontinuities of the second derivative (at x = 0 and x = ±2) and the hy-
perbolic saturator has one discontinuity of the second derivative (at x = 0).
Even though such discontinuities are not easily visible on the graph, they af-
fect the character of the saturator’s output signal. Usually such discontinuities
are rather undesired, as they represent abrupt irregularities in the saturator’s
shape, so it’s generally better to avoid those.1 A common reason to tolerate
derivative discontinuities in a saturator, though, is performance optimization.

Transparency at low signal levels

A property commonly found with saturators is that at low levels of input signals
the saturator is transparent: f(x) ≈ x for x ≈ 0. Equivalently this condition
can be written as

f(0) = 0
f ′(0) = 1

(6.3)

Visually it manifests itself as the function’s graph going at 45◦ through the
origin. Clearly, all the previously introduced saturators have this property.

The property (6.3) is not really a must, but it’s quite convenient if the
saturators have it, particularly for the analysis of system behavior at low signal
levels. For that reason it’s common to represent a non-unit derivative at the
origin via a separate gain. Given a saturation function f(x) such that f(0) = 0
but f ′(0) 6= 1 we introduce a different saturation function f̃(x) such that f̃(0) =
0 and f̃ ′(0) = 1. E.g. we can take

f̃(x) =
f(x)
f ′(0)

so that
f(x) = f ′(0)f̃(x)

The coefficient f ′(0) is then represented as a separate gain element.

f̃(x)//
MMMqqq
// //x(t) y(t)

f ′(0)

1Sometimes the effect created by discontinuities is explicitly being sought after, e.g. in a
rectification waveshaper f(x) = |x|.
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Apparently this representation is not available if f ′(0) = 0, however in such cases
the saturator effectively breaks the connection at low signal levels, working as
a zero gain.

Saturators with f(0) 6= 0 can be represented by separation of the value f(0)
into a DC offset signal:

f(x) = f(0) + f̃(x)

which is treated as another input signal with a fixed value f(0):

f̃(x)// + '!&"%#$// //��
x(t) y(t)

f(0)

Unbounded saturators

Sometimes we want saturation behavior, but do not want a hard bound on the
output signal’s level. One function with this property is inverse hyperbolic sine:

y = sinh−1 x = ln
(
x+

√
x2 + 1

)
(6.4)

(Fig. 6.2) While having the usual transparency property (6.3), it is not bounded.
The asymptotic behavior of the hyperbolic sine is similar to the one of the
logarithm function:

sinh−1 x ∼ sgnx · ln |2x| x→∞

Another saturator with a similar behavior can be obtained as an inverse of
y = x(1 + |x|), which is

y =
2x

1 +
√

1 + |4x|
(6.5)

behaving as
√
|x| at x→∞.

Such kind of waveshapers are also referred to saturators, even though the
saturation doesn’t have a bound. We will refer to them as unbounded-range or
unbounded saturators.

Apparently, unbounded saturators represent a weaker kind of saturation
than bounded ones. The weakest possible kind of saturation is achieved if y
grows as a linear function of x at x → ∞. Such saturators can be built by
introducing a linear term into the saturator’s function. Given a saturator f(x)
where f(x) can be any of the previously discussed saturators, we build a new
saturator by taking a mixture of y = f(x) and y = x:

y = (1− α)f(x) + αx (0 < α < 1) (6.6)

where we needed to multiply f(x) by 1 − α to keep the transparency property
(6.3) (provided it was holding for f(x)). Apparently y ∼ αx for x → ∞. We
can refer to such saturators as asymptotically linear saturators. The previously
discussed saturators such that y = o(x) for x→∞ can be respectively referred
to as slower-than-linear saturators.
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Figure 6.2: Inverse hyperbolic sine y = sinh−1 x.

Soft- and hard-clippers

One special but important example of a saturator is the hard clipper, shown in
Fig. 6.3.2 In contrast, we will be referring to all previously discussed saturators
as soft clippers.3
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y

0 1−1 2−2

1

−1

Figure 6.3: Hard clipper.

2Apparently, hard clipper is a compact-range saturator.
3There doesn’t seem to be a universally accepted definition of which kinds of saturators are

referred to as soft clippers, and which aren’t. E.g. the set of soft clippers could be restricted
to contain only bounded saturators. In this book we will understand the term soft clipper in
the widest possible sense.
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Saturation level

The previously introduced bounded saturators (6.1) and (6.2) were all saturating
at y = ±1. But that is not always desirable. Given a bounded saturator f(x)
with the saturation level y = ±1 we can change the saturation level to y = ±L
by simultaneouly scaling the x and y coordinates:

y(t) = L · f(x/L) (6.7)

(Fig. 6.4). The simultaneous scaling of x and y preserves the transparency
property (6.3).
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y = tanhx

y = 2 tanh(x/2)

Figure 6.4: Changing the saturation level.

Saturator as variable gain

Sometimes it is useful to look at saturators as at variable gain elements. E.g.
we can rewrite y = tanhx as

y = tanhx = x · tanhx
x

= g(x) · x (6.8)

The graph of the function g(x) = tanh x
x is shown Fig. 6.5. Thus

g(x) ≈ 1 for x ≈ 0 (6.9a)
g(x) ∼ 1/|x| for x→∞ (6.9b)

That is at low signal levels the saturator is transparent, at high signal levels is
reduces the input signal’s amplitude by a factor of approximately 1/|x|. Ap-
parently, this kind of behavior is shown by all bounded saturators. Unbounded
saturators give a similar picture, as long as they are slower than linear. For
asymptotically linear saturators, such as (6.6), we have g(x)→ α instead.
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Figure 6.5: g(x) =
tanhx
x

.

6.3 Feedback loop saturation

In the ladder filter and its variations, such as 4-pole and 8-pole ladders and
SKF/TSK filters, the resonance is implemented by means of a feedback loop.
By this we mean that when the feedback loop is disabled (by setting the feedback
gain to zero), there is no resonance, and the resonance amount is increased by
increasing the amount of the feedback (thus e.g. the SVF filter doesn’t fall into
this category). With such filter structures, when the feedback amount goes
above a certain threshold (e.g. k = 4 for the 4-pole lowpass ladder or k = 2 for
the SKF) the filter becomes unstable and “explodes” (the filter’s state and the
output signal indefinitely grow). By putting a saturator anywhere within such
feedback loop we can prevent the signals in the feedback loop from the infinite
growth, making the filter stable again.

Feedforward path saturation

One of the common positions for the feedback loop saturator is in the feed-
forward path right after the feedback merge point (Fig. 6.6). Given that the
saturator is a bounded one (such as tanhx), the output signal of such saturator
is guaranteed to be bounded. Since the rest of the feedforward path in Fig. 6.6
is known to be BIBO-stable (independently of the feedback setting), the output
of the filter is bounded too and thus the entire filter is BIBO-stable.

+ '!&"%#$// tanh// 4× LP// •//

qqq
MMM oo

−
OO //x(t) y(t)

k

Figure 6.6: Ladder filter with a saturator in the feedforward path.

We could also view the saturator in Fig. 6.6 as a variable gain g (6.8).
Apparently, as the amplitude of the signal grows, the average value of g is
decreasing to zero. In those terms, the saturator is effectively reducing the
feedback gain from k to k · 〈g〉 (where 〈g〉 is the average value of g). Since at
large signal amplitudes 〈g〉 can get arbitrarily close to zero, the value of k · 〈g〉
goes below 4, which, intuitively, prevents the filter from exploding. Unbounded
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saturators are therefore having the same effect, as long as they are slower than
linear.

With asymptotically linear saturators the filter will still explode at some
point. Assuming the saturator has the form (6.6) we have g(x) → α and thus
〈g〉 → α and k · 〈g〉 → αk. Thus, we could expect that for something like αk < 4
the filter should not explode.

Effects of transient response

As we should remember, one possible way to look at a filter getting unstable is
that its transient response grows instead of decaying with time. Each pair of
conjugate poles pn and p∗n of the filter contributes a transient component of the
form

Aepnt +A∗ep
∗
nt = aetRe pn cos(t Im pn + ϕn)

Thus at Re pn = 0 we have a sinusoid of frequency ω = Im pn. At Re pn > 0 we
have the same sinusoid of an exponentially growing amplitude. This sinusoid
will be present in the filter’s output even in the absence of the input signal.4

Since at Re pn ≥ 0 this sinusoid is self-sustaining, the filter is said to self-
oscillate. The saturator in the feedback loop prevents the self-oscillation from
infinite growth.5

Suppose the system in Fig. 6.6 is at k ≈ 4, that is it is selfoscillating or at
least strongly resonating. Let

u(t) = x(t)− ky(t) (6.10)

denote the input signal of the saturator and recall the representation of a satu-
rator as a variable gain element (6.8). Then the output signal of the saturator
is

v(t) = tanhu(t) = g(u) ·u = g(u)x(t)−g(u)k ·y(t) = g(u)x(t)− k̃(u)y(t) (6.11)

where g(u) = tanhu
u . Comparing (6.10) to the last expression in (6.11) we

see that the effect of the saturator can be seen as the “replacing” x(t) with
g(u)x(t) and ky(t) with k̃(u)y(t). Thus, k̃(u) = g(u)k is the new “effective
feedback amount”. Now, by increasing the amplitude of the input signal x(t)
we increase the amplitude of u(t) and thus reduce the magnitude of g(u) and
thereby reduce the effective feedback amount k̃, which in turn shows up as
reduction of resonance. That is, at high amplitudes of the input signal the
resonance oscillations kind of disappear.

One intuitive way to look at this is to say that the input signal and the
resonance are “fighting” for the saturator’s headroom, and if the input signal

4If the system is in the zero state, then in the absence of the input signal it will stay
forever in this state of “unstable equilibrium”. In analog circuits, however, there are always
noise signals present in the system, which will excite the transient response components,
thus destroying the equilibrium. In the digital implementation such excitations need to be
performed manually. This can be done by initializing the system to a not-exactly-zero state,
or by sending a short excitation impulse into the system at the initialization, or by mixing
some low-level noise at one or multiple points into the system. Often a very small constant
DC offset will suffice instead of such noise.

5As the saturator is effectively reducing the total gain of the feedback loop, at k = 4 the
selfoscillation will first have an infinitely small signal level, where the saturator is transparent.
Increasing the value of k further we can bring the selfoscillation to an audible level.
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has a very high level, it “pushes” the resonating component of the signal out.
On the other hand, if the input signal level is low, then the entire headroom is
taken by the resonating component which will be therefore much louder than
the input signal. There is usually some “sweet spot” in the input signal’s level,
where the fighting doesn’t kill the resonance, but results in a nice interaction
between the input signal and the resonance.

Feedback path saturation

The amount of fighting (at the same input signal level) can be decreased by
putting the saturator into the feedback path, either prior to the feedback gain
(Fig. 6.7) or past the feedback gain (Fig. 6.8).6 In this case the input signal x(t)
doesn’t directly enter the saturator but first goes through the four 1-pole lowpass
filters, which somewhat reduces its amplitude (depending on the signal and on
the filter’s cutoff). The difference between Figs. 6.7 and Fig. 6.8 is obviously
that in one case the effective saturation function is y = k tanhx whereas in the
other one it’s y = tanh kx. This means that in the first case the saturation level
is ±k whereas in the second one it’s fixed to ±1 (Fig. 6.9).

+ '!&"%#$// 4× LP// •//

tanh ooqqq
MMM oo

−
OO //x(t) y(t)

k

Figure 6.7: Ladder filter with a saturator in the feedback path
(pre-gain).

+ '!&"%#$// 4× LP// •//
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Figure 6.8: Ladder filter with a saturator in the feedback path
(post-gain).

The amount of fighting will also be decreased by using a weaker saturation
curve. E.g. using an unbounded saturator instead of a bounded one, in the most
extreme case having an asymptotically linear saturator. A classical example
of this approach is ecountered in the nonlinear Sallen–Key filter (Fig. 6.10).
It is an interesting observation that the sound of nonlinear Sallen–Key filter
significantly differs from the sound of nonlinear transposed Sallen–Key filter
(Fig. 6.11) since in one case the saturator’s output goes through a highpass and
a lowpass, while in the other case it goes through two lowpasses before reaching
the filter’s output.7

6Notice that, with the saturator positioned in the feedback path, at k = 0 the filter
effectively becomes linear.

7This observation was made by Dr. Julian Parker.
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Figure 6.9: Pre-gain (y = k tanhx, solid) vs. post-gain saturation
(y = tanh kx, dashed).
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Figure 6.10: Sallen-Key filter with an asymptotically linear satu-
rator.
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Figure 6.11: Transposed Sallen-Key filter with an asymptotically
linear saturator.

Transfer function

For systems containing nonlinear elements the complex exponentials est are no
longer system eigensignals. That is, given an input signal of the form Aest the
output will not have a similar form. Therefore the idea of the transfer function
as well as amplitude and phase responses doen’t work anymore.

Still, given that the nonlinear elements satisfy the transparency condition
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(6.3), at low signal levels the nonlinearities have almost no effect and the system
is approximately linear. In that sense the transfer function stays applicable to a
certain degree and still can be used to analyse the filter’s behavior, although the
error is growing stronger at higher signal levels. Nevertheless, as a rule, qualita-
tively the filters retain their main properties also in the presence of saturators.
The lowpass filters stay lowpass, bandpass filters stay bandpass etc.

6.4 Nonlinear zero-delay feedback equation

The introduction of the nonlinearity in the feedback path poses no problems
for a naive digital model. In the TPT case however this complicates the things
quite a bit. Consider Fig. 5.5 redrawn to contain the feedback nonlinearity
(Fig. 6.12).

+ '!&"%#$// tanh// Gξ + S// •//

qqq
MMM oo

−
OO //x[n] y[n]

k

u[n]

Figure 6.12: Nonlinear TPT ladder filter in the instantaneous re-
sponse form.

Writing the zero-delay feedback equation we obtain

u = x− k(G tanhu+ S) (6.12)

Apparently, the equation (6.12) is a transcendental one. It can be solved only
using numerical methods. Also, the linear zero-delay feedback equation had
only one solution, but how many solutions does (6.12) have? In order to answer
the latter question, let’s rewrite (6.12) as

(x− kS)− u = kG tanhu (6.13)

If k ≥ 0 then v(u) = kG tanhu is a nonstrictly increasing function of u,8 while
v(u) = (x − kS) − u is a strictly decreasing function of u. Thus, (6.13) (and
respectively (6.12)) has a single solution (Fig. 6.13). At k < 0 we also typically
have one solution (Fig. 6.14) unless kG > −1, in which case (6.13) has three
solutions Fig. 6.15. Fortunately, kG > −1 corresponds to instantaneously un-
stable feedback, and thus normally we are not so much interested in this case
anyway. However, if needed, one could use the concept of the instantenous
smoothing to find out the applicable solution among the three formal ones.

Having found the zero-delay equation solution u, we proceed in the usual
way, first letting u through the tanh waveshaper and then letting it through the
1-pole lowpasses (denoted as Gξ + S in Fig. 6.12), updating the 1-pole states
along the way and ultimately obtaining the value of y.

Now we are going to discuss some possible approaches for finding u. This
discussion is by no means exhaustive and the reader is advised to consult the
literature on numerical methods for further information.

8Recall that for a series of 1-pole lowpasses (which Gξ+S denotes in Fig. 6.12) 0 < G < 1.
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Figure 6.13: The solution of (6.13) for k > 0.

kG tanhu

(x−
kS)−

u

u

v

0

Figure 6.14: The solution of (6.13) for −1 < kG < 0.

6.5 Iterative methods

Fixed-point iteration

Starting with some initial value u = u0 we compute iteratively the left-hand
side of (6.12) from the right-hand side:

un+1 = x− k(G tanhun + S) (6.14)

and hope that this sequence converges quickly enough.9 Intuitively, the conver-
gence gets worse at larger absolute magnitudes of kG, that is at high cutoffs
(large G) and/or high resonance values (large k). Conversely, it gets better as

9In a realtime situation it would be a good idea to artificially bound the number of iterations
from above.
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Figure 6.15: Solutions of (6.13) for kG < −1.

the sampling rate increases (since G becomes smaller in this case). Generally,
the convergence fails for |kG| ≥ 1.

The process defined by (6.14) has a strong similarity to the naive approach
to time discretization. Indeed, for the frozen values of G and S one can treat
Fig. 6.12 as stateless zero-delay feedback system (Fig. 6.16). And then we simply
implement this system in the naive way by introducing a unit delay at the
point of the signal u (Fig. 6.17) and letting this system run for some number of
discrete-time ticks. This is a bit like oversampling of the instantaneous feedback
loop part of the system.10
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Figure 6.16: Zero-delay feedback equation (6.12) as a stateless zero-
delay feedback system.

So, it is as if we introduce a “nested” discrete time into a single tick of the
“main” discrete time. This suggests a natural choice of the initial value of u
for (6.14), namely, taking the previous value of u (that is the value from the
previous sample of the “main” discrete time) as the iteration’s initial value u0.

Under the consideration of the concept of the instantaneous smoothing (in-
troduced in Section 3.13), the interpretation in Fig. 6.17 also suggests a way to

10Of course this is not exacty oversampling, because the state of the system (manfesting
itself in the S variable) is frozen.
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Figure 6.17: Interpretation of the equation (6.14) as an “oversam-
pled” naive discrete-time model of the stateless feedback loop in
Fig 6.16.

improve the convergence of the method by introducing a smoother into the feed-
back loop of Fig. 6.17. In a practical implementation such smoother can be a
naive 1-pole lowpass, like in Fig. 6.18, which effectively lowers the total feedback
gain from kG to a smaller value.11 However, even though such smoother may
improve the convergence at high kG, obviously it can deteriorate the conver-
gence in good situations. Particularly at k = 0 the iteration process is supposed
to immediately converge, however in the presence of the lowpass smoother it
will converge exponentially instead.
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Figure 6.18: Using a 1-pole lowpass smoother to improve conver-
gence of signals in Fig. 6.17.

Newton–Raphson iteration

A very popular approach in practical DSP is Newton–Raphson method, which
is based on the idea of linearization of the function around the current point un
by the tangent line. Instead of solving (6.13) we solve

(x− kS)− un+1 = kG(tanhun + (un+1 − un) tanh′ un) (6.15)

for un+1 to obtain the next guess and repeat the iteration (6.15) until it con-
verges. Fig. 6.19 illustrates the idea.

11Clearly, the smoother will not help in the instantaneously unstable case, occurring when
kG ≤ −1.
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Figure 6.19: Newton–Raphson method: linearization by the tan-
gent line.

The textbook version of Newton–Raphson method is formulated in terms
of searching for a zero-crossing of a function (Fig. 6.20). By subtracting the
left-hand side of (6.13) from the right-hand side we obtain the equation

f(u) = u+ k(G tanhu+ S)− x = 0 (6.16)

Respectively, the iterations are generated by solving

f(un) + (un+1 − un)f ′(un) = 0 (6.17)

Apparently (6.15) and (6.17) (and respectively Figs. 6.19 and 6.20) are equiva-
lent, both giving

un+1 = un −
f(un)
f ′(un)

= un −
un + k(G tanhun + S)− x

1 + kG/ cosh2 un
=

= un −
un + k(G tanhun + S)− x

1 + kG(1− tanh2 un)

Newton–Raphson method converges very nicely in almost linear areas of
f(u), the convergence getting worse as f(u) becomes more nonlinear. As with
fixed-point iteration, the convergence deteriorates at large |kG|, as the predic-
tion error of un increases.12

As in the fixed-point iteration method, the value of u from the previous
sample tick is a natural choice for the iteration’s initial value as well. This
choice usually leads to fast convergence if the new solution lies close to the
value of u on the previous sample. However in excessive situations (such as high
cutoff and/or high input signal frequency) the old solution could lie within the
right-hand side saturation range of tanhu (that is u� 0) and the new solution
could lie within the left-hand side saturation range of tanhu (that is u � 0).

12There are a number of tricks which can be employed to improve the convergence of
Newton–Raphson, but even those might not help in all situations. The specific tricks can be
found in the literature on numerical methods and fall outside the scope of this book.
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u+ k(G tanhu+ S)− x

Figure 6.20: Texbook version of Newton–Raphson method (note
that the aspect ratio of the graph is not 1:1)

The solution search by Newton–Raphson iterations will need to traverse both
“knees” (areas of higher curvature) of tanh along the way, which usually has
a negative impact on the convergence. The neutral choice of u = 0 as initial
value might somewhat improve this worst-case scenario, while simultaneously
deteriorating the convergence in “nice” situation.

Other, more advanced approached to the choice of the initial point may be
used. Often one uses Newton–Raphson to refine the result of another method,
so that the initial point is alredy sufficiently close to the true solution.

There is also some freedom of the choice of the variable to solve for. E.g. in
Fig. 6.19 we could have been solving for v instead of u. This means that we are
having

v = (x− kS)− u
v = kG tanhu

from where

u = (x− kS)− v
u = tanh−1 (v/kG)

and (6.13) turns into

(x− kS)− v = tanh−1 (v/kG)

In this specific case v is hardly a better choice compared to u. For one we have
a division by zero if k = 0.13 Worse, one could see in Fig. 6.19 that vn+1 is
located above the horizontal asymptote of kG tanhu, which means that we are
getting outside of the domain of tanh−1(v/kG). And even if we’re not outside of
the domain, there still could be large precision losses when evaluating tanh−1 at
points close to ±1. The convergence speed is likely to be affected too. Therefore
a good choice of the variable to solve for is important.

13Taking v̄ = tanhu as the unknown to solve for addresses the division by zero issue, but
the other issues are similar to the choice of v = kG tanhu.
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Bisection

Newton–Raphson method usually converges better than fixed-point iteration,
but the potential convergence problems of the former can be difficult to predict.
Often there can be good ways to address the convergence issues in Newton–
Raphson method, but it might be worth it to have an alternative approach,
which is not suffering from such issues at all.

From Fig. 6.13 we could notice that for k ≥ 0 we are looking for an inter-
section point of a monotonically decreasing straight line with a (nonstrictly)
monotonically increasing curve. Therefore, if we somehow initially bracket the
solution point of (6.13) we can search for it using bisection.

Given the bracketing range u ∈ [an, bn] we take the middle point un+1 =
(an + bn)/2 and compare the values of the left- and right-hand sides of (6.13)
at un+1. Depending on which of the two sides has a larger value, we take
either [un+1, bn] or [an, un+1] as the new bracketing range [an+1, bn+1]. Fig. 6.21
illustrates.

u
=
a

u
=
b

u
=

(a
+
b
)/

2
kG tanhu

(x−
kS)−

u

u

v

0

Figure 6.21: Bisection method.

Obviously the size of the bracketing range halves on each step and we re-
peat the procedure until the bracketing range becomes sufficiently small. The
convergence speed therefore doesn’t depend on values of filter’s parameters or
signals and the iteration is guaranteed to converge. However we need to be able
to somehow find the initial bracketing range [a0, b0].

Fortunately, with monotonic saturation shapes such as tanhu this is not
very difficult. We can construct the initial bracketing range by noticing that
the graph of the function v = kG tanhu lies between v ≡ 0 and v = kG sgnu
(Fig. 6.22).

With unbounded saturators such as inverse hyperbolic sine one needs to get
slightly more inventive. One possible idea is shown in Fig. 6.23. This however
doesn’t work for k < 0. In that case we could reuse the approach of Fig. 6.22
by taking a vertically offset version of (6.5) as a bound on sinh−1 u (Fig. 6.24).
The intersection on v = (x− kS)− u with this bound can be found by solving
a quadratic equation (more on this in Section 6.7). Obviously, the same idea
works for k ≥ 0 too.
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u
=
a

u
=
b

kGsgnu

kG tanhu

(x−
kS)−

u

u

v

0

Figure 6.22: Initial bracketing for bisection.

kG sinh−
1 u

(x−
kS)−

u

u
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u
=
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u

v

0

Figure 6.23: Initial bracketing for bisection in the case of an un-
bounded saturator and k ≥ 0. First we find the right bracket b
and then use v = kG sinh−1 b to find the left bracket a.

If nothing else helps to find the initial bracketing range for a (monotonic)
nonlinearity f(u), one could simply start at some point, such as e.g. the zero-
crossing of v = (x−kS)−u, determine the direction of other bracket by compar-
ing v = (x−kS)−u to kG · f(u) and then take steps of progressively increasing
size (exponential increasing of steps is usually a good idea) until the comparison
result of v = (x− kS)− u and kG · f(u) flips.

Even though bisection method guarantees convergence, the convergence speed
might be a bit too low for our purposes. Let’s assume that the magnitude order
of the signals in the filter is 100 and let’s assume that the length of the initial
bracketing segment [a0, b0] has about the same order of magnitude. Then, to
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kG sinh−1
u

kG·
(

2u
1+
√

1+|4u|
+0.6·sgnu

) (x−
kS)−

u

u

v

0

Figure 6.24: Initial bracketing for bisection in the case of f(u) =
sinh−1 u and k < 0.

reach a −60dB SNR14 corresponding to the order of magnitude of 10−3, we’ll
need about 10 iterations. This might be a bit too expensive for a realtime audio
processing algorithm on modern computers.15

6.6 Approximate methods

We might also attempt to find a rough approximate solution of (6.12) without
running an iterative scheme. Having found u, we would simply pretend it’s a
true solution, and proceed as usual in the zero-delay feedback solution scheme,
sending u through the tanh waveshaper and further through the 1-pole low-
passes, updating their state along the way. Several approximation approaches
seem to be in (more or less) common use:

Linearization at zero. At small signal levels the nonlinearity is almost trans-
parent:

tanhu ≈ u

Hoping that our signal level is “sufficiently small”, whatever that means,
we could replace tanhu by u and solve the resulting linear equation:

u = x− k(Gu+ S)

Note that this is equivalent to one step of Newton–Raphson with u = 0
as the initial guess.

14Treating the error in the numerically computed solution as noise, we can define the signal-
to-noise ratio (SNR) as the ratio of the absolute magnitudes of the error and the signal,
expressed in decibels.

15Whether this is too expensive or not depends on a number of factors. E.g. in Newton–
Raphson method we needed to compute both tanhu and tanh′ u. With the hyperbolic tangent
function we were quite fortunate in that the derivative of the function is trivially computable
from the function value (tanh′ u = 1−tanh2 u) and thus doesn’t create significant computation
cost. Had the derivative computation been expensive, the computation cost of 10 iterations
of bisection could have been comparable to 5 iterations of Newton–Raphson.



192 CHAPTER 6. NONLINEARITIES

Linearization at operating point. Hoping that the signals within the filter
do not change much during one sample tick, we replace tanhu with its
tangent line at the current point:

tanhu ≈ tanhu−1 + (u− u−1) · tanh′ u−1

where u−1 is the value of u at the previous discrete time moment. This is
equivalent to one step of Newton–Raphson with u−1 as the initial guess.
Usually this approximation provides a better result, however in the exces-
sive (but not so unusual) situations of high cutoff, high feedback amount
and/or high signal frequencies this can work worse than the linearization
at zero. Thus, the linearization at zero might provide a better “worst case
performance”.

Linearization by secant line16 On the graph of tanhu we draw a straight
line going through the origin (0, 0) and the operating point (u−1, tanhu−1)
and use this line as our linearization to obtain the value of u. Being a
mixture of the previous two approaches, in moderately excessive situations
this could work better than the linearization at the operating point, but
at more excessive settings could work worse than the linearization at zero.
The readers are however encouraged to gain their own experience and
judgement in the choice of the initial guess approach.

All the above quick approximation approaches share the same idea of replac-
ing the nonlinearity with a straight line. In that regard it is important that we
have chosen to solve for the signal u at the saturator’s input, so that the signal
obtained through the approximation is then really sent through the nonlinear-
ity before reaching the 1-poles and the output. One can view this as if, after
having obtained the approximated result, we are doing one step of fixed-point
iteration.17 Had we instead chosen to solve for the signal at the saturator’s
output, the results would have been more questinable. Particularly, in the case
of linearization at zero there would have been no difference to the linear case
whatsoever.

The above approximation approaches work reasonably well with saturation
type of nonlinearities. Obviously, the error increases as kG becomes larger and
thus the system becomes “more non-linear”. Notably, G, being monotonically
growing in respect to ωcT , decreases as the sampling rate grows, thus the ap-
proximation error is smaller at higher sampling rates.

6.7 2nd-order saturation curves

It is possible to avoid the need of solving the transcendental equation by using
a saturator function which still allows analytic solution. This is particularly
the case with second-order curves, such as hyperbolas. E.g. f(x) = tanhx can
be replaced by f(x) = x/(1 + |x|) (which consists of two hyperbolic segments),
thereby turning (6.13) into:

(x− kS)− u = kG
u

1 + |u|
(6.18)

16Proposed for usage in the zero-delay feedback context by Teemu Voipio.
17This is a particular case of a more general idea, where we would use the result obtained

by one of the above approximations as an initial point for an iterative algorithm.
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The inverse of f(x) = sinhx can be replaced by the inverse of f(x) = x(1 + |x|),
consisting of two parabolic segments.

In order to solve (6.18), which graphically is an itersection between the lines
v = (x− kS)− u and v = kG · f(u) (same as in Figs. 6.13, 6.14, 6.15), we first
need to find out, whether the intersection is occuring at u > 0 or u < 0 (the
case u = 0 can be included into either of the cases). Looking at Figs. 6.13 and
6.14, it’s not difficult to realize that for kG > −1 this is defined solely by the
sign of the value which (x− kS)− u takes at u = 0. Thus (6.18) turns into

(x− kS)− u = kG
u

1 + u
if x− kS ≥ 0 (6.19a)

(x− kS)− u = kG
u

1− u
if x− kS ≤ 0 (6.19b)

Each of the equations (6.19) is a quadratic equation in respect to u.
Choosing the appropriate one of the two solutions of the quadratic equation

is easy. E.g. for (6.19a) the choice can be made with the help of Fig. 6.25.
Taking into account the restriction x− kS ≥ 0, we see that we should be alway
interested in the larger of the two solutions u1, u2. The choice of the appropriate
solution for (6.19b) can be done using similar considerations.

u

v

v =
(x−

kS)−
u

v = kGu/(1 + u)
v = kGu/(1

+ u)

0

Figure 6.25: Choice of the solution of the quadratic equation for
f(u) = u/(1+u). The dashed line shows the graph of v = kGu/(1+
u) for kG < 0.

In solving the quadratic equation Ax2 − 2Bx + C = 0 one has not only to
choose the appropriate one of the two roots of the equation, but also to choose
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the appropriate one of the two solution formulas:

x =
B ±

√
B2 −AC
A

=
C

B ∓
√
B2 −AC

(6.20)

Mathematically the two formulas are equivalent, however numerically there is a
precision loss (which may become very strong) if B ±

√
B2 −AC results in ad-

dition of two values of opposite sign, or, conversely, subtraction of two values of
the same sign. This consideration yields the following formulas for the solutions
of the quadratic equation:

x1 =
B + sgnB ·

√
B2 −AC

A
x2 =

C

B + sgnB ·
√
B2 −AC

2nd-order soft clippers of the most general form

We could generalize the previously used idea of turning the nonlinear zero-delay
feedback equation into a quadratic one by considering a waveshaper made of
the most general form of a second-order curve y = f(x) defined by18

Φ(x, f(x)) = Φ(x, y) = ax2 − 2bxy + cy2 − 2px− 2qy + r = 0 (6.21)

Equation (6.21) has 6 parameters and 5 degress of freedom. After subtituting
the nonlinearity (6.21) into (6.13), the equation (6.13) turns into

Φ
(
u,

(x− kS)− u
kG

)
= 0

or, equivalently,

k2G2au2 − 2kGbu((x− kS)− u) + c((x− kS)− u)2−
− 2k2G2pu− 2kGq((x− kS)− u) + k2G2r = 0

(6.22)

Obviously, (6.22) is a quadratic equation in respect to u. Particularly, under
the “typical soft clipping curve” conditions

f(0) = 0 f ′(0) = 1 f(∞) = 1 f ′(∞) = 0 (6.23)

equation (6.21) turns into a family of hyperbolas: with a single parameter:

2y1 − 1
y2
1

y2 − xy + x− y = 0 (6.24)

Four of five freedom degrees in (6.21) has been taken by the conditions (6.23).
The fifth remaining degree is represented by the parameter y1, which is the
value19 of y that the curve has at x = 1 (Fig. 6.26). A reasonable choice for
the range of y1 is [0.5, 1], where at y1 = 0.5 we obtain the already familiar
y = x/(1 + x) curve, at y1 = 1 the curve (6.24) turns into a hardclipper.

18We use the implicit form, because the explicit form has some ill-conditioning issues. Be-
sides, in order to solve (6.13) for the specific second-order shaper function f(x), we will need
to effectively go from explicit to implicit form during the algebraic transformations of the
resulting equation anyway, thus using the explicit form wouldn’t have simplified the solution,
but on the contrary, would have made it longer.

19More precisely, one of the two values.
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x

y

1

1

0

Figure 6.26: A family of soft clippers generated by (6.24) for y1 =
0.5, y1 = 0.7829 and y1 = 0.9. The two dashed curves above
the line y = 1 are the second (unused) branches of the respective
curves (the second branch for y1 = 0.5 is not visible because it is
outside the picture boundaries). The thin dashed curve close to
the main branch of the curve for y1 = 0.7829 is the hyperbolic
tangent y = tanhx.

By making the odd extension of the curve:

fext(x) =

{
f(x) if x ≥ 0
−f(−x) if x ≤ 0

we obtain a proper soft clipping saturator shape, where we should remember to
pick the appropriate branch of the curve, when solving the quadratic zero-delay
feedback equation (6.22).

This time the selection of the appropriate solution of the quadratic equation
is still simple for k ≥ 0, where we can just pick the larger of the two solutions u1,
u2, however for k < 0 it becomes more complicated (Fig. 6.27). From Fig. 6.27
one can see that our choice of the larger or smaller of the two solutions is
switched once when kG changes sign and once again when the oblique asymptote
of kG · f(u)20 goes at −45◦, thereby becoming parallel to to the line v = (x −
kS)− u.21

20It can be shown, that f(u) ∼ u ·
(
(2y1 − 1)/y21

)−1
at u→∞ which defines the steepness

of the asymptote.
21In the previously discussed case f(u) = u/(1 + u) we didn’t have a switch between larger

and smaller solutions. But f(u) = u/(1 + u) is a limiting case of (6.24) at y1 → 0.5, so why
is there no switch? It turns out that both switches occur simultaneously at kG = 0 (since
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By writing out the expressions for the solutions of the resulting quadratic
equation, one could see that, if we define the choice of the solution in terms of
the choice of the plus or minus sign in (6.20) in front of

√
B2 −AC (which is

actually what we care about), then the solution is switched only when kG = 0,
at which moment B2 − AC = 0 and respectively both solutions become equal
to each other. The (negative) value of kG, at which the oblique asymptote
of kG · f(u) goes at −45◦, doesn’t correspond to another solution switch but
solely to the unused solution disappearing into the infinity from one side and
reappering from the other.

u

v
v =

(x−
kS)−

u

v = kG · f(u)v = kG · f(u)

0

Figure 6.27: Choice of the solution of the quadratic equation for
f(u) which is a member of the family of hyperbolas (6.24). Solid
line corresponds to kG > 0, dashed lines correspond to two differ-
ent values of kG < 0.

Other 2nd-order saturators

Apparently, mixing in a linear component (6.6) into a saturator defined by (6.21)
still can be expressed in the general form (6.21), thus the zero-delay feedback
equation is still quadratic equation and we can use the same solution techniques.

Instead of using hyperbolas, we could also use parabolas, such as the one in
(6.5) or its mixture with a linear term. Ellipses, having finite support in terms

the oblique asymptote of f(u) becomes vertical), and thus we simply always choose the larger
solution.



6.8. TABULATION 197

of both x and y, are not lending themselves for this kind of usage, unless used
in a piecewise approximation, which we discuss later.

6.8 Tabulation

Tabulation is one of the standard ways of reducing the computation cost of
functions. Instead of computing the function using some numerical method
(which might be too expensive) we store function values at certain points in a
lookup table. To compute the function value in between the points, interpolation
(most commonly linear) is used.

Tabulation is worth a dedicated discussion in the context of nonlinear zero-
delay feedback equations, because in this case it can be combined with the
bisection method in a special way, making this combination more efficient. Also
the same ideas provide a general framework for applying piecewise saturation
curves in a zero-delay feedback context, even if the number of segments is so
low that using a real table is not practical.

Imagine the saturator function in Fig. 6.13 was represented by tabulation
combined with linear interpolation, which effectively means that we are having
a piecewise-linear function f(u) (Fig. 6.28). In order to solve (6.13) we first
would need to determine the applicable segment of f(u). Having found the
linear segment we just need to solve a linear zero-delay equation.

kG · f(u)

(x−
kS)−

u

u

v

0

Figure 6.28: The solution of (6.13) for a piecewise-linear saturator.

From Fig. 6.28 is should be clear that the bisection method for a piecewise-
linear curve can be implemented by simply comparing the values of v = (x −
kS) − u and v = kG · f(u) at the breakpoints un, thereby sparing the need
for linear interpolation. We would start with some initial bracketing of the
breakpoint range n ∈ [L,R] and then compare the two curves at the breakpoint
in the middle of the range uM (where M = (L + R)/2, rounding the result of
division by 2 up or down, if necessary). Depending on the comparison outcome
we pick either [L,M ] or [M,R] as the next range. We repeat until we are left
with a single segment, and then simply solve the linear zero-delay feedback
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equation.22

The very first and very last linear segments will require special care, because
they do not go from one table point to the other, but extend from the outermost
entries of the table to u = ±∞. We can either assume that they horizontally
extend from the first and last points in the table, or store their slope separately.

As a very simple example of the just introduced concepts we could consider
a hard clipper

f(x) =


1 if x ≥ 1
x if −1 ≤ x ≤ 1
−1 if x ≤ −1

(Fig. 6.29). We don’t need a real table to store the breakpoints, but the same
ideas apply. First comparing v = (x − kS) − u and v = kG · f(u) at u = 1 we
find out whether the intersection occurs in the right-hand saturation segment
u ≥ 1. If not, then we perform the same comparison at u = −1, thereby finding
out whether the intersection occurs in the left-hand saturation segment u ≤ −1.
Otherwise the interesection occurs in the middle segment −1 ≤ u ≤ 1.23.

kG · f(u)

(x−
kS)−

u

u

v

0

Figure 6.29: The solution of (6.13) for a hard clipper.

The tabulation approach is not limited to piecewise-linear segments. We
could e.g. use the 2nd-order segments of the form (6.21). Since the latter have 5
degrees of freedom, we could use 4 of those to specify the values of the function
and its first derivative at the segments ends (like we would do for a Hermi-
tian interpolating segment and like we did for (6.24)) and use the 5th degree of
freedom e.g. to minimize the remaining error. In fact, in Section 6.7 we have

22Note that the described binary search process doesn’t rely on the regular spacing of
breakpoints un along the u axis. This suggests that we might use an irregular spacing, e.g.
placing the breakpoints more densely in the areas of higher curvature. Irregularly spaced
breakpoints might complicate the initial bracketing a bit, though.

23Treating the hard clipper as a piecewise-linear shaper is just a demonstration example. For
a hard clipper shape it might be simpler and more practical to simply perform a linearization
at zero (thereby treating the hard clipper as a fully transparent shaper f(u) = u) to find u.
As the very next step after that is sending u through the hard clipper, at the output of the
hard clipper we will get the true value, as if we properly solved the equation (6.13))
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done exactly this, building a piecewise-2nd-order curve consisting of two seg-
ments joined at the breakpoint at the origin. The saturator (6.2b), consisting
of four segments of an order not exceeding 2, could be another candidate for
this approach.

6.9 Saturation in 1-pole filters

The feedback in the 1-pole filter is not one creating the resonance. Therefore
the discussion from Section 6.3 does not apply and we need to address nonlinear
1-poles separately.

We are going now to discuss nonlinear 1-poles with the nonlinearity ideas de-
rived from different analog variations of the 4-pole lowpass ladder filter discussed
in Section 5.1 These nonlinear 1-pole filters, however, are of generic nature and
are therefore not limited to the usage inside 4-pole lowpass ladder filters (or
inside filters of whatever specific kind, for that matter).

Transistor ladder’s 1-pole lowpasses

The linear model of transistor ladder discussed in Section 5.1 (Fig. 5.1) is a first
level of approximation of the behavior of the respective analog structure, where
we ignore all nonlinear effects. If we wish to take nonlinear effects into account,
we could replace the underlying linear 1-pole lowpasses of the ladder filter with
nonlinear 1-pole lowpasses, the structure of such nonlinear lowpass being shown
in Fig. 6.30. In terms of the equations, (2.3) is transformed into

y = y(t0) +
∫ t

t0

ωc
(
tanhx(τ)− tanh y(τ)

)
dt (6.25)

The lowpass in (6.25) and Fig. 6.30 is a simple nonlinear model of the underlying
1-pole lowpass of the transistor ladder, directly arising out of the application of
Ebers–Moll transistor model.24

tanh// + '!&"%#$//
∫

// •//

tanh oo

−
OO //x(t) y(t)

Figure 6.30: A nonlinear 1-pole lowpass element of the transistor
ladder filter.

Which effect does the change from (2.3) to (6.25) have? Apparently, tanhx−
tanh y has a smaller absolute magnitude compared to x− y, the drop in magni-
tude becoming more noticeable of one or both of the signals x and y is sufficiently
high. If both x and y have large values of the same sign, it’s possible that the
difference tanhx − tanh y is close to zero, even though the difference x − y is
very large. This means that the filter will update its state more slowly than

24A famous piece of work describing this specific nonlinear model of the transistor ladder
filter is the DAFx’04 paper Non-linear digital implementation of the Moog ladder filter by
Antti Huovilainen. Therefore this model is sometimes referred to as the “Antti’s model”.



200 CHAPTER 6. NONLINEARITIES

in (2.3). Intuitively this feels like “cutoff reduction” at large signal levels, or,
more precisely this can be seen as audio-rate modulation of the cutoff, where
the cutoff is being changed by the factor

K =
tanhx− tanh y

x− y
0 < K ≤ 1

where the equality K = 1 is attained at x = y = 0.
Connecting 1-poles from Fig. 6.30 in series (Fig. 6.31) can be optimized by

noticing that we don’t need to compute the tanh of the output of the first
integrator twice (Fig. 6.32), thus sparing one tanh saturator. The entire ladder
filter thereby turns into one in Fig. 6.33.

tanh// + '!&"%#$//
∫

// •//

tanh oo

−
OO tanh// + '!&"%#$//

∫
// •//

tanh oo

−
OO //

Figure 6.31: Serial connection of two nonlinear 1-pole lowpass el-
ements from Fig. 6.30.

tanh// + '!&"%#$//
∫

//

ta
nh

��

•��

−
OO + '!&"%#$//

∫
// •//

tanh oo

−
OO //

Figure 6.32: Optimized serial connection of two nonlinear 1-pole
lowpass elements from Fig. 6.31.

The nonlinear 1-pole in Fig. 6.33 are normally sufficient to prevent the filter
from explosion in selfoscillation range. However, obviously, there is nothing
which should stop us from introducing additional nonlinearities, such as the
ones discussed in Section 6.3, not so much as a means from preventing the
filter explosion but rather for giving additional color to the sound. Apparently
feedfoward path of Fig. 6.33 already contains many nonlinear elements, therefore
adding nonlinearities to the feedback path could make more sense. Note that
while there are good reasons to keep the saturation levels of nonlinearities in the
feedfoward path of Fig. 6.33 (especially since we are employing the optimization
from Fig. 6.32, which shares one nonlinearity between two 1-pole lowpasses),
there is much less reason to have the same saturation level (or even the same
saturation curve) for the nonlinearity in the main feedback path.

The nonlinear version of the diode ladder filter (Figs. 5.48, 5.49) is using a
similar kind of nonlinear 1-poles, resulting in a structure shown in Fig. 6.34.
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+ '!&"%#$// tanh// + '!&"%#$//
∫

// •//

tanh oo•oo

−
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+ '!&"%#$�� ∫
// •//

tanh oo•oo

−
OO
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// •//
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−
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// •//
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−
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//

//

//

•// //




111OO

−
OOx(t) y1(t)

y2(t)

y3(t)

y4(t)

k

Figure 6.33: Nonlinear transistor ladder filter.

The equations (5.18) are respectively turned into:

ẏ1 = ωc
(
tanhx− tanh(y1 − y2)

)
ẏ2 =

ωc
2
(
tanh(y1 − y2)− tanh(y2 − y3)

)
ẏ3 =

ωc
2
(
tanh(y2 − y3)− tanh(y3 − y4)

)
ẏ4 =

ωc
2
(
tanh(y3 − y4)− tanh y4

)
(compare to (6.25)).

OTA ladder 1-poles

The same idea of the ladder filter discussed in Section 5.1 and shown in Fig. 5.1
has been often implemented in analog form using OTA (operational transcon-
ductance amplifiers) instead of transistors. This generates another kind of non-
linear 1-pole structure (Fig. 6.35).

Formally we are having a feedback loop saturator here. However this feed-
back loop is not responsible for generating the resonance, therefore the effect of
the saturator is different from the one discussed in Section 6.3. We are having
a saturator at the integrator’s input, therefore we are performing soft clipping
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Figure 6.34: Nonlinear diode ladder filter.
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Figure 6.35: OTA-style nonlinear 1-pole lowpass.

on the speed of change of the filter’s output value, or, equivalently, we are do-
ing “soft slew limiting”. Alternatively, as shown by (6.8), this can be seen as
audio-rate cutoff modulation, the cutoff factor varying in agreement with (6.9).

Note that we have two different options for picking the highpass signal in
Fig. 6.35. We could do this either before or after the nonlinearity. In the
latter case the highpass signal will be saturated (which might be a bit over the
top, compared to the lowpass signal), in the former case we have the benefit of
preserving the relationship HLP(s) + HHP(s) = 1. This also makes the former
option look like a particulary good candidate not only for a nonlinear 1-pole
highpass (and thereby, among other things, for ladder filter structures utilising
highpasses) but also for a nonlinear allpass. Fig. 6.36 shows the respective
nonlinear 1-pole multimode.
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Figure 6.36: OTA-style nonlinear 1-pole multimode.

Saturated integration

The previously discussed ways of introduction of nonlinearities into 1-poles re-
sulted in relatively complicated nonlinear behavior of the filters. But what if
we want a simpler behavior? Let’s say we want to simply saturate the output.
Of course we simply could put a saturator at the output of the filter (Fig. 6.37)
but this doesn’t really feel like making the filter itself nonlinear.

+ '!&"%#$//
∫

// •//
−

OO tanh// //x(t) y(t)

Figure 6.37: Putting a saturator at the filter’s output.

We could try putting the output nonlinearity inside the filter’s feedback loop
(Fig. 6.38). However, comparing this to equation (2.3) we should realize that
the main effect of such nonlinearity will be that the difference x − y will be
changed to x− tanh y, leading to the capacitor in Fig. 2.1 continuing to charge
even after the output value has reached the input value. In other words, the
output will still grow even after reaching the input value. This feels more like a
mistake.

+ '!&"%#$//
∫

// tanh// •//
−

OO //x(t) y(t)

Figure 6.38: Saturating the integrator’s output (not really a work-
ing idea).

What we rather want is to prevent the 1-pole’s capacitor in Fig. 2.1 from
charging beyond a certain level (that is we want to prevent the integrator state
from going beyond a certain maximum). In order to achieve that in a “proper
analog way”, we will need to introduce antisaturators, which we are going to
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do later in this chapter. However we could also do a “hack” and modify the
integrator structure, introducing the saturation into its internal accumulation
process. This works particularly well with direct form I (Fig. 6.39) and trans-
posed direct form II (Fig. 6.40) integrators. Obviously, this hack is not limited
to 1-poles, but can be applied to any structure which is based on integrators,
such as e.g. SVF.

MMMqqq
// •// + '!&"%#$//

z−1//

OO + '!&"%#$// tanh// •//

z−1 oo

OO //x[n] y[n]

ωcT/2

Figure 6.39: Saturating direct form I trapezoidal integrator.
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// •// + '!&"%#$// tanh// •// //

+ '!&"%#$//

z−1

OO

OO

oo

x[n] y[n]

ωcT/2

Figure 6.40: Saturating transposed direct form II trapezoidal inte-
grator.

6.10 Multinonlinear feedback

We have seen that instantaneous responses of linear filters are linear functions
of their input, such as e.g. in (3.29). It is not difficult to realize, particularly
from the previous discussion of the solution of the nonlinear zero-delay feed-
back equation (6.12), that instantaneous response of a nonlinear filter is some
nonlinear function of its input:

y = F (x, S) (6.26)

(where we also explicitly notated the dependency on the filter’s state S, but the
dependency of F on the filter’s parameters is understood implicitly).

Consider the OTA-style 1-pole lowpass in Fig. 6.35 and imagine we build a
4-pole lowpass ladder filter (as in Fig. 5.1) from four idenitical 1-pole lowpasses
of this kind. Assuming (6.26) decribes the instantaneous response of Fig. 6.35,
we could redraw Fig. 5.1 in the instantaneous response form as Fig. 6.41.
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Figure 6.41: Nonlinear ladder filter in the instantaneous response
form.

Let u denote the signal at the input of the first 1-pole lowpass in Fig. 6.41.
The zero-delay feedback equation for the entire of Fig. 6.41 therefore becomes

u = x− k · F (F (F (F (u, S1), S2), S3), S4) (6.27)

Intuitively we can expect F (x, S) to be monotonically increasing with respect to
x, thus F (F (F (F (x, S1), S2), S3), S4) should be monotonically increasing too,
and we could use most of the previously described methods of solving nonlinear
zero-delay feedback equations to solve (6.27). Theoretically.

Practically the evaluation of F (x, S) is usually very expensive, because it
means a numerical solution of the zero-delay feedback equation for the respective
1-pole, possibly running several rounds of an iterative method. Now, if we
are going to use an iterative method to solve (6.27), these expenses will be
multiplied by the number of the “outer” iterations. Besides, if we are using
Newton–Raphson to solve (6.27) then we need not only to evaluate F (x, S) but
also its derivative with respect to x, which further increases the computation
cost of solving (6.27).

Therefore usually such “nesting” approach, where we express the higher-
level zero-delay feedback equation in terms of the solutions of the lower-level
zero-delay feedback equations, is not very practical for nonlinear systems. In-
stead, let’s “flatten” the entire structure, and write the equation describing the
instantaneous response signals within this structure. E.g. for the 4-pole ladder
built out of 1-poles in Fig. 6.35 the flattened structure is shown in Fig. 6.42. Or,
representing the integrators by their instantaneous responses (which are fully
linear), we obtain Fig. 6.43.

Denoting the input and output signals of each of the 1-poles as xn and yn,
we write the 1-pole zero-delay feedback equations:

yn = g tanh(xn − yn) + sn

Or, since xn+1 = yn we can denote the input of the first lowpass as y0 and write

yn = g tanh(yn−1 − yn) + sn n = 1, . . . , 4

Plus, we are having the global feedback loop:

y0 = x− ky4

and thus we are having an equation system:

y0 = x− ky4
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Figure 6.42: Flattened OTA lowpass ladder filter structure.

y1 = g tanh(y0 − y1) + s1

y2 = g tanh(y1 − y2) + s2

y3 = g tanh(y2 − y3) + s3

y4 = g tanh(y3 − y4) + s4

We can get rid of the first equation by simply substituting its right-hand side
for y0, obtaining:

y1 = g tanh(x− ky4 − y1) + s1

y2 = g tanh(y1 − y2) + s2

y3 = g tanh(y2 − y3) + s3

y4 = g tanh(y3 − y4) + s4

(6.28)

Equation (6.28) can be written in a more concise form by introducing the vector

y =
(
y1 y2 y3 y4

)T
and the vector-function of a vector argument Φ:

Φ(y) =


g tanh(x− ky4 − y1) + s1
g tanh(y1 − y2) + s2
g tanh(y2 − y3) + s3
g tanh(y3 − y4) + s4


In this notation (6.28) looks simply like

y = Φ(y) (6.29)
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Figure 6.43: Flattened OTA lowpass ladder filter structure in the
instantaneous response form.

This is our nonlinear 4-dimensional (since we are having 4 unknowns yn) zero-
delay feedback equation.

The form (6.29) readily offers itself for fixed-point iteration. By rewriting
(6.29) as

Φ(y)− y = 0

the multidimensional form of Newton–Raphson algorithm can be used:

yn+1 = yn −
(
∂(Φ(y)− y)

∂y
(yn)

)−1

· (Φ(yn)− yn)

Also the quick approximate methods of Section 6.6 work out of the box.
The difference of solving (6.29) instead of (6.27) is that in (6.29) we are

simultaneously solving all zero-delay feedback equations in the system, thereby
not having the problem of nested iterations.

Actually, choosing the 1-pole output signals as the unknowns is not necessar-
ily the best choice. It would have been more convenient to solve for the inputs
of the integrators, so that we can directly reuse the obtained signals to update
the integrator states.25 On the other hand, e.g. for the transposed direct form
II integrator (Fig. 3.11) one could deduce the new state from the old state and
the new output signal, thus yn also work pretty efficiently (this trick has been
used in the digital implementation of an SVF in Section 4.4). A consideration

25It might be a good idea to write the equation system in terms of integrator input signals
as an exercise.



208 CHAPTER 6. NONLINEARITIES

of a bigger importance therefore could be that the choice of the unknowns may
affect the convergence of the iteration scheme.

Usually for multidimensional zero-delay feedback cases the iterative methods
need to be further refined and/or a combination of different methods need to be
used to have a reliable and quick convergence of an iterative process of finding
the solution of (6.29). However, often simply using the approximate methods
of Section 6.6, will deliver reasonable results.

6.11 Antisaturators

In Section 6.9 we made some attempts to make the 1-pole lowpass filter state
saturate, the most successful attempt being the modification of the internals of
an integrator. In a real analog circuit we wouldn’t have been able to do the
same, as e.g. a capacitor, which is used as an integrator for the current, doesn’t
have “built-in saturation functionality”. Therefore different means have to be
used to achieve the integrator state’s saturation.

Diode clipper

A common trick is to shorten the 1-pole filter’s capacitor with a nonlinear re-
sistance, this resistance being high at low voltages and dropping down at high
voltages on the capacitor. That is the short path is disabled at low voltages but
progressively “turns on” at higher voltages. This can be done by using a diode
pair (Fig. 6.44). The structure in Fig. 6.44 is commonly referred to as diode
clipper.

� R��ÿ
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�

� C
��þ

������ �ÿ��� �ÿ����� �òy(t)
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���þ

��

���þ

������ �ð
x(t)

Figure 6.44: Diode clipper.

Using Shockley diode equation we can show that, qualitatively, the current
flowing through the diode pair is related to the capacitor voltage as

ID = Is sinh
UC
UT

where Is and UT are diode parameters (Fig. 6.45 provides a graph of sinh as a
reference). This current is then subtracted from the current which is charging
the capacitor, thus acting as current leakage:

q̇C = I − ID = I − Is sinh
UC
UT

(please refer to equations (2.1) for the other details of the circuit’s model).
Since Is is very small, as long as UC is below or comparable to UT the leakage
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is negligible. As UC exceeds UT , the current grows exponentially and quickly
stops being negligible.

x
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3

−3

4

−4

Figure 6.45: Hyperbolic sine y = sinhx.

In terms of the block diagram (Fig. 2.2) this current leakage can be expressed
as shown in Fig. 6.46, where we have assumed that the filter cutoff is controlled
by the resitance R rather than capacitance C and thus the amount of the current
leakage is independent of the cutoff.
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Figure 6.46: Diode clipper in the form of a block diagram.
“sinh” stands for some curve of the form “a sinh(x/b)”.

The fact that the leakage current is independent of the cutoff is actually
having the opposite effect: the effects of the leakage become cutoff-dependent
and the leakage more strongly affects the filter at lower cutoffs. Particularly,
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given a constant input voltage, the stabilized output level will be larger at larger
cutoffs. For the purposes of generic application it is therefore more useful to
make the leakage cutoff-independent, as in Fig. 6.47.
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Figure 6.47: Diode clipper with cutoff-independent leakage.
“sinh” stands for some curve of the form “a sinh(x/b)”.

Or, using implied cutoff notation and combining the two feedback paths
into a single one, we obtain the structure Fig. 6.48. Also, in Fig. 6.47 the cutoff
parameter ωc was not the true cutoff of the system, since at low signal levels the
gain of the feedback path was 1 + a/b. This made the system behave as if its
cutoff was (1 + a/b)ωc and as if its input signal was reduced by (1 + a/b) factor
at the same time. In Fig. 6.48 we addressed this issue by scaling the linear path
of the feedback by the factor (1 − a/b). This doesn’t change the qualitative
behavior of the system, but affects only the interpretation of the cutoff ωc and
the input signal scale.
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Figure 6.48: Diode clipper with cutoff-independent leakage (sim-
plified diagram).

The structure in Fig. 6.48 is a good illustration of the idea that we could
employ to introduce saturation into 1-pole lowpass filter’s state: as sinh(x/b)
grows exponentially for large signals, the term a sinh(x/b) causes the negative
feedback to grow as well, thereby causing the integrator to “discharge”.

The same effect is obviously obtained by putting any other quickly growing
function of a similar shape into the feedback path of a 1-pole lowpass. Good
options for such functions are provided by the inverses of the saturator functions
introduced in Section 6.2:

y = tanh−1 x =
1
2

ln
1 + x

1− x
(inverse of (6.1))

y = x/(1− |x|) (inverse of (6.2c))
y = sinhx (inverse of (6.4))
y = x(1 + |x|) (inverse of (6.5))
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A particularly important feature of the inverses of the saturators is that, same as
with saturators, they are transparent at low signal levels, thereby not affecting
the cutoff of the filter.

We will refer to the waveshapers having an inverse saturator kind of shape
as antisaturators. Fig. 6.49 shows another version of Fig. 6.48, this time using
a simpler antisaturator.
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Figure 6.49: Lowpass filter’s state saturation by using an antisat-
urator.

An antisaturator in Fig. 6.49 is having a similar effect on the filter’s state
saturation as its inverse (the respective saturator) would have had if directly
applied to a signal, or if being put in a resonating feedback path. Specifically,
using an unbounded saturator’s inverse as an antisaturator in Fig. 6.49 would
result in an unbounded saturation of the filter’s state, in the sense that by
making the amplitude of the input signal of the filter larger and larger one can
achieve arbitrarily large levels of the filter’s state. On the other hand, using
a bounded saturator’s inverse as an antisaturator (such as e.g. tanh−1) would
result in bounding of the filter state, the state not being able to exceed the
saturation level.

As with saturators, adding a linear term to an antisaturator f(x) doesn’t
change its antisaturating behavior, but simply weakens it a bit further, where
we assume that the addition should be done under the same considerations of
keeping the transparency at low signal levels:

y = (1− α)f(x) + αx (0 < α < 1)

The antisaturator in Fig. 6.48 is a kind of a reverse example of this principle,
which can be seen as if the (otherwise fully linear and transparent) shape y = x
was modified by an addition of a non-transparent antisaturator a sinh(x/b),
however the resulting curve has been made transparent again.

Antisaturation in SVF

As with 1-pole filters, the feedback in SVF is also not one creating the resonance,
respectively the discussion from Section 6.3 does not apply either, and thus we
can’t simply put a saturator into the feedback loop. Actually, the purpose of the
feedback in SVF is kind of an opposite of creating the resonance. The function
of the feedback path containing the bandpass signal is to dampen the otherwise
self-oscillating structure. This suggests the idea that if we put an antisaturator
into the bandpass signal path, this might actually do the trick of preventing the
signal levels from getting too high.

Our first attempt to do so is shown in Fig. 6.50. After thinking a bit we,
however, realize that it can’t work. Indeed, at R = 0 there is no damping signal
whatsoever, the same as without the antisaturator. Furthermore, probably the
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main reason to introduce the antisaturator into the SVF is so that we could go
into the selfoscillation range R < 0, same as we did e.g. with nonlinear 4-pole
ladder by going into the range k > 4. However, at R < 0 the introduced anti-
saturator doesn’t cause any damping either, quite on the opposite, it amplifies
the “antidamping” (the inverted damping signal). Obviously, putting the anti-
saturator after the 2R gain element instead of putting it before doesn’t change
much in this regard.
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Figure 6.50: An attempt to introduce an antisaturator into an SVF
(not really working).

We could get a bit smarter and connect a saturator in parallel with the 2R
gain element (Fig. 6.51). This now does the job of saturating the signals, as
the damping feedback signal will grow exponentially at large levels of yBP, no
matter what the value of R is. However now the effective gain of the damping
feedback path (at low signal levels, where sinhx ≈ x) is 2R+ 1, rather than 2R.

The latter problem is fixed in Fig. 6.52. In this structure, at the neutral
setting of R = 1 the entire damping signal goes through the antisaturator. This
exactly matches the same situation in our first attempt in Fig. 6.50 (and is
the reason for the separation of the multiplication by 2 into an additional gain
element). As R gets away from 1, we send some of the damping signal through
the parallel linear path, still keeping the total gain of the damping path equal
to 2R at low signal levels.

The antisaturator in Fig. 6.52 effectively makes the state of the first inte-
grator saturate. This might result in the feeling that the level of the bandpass
signal yBP becomes too low. Therefore, instead one could pick the bandpass
signal from yBP′ output, where the antisaturator has increased the level of yBP

back. The yBP1 output provides the normalized bandpass signal.
Note that yHP + yBP1 + yLP = x, as for the linear SVF.

Zero-delay feedback equation with antisaturators

The introduction of antisaturators raises some new considerations for the solu-
tion of the zero-delay feedback equation. We will use the nonlinear 1-pole in
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Figure 6.51: A second attempt to introduce an antisaturator into
an SVF (works better, but R does no longer directly correspond
to damping).
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Figure 6.52: An SVF with antisaturator.

Fig. 6.49 as a demonstration example, however it will also be more instructive
to consider an inverse hyperbolic tangent (Fig. 6.53) instead of a hyperbolic sine
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as an antisaturator.
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Figure 6.53: Inverse hyperbolic tangent y = tanh−1 x.

Introducing the instantaneous response gx+ s for the integrator in Fig. 6.49
and replacing sinh with tanh−1 we obtain Fig. 6.54. Writing the zero-delay
feedback equation for Fig. 6.54 we obtain

y = g(x− tanh−1 y) + s (6.30)
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Figure 6.54: Lowpass filter with a tanh−1 antisaturator in the
instantaneous response form.

We could start solving (6.30) using the usual methods, such as the ones dis-
cussed earlier in this chapter, however notice that tanh−1 has a limited support,
being defined only on the (−1, 1) range. This might create serious problems if
we somehow arrive at a value of y outside of that range. Such values of y could
appear for a number of reasons, such as e.g.:
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- from an approximate solution

- from an iterative method’s step

- from numerical errors, such as roundoffs.26

Even if we formally stay within the range y ∈ (−1, 1), we could still get out of
the range of representable values of tanh−1 y if tanh−1 y gets too large.

There are also related questions of convergence of iterative schemes, partic-
ulary of fixed point iteration. Last but not least, close to the boundaries of the
range y ∈ (−1, 1) a small numerical error in the value of y will result in a huge
error in the value of tanh−1 y, which suggests that it might be generally a bad
idea to explicitly evaluate tanh−1 y at all. Similar issues also of course arise with
unbounded antisaturators, even though they are not as bad as with bounded
ones.

In order to avoid this kind of problems, we can solve for the antisaturator’s
output, rather than for the antisaturator’s input. Introducing variable u for the
antisaturator’s output signal:

u = tanh−1 y

we respectively have y = tanhu and can rewrite (6.30) in terms of u as

tanhu = g(x− u) + s

or, further rewriting it so that the linear function in the right-hand side is more
explicitly visible

tanhu = (gx+ s)− gu (6.31)

Equation (6.31) looks very much like the previously discussed zero-delay feed-
back equation (6.13). However, there are still important differences. Expressing
the left- and right-hand sides of (6.31) graphically in Figs. 6.55 and 6.56, we
see that, compared to Figs. 6.13, 6.14 and 6.15, multiple solutions can occur
already for g < 0. Fortunately, in Fig. 6.54 the value of g cannot get negative,
since that would require a negative cutoff value for the integrator.

Having found u from (6.31) we can “send” it further through the feedback
loop, first finding the integrator’s input value as x − u, then updating the in-
tegrator’s state and finding y as the output value of the integrator. Note that
thereby we never explicitly evaluated tanh−1 y.

For an antisaturator in the SVF (Fig. 6.52) the situation is more complicated.
We would like to solve for the antisaturator’s output yBP′ , but then we would
be stuck immediately afterwards: since we don’t know the signal on the “R−1”
path, we can’t add the output signals from sinh and R − 1. Furthermore, we
would have a similar problem of not knowing yLP at the next adder (which
computes yBP1 +yLP). These problems are not unexpected, considering that we
have been solving for a point in the signal path which is not shared among all
zero-delay feedback loops in the structure.

One way around this would be to try to introduce more unknowns into the
system and solve several equations at once. However, in this specific case we

26Going out of supported range of y due to numerical errors is more likely to happen in
more complicated structures than the one in Fig. 6.54. However since we are using Fig. 6.54
as a demonstration of general principles, we should mention this aspect as well.
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Figure 6.55: The solution of (6.31) for g > 0.
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Figure 6.56: The solution of (6.31) for g < 0.

could simply “send the obtained signal through the antisaturator in the reverse
direction”. That is, knowing the antisaturator’s output, we can obtain the
antisaturator’s input by evaluating sinh−1 (which is completely okay, we don’t
want to explicitly evaluate the antisaturator function because it can increase
the computation error by a huge factor, but it is no problem to evaluate its
inverse), thereby finding the value of yBP. The signal yBP is shared among all
zero-delay feedback loops and therefore is sufficient to find all other signals in
the structure.27

The general approach of avoiding the explicit evaluation of antisaturators
but rather dealing with their inverses instead also allows us to deal with a

27Of course, we should remember that we already know the output signal of the antisaturator
and not attempt to evaluate it again as sinh yBP, which was the whole point of solving for
yBP′ .
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certain class of antisaturators which are not functions in the normal sense. An
example of this are compact-range monotonic saturators such as (6.2b). The
inverse of such saturator is not really a function, since it would have infinitely
many different values at x = ±1 (Fig. 6.57). However we still can use it as
an antisaturator, since we never have to deal with the antisaturating function
explicitly, but are dealing with the respective saturating function instead.28

x

y

0
1−1 2−2

1

−1

2

−2

Figure 6.57: The inverse of (6.2b) is not a function in the normal
sense.

6.12 Asymmetric saturation

The saturators which we have been using so far were all having the odd symme-
try f(−x) = −f(x). A feature of all symmetric saturators is that when its input
signal amplitude is very high, the output signal basically alternates between pos-
itive and negative saturation levels f(x). If the input signal is something like a
sine or a sawtooth, the saturator would produce a square-like output. More gen-
erally, such saturators tend to produce signals containing mostly odd harmonics
(as the square wave does).

Sometimes this domination of odd harmonics can become too boring29 and

28Note that thereby we can even use an antisaturator which is an inverse of hard clipper.
29More likely so for a “standalone” saturator being used as an overdrive effect, rather than

for a saturator used in a complicated feedback loop structure in a filter.
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asymmetric saturation might be desired. Simply adding an offset to the satura-
tor’s input (or, instead, performing a parallel translation of the saturator curve
by “sliding” it through the origin, to keep the property f(0) = 0) works only
for signals of average levels. At high signal levels the same square would be
produced for e.g. a sine or a sawtooth input.

The offset idea would have worked, though, if the offset had been somehow
made proportional to the input signal’s amplitude.30 It turns out that this
is a natural feature of a particular nonlinear 1-pole construct. Consider the
OTA-style nonlinear 1-pole in Fig. 6.36 and imagine that instead of a saturator
nonlinearity we have used the following shaper function:

f(x) =

{
2x if x ≥ 0
x/2 if x ≤ 0

(6.32)

(Fig. 6.58 illustrates). This would mean that whenever yHP = x− yLP > 0, the
cutoff is effectively doubled. When yHP = x− yLP < 0, the cutoff is effectively
halved. Therefore the integrator state will be more “willing” to change in the
positive direction than in the negative one.

x

y

0 1−1 2−2

1

−1

Figure 6.58: “Asymmetric cutoff” nonlinearity.

Imagine such filter receives a steady periodic signal with a zero DC offset
(meaning that the average value of the signal is zero, or, in other words, there is
an “equal amount” of signal above and below zero). And suppose this signal’s
fundamental frequency is well above the nominal cutoff of the filter. In such
case a linear lowpass filter would have performed a kind of averaging of the
input signal, thereby producing a zero output signal.31 However in the case of
using the nonlinearity (6.32) the positive input values will have “more weight”
than the negative ones and the lowpass output will be nonzero.

30Clearly, by “amplitude” here we don’t mean the momentary value of the signal but rather
some kind of average or maximum.

31Formally the filter would have produced the DC offset of the signal at the output. The
fundamental and all other harmonics, being way above filter’s cutoff, would have been filtered
out.
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It should be inituitively clear that the lowpass output value will increase as
the input signal amplitude increases and vice versa (particularly it should be
obvious that in the case of the zero amplitude of the input signal the output
signal will also be zero). Therefore, qualitatively such lowpass filter works as an
envelope follower, the filter cutoff in a way controlling the envelope follower’s
response time. Respectively, the highpass output will contain the input signal
with an added (or subtracted) DC offset, such offset being approximately pro-
portional to the input signal’s amplitude. This means that if initially 50% of
the signal were above zero and the other 50% below zero, we now have changed
this ratio to something like 80% to 20%, and this effect is happening more or
less at any amplitude of the input signal.

Thus, asymmetric nonlinear shaping could be produced by the following
structure:

HPlin
// HPnl

//
MMMqqq
// (f)x// //
g

where HPlin is an initial lowpass, killing the DC offset which might be previ-
ously contained in the input signal, HPnl is the asymmetric nonlinear highpass,
introducing the DC offset into the signal, the signal is then boosted by the gain
g, controlling the amount of “drive”, and f(x) is a usual symmetric saturator.

The nonlinearity (6.32) has a drawback that it contains a discontinuity in
the 1st derivative at x = 0. Such discontinuity may add a noticeable amount
of new harmonic content into the signal. This effect might be desired at times,
but for now we would rather at least reduce it, if not avoiding it altogether,
as the filter’s main purpose is to introduce the DC offset into the signal. This
can be achieved by smoothing the discontinuity. E.g. we could replace (6.32)
with a hyperbola going at 45◦ through the origin, but having a similar to (6.32)
asymptotic behavior (Fig. 6.59).

x

y

0 1−1 2−2

1

−1

Figure 6.59: Replacing the nonlinearity (6.32) (Fig. 6.58) (dashed
line) by a hyperbola.

This kind of nonlinear highpass can occur easily in analog circuits, if non-
linear resistances are involved. E.g. consider Fig. 6.60. The effective resistance



220 CHAPTER 6. NONLINEARITIES

connected in series with the capacitor varies, qualitatively speaking, between
R1 and a parallel connection of R1 and βR2, depending on the polarity of the
voltage over the base-emitter junction of the transistor (where β = IE/IB is
the emitter-base current ratio). Respectively the cutoff varies (qualitatively)
between 1/R1C and (R1 + βR2)/βR1R2C. Upon a closer look, the cutoff will
vary a bit less than that, because the base-emitter voltage will somewhat reduce
the current through R2, but qualitatively the effect is still there.

�
C

��� �ÿ
���

�

� R1

��þ

����� ��
��

� R2

��þ

�� �ðx(t)
��ÿ�
��
��ÿ����� ������ �

��� �òy(t)

Figure 6.60: Highpass filter with asymmetric cutoff.

6.13 Antialiasing of waveshaping

Aliasing

When a signal goes through a waveshaper, the waveshaping introduces addi-
tional partials into the spectrum of the signal. These partials extend into the
entire frequency range ω ∈ [0,∞) for almost any waveshaper. We can show that
in several steps.

First, let’s consider waveshapers of the form f(x) = xn (where n > 1),
starting with f(x) = x2. Let x(t) be a periodic signal. Therefore it can be
represented as a sum of its harmonics:

x(t) =
N∑

n=−N
Xne

jnωt

where N can be finite or inifinity. Note that we are using complex-form Fourier
series, therefore, assuming a real x(t), we have an equal number of positive- and
negative-frequency partials. Then

y(t) = f(x(t)) = (x(t))2 =

(
N∑

n=−N
Xne

jnωt

)2

=

=
N∑

n1,n2=−N
Xn1Xn2e

j(n1+n2)ωt =
2N∑

n=−2N

Yne
jnωt (6.33)

Thus, the frequencies of partials of y(t) are all possible sums n1ω + n2ω of
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frequencies of partials of x(t).32 Respectively the frequencies of the partials of
y(t) vary between −2Nω and 2Nω. That is the width of the spectrum of y(t)
is twice the width of the spectrum of x(t).

For f(x) = x3 we obtain

y(t) = f(x(t)) = (x(t))3 =

(
N∑

n=−N
Xne

jnωt

)3

=

=
N∑

n1,n2,n3=−N
Xn1Xn2Xn3e

j(n1+n2+n3)ωt =
3N∑

n=−3N

Yne
jnωt

that is the width of the spectrum is tripled. It’s not difficult to generalize it to
an arbitrary power of x, concluding that f(x) = xn increases the width of the
spectrum of x(t) n times.

It should be clear by now that, if f(x) is a polynomial of order N :

f(x) = a0 + a1x+ a2x
2 + . . .+ aNx

N

the highest-order term xN will expand the spectrum of x n times, while the
lower-order terms will also expand the spectrum of x(t) but not as much, thus
f(x) expands the spectrum of x(t) N times.

Now suppose f(x) is a function of a more or less general form, expandable
into Taylor series around x = 0:

f(x) =
∞∑
n=0

f (n)(0)
n!

xn =
∞∑
n=0

anx
n

We can consider such f(x) as a polynomial of an infinite order and thus f(x)
expands the spectrum of x(t) by an infinite number of times.33

Some of the waveshapers that we were previously discussed were constructed
as piecewise functions, including e.g. a piecewise polynomial saturator (6.2b).
Would the saturator (6.2b), which consists of polynomial segments of order not
higher than 2, thereby expand the spectrum of f(x) only 2 times? It turns
out that such piecewise function waveshapers also expand the spectrum an infi-
nite number of times. Having discontinuous derivatives themselves (e.g. (6.2b)
has a continuous 1st derivative, but three discontinuities of the 2nd derivative),
such waveshapers also introduce discontinuous derivatives into their output sig-
nal y(t). The presence of discontinuities in a signal’s derivative automatically
implies an infinite spectrum of the signal.34

32Or, if we think in terms of real-form Fourier series, where only positive-frequency partials
are present, the frequencies of partials of y(t) are all possible sums and differences n1ω±n2ω
of frequencies of partials of x(t).

33If the Taylor expansion of f(x) has a finite convergence radius, we still can make the same
argument about spectrum expansion, at least for the signals x(t) which are small enough to
fit into the convergence radius of the Taylor series of f(x). Note that we also could expand
f(x) not around x = 0 but around some other point x = x0, making the same consideration
applicable for signals x(t) centered around x = x0.

34A discontinuity of N -th order derivative generates harmonics rolling off as 1/nN+1. Thus
a discontinuity in a 2nd derivative generates harmonics at 1/n3. A discontiuity in the function
itself (0th derivative) generates harmonics at 1/n (Fourier series of sawtooth and square signals
are examples of that).
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Therefore all waveshapers which we have been considering until now (as well
as most of the ones we could even think of) expand the spectrum of the input
signal an infinite number of times. This means that discrete-time waveshaping
produces aliasing.

Indeed, suppose we are given a waveshaper f(x) of a general shape, so that
it expands the spectrum of its input signal an infinite number times. And
imagine we are having a sampled signal x[n] and its corresponding continuous
bandlimited version x(t). Assuming unit sampling period T = 1 we can write
x[n] = x(n) ∀n ∈ Z. A direct application of a waveshaper f(x) to discrete-time
signal x[n]:

y[n] = f(x[n]) (6.34)

is fully equivalent to sampling the continuous-time signal y(t) = f(x(t)), by
simply letting y[n] = y(n). However, since f(x) expands the spectrum of x(t)
infinitely, the spectrum of y(t) is not bandlimited and simply letting y[n] = y(n)
will result in aliased frequencies contained in y[n].

Trying to use polynomial waveshapers doesn’t help much. We could defi-
nitely construct polynomial antisaturators, e.g. f(x) = x3 +x, whereas a purely
polynomial saturator could be constucted only if we know that the input signal
has a limited range, which is a pretty heavy restriction. However even x3 + x
will triple the width of the spectrum, so that we’ll need e.g. to bandlimit x(t)
to one third of the Nyquist frequency, process it by an f(x) = x3 saturator and
add the result to the unprocessed signal:

•//

BL/3// x3//

+ '!&"%#$��
OO //

(where BL/3 denotes a filter which bandlimits the signal to 1/3 of the Nyquist
frequency, and Lat denotes). Actually bandlimiting will introduce latency into
the signal, so we’ll need to add the same latency on the lower path

•//

BL/3// x3//

+ '!&"%#$��

Lat//
OO //

(where Lat denotes a structure which artificially introduces the same latency as
introduced by BL/3).

This idea stll doesn’t work really well, since antisaturators are normally used
in feedback loops. We can’t perform the bandlimiting inside the feedback loop,
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e.g.

+ '!&"%#$//
∫

// •// //

•oo

BL/3 oox3 oo

+ '!&"%#$��

Lat oo
OO

−
OO

because of the introduced latency. Doing it outside the feedback loop is also
problematic. For one, we’d need to bandlimit the entire signal x(t), not only
the part of it which goes through the x3 shaper. This still could be done,
though, if the sampling rate is sufficiently high (at least 3 × 44.1kHz). The
other problem is that the signal inside the feedback loop will go infinitely many
times through the waveshaper. Therefore bandlimiting of the signal prior to
entering the feedback loop to 1/3 of Nyquist frequency won’t really prevent the
aliasing from happening.35

Antialiasing

The antialiasing of waveshapers is a difficult problem, not having a universally
good solution at the time of writing this text. The only thing which is more or
less guaranteed to work is heavy oversampling.36 Unfortuntately, oversampling
introduces latency, thus, if e.g. a waveshaper is used in a filter feedback loop, we
cannot oversample locally just the waveshaper, but at least the entire feedback
loop must be oversampled.

There is however an approach37 which reduces aliasing by a noticeable
amount, so that the same quality of sound can be achieved at lower sampling
rates than otherwise.38 Suppose we are having a discrete-time signal x[n] going
through a waveshaper f(x). Instead of sending x[n] through the waveshaper in
discrete time, thereby producing the discrete time signal

y[n] = f(x[n]) (6.35)

let’s convert x[n] to continuous time by means of linear interpolation. Without
loss of generality we will consider the linear interpolating segment going between
x[0] and x[1]:

x(t) = (1− t)x[0] + tx[1] 0 ≤ t ≤ 1 (6.36)

(where we assume unit sampling period T = 1). Applying the waveshaper f(x)
in contnuous time to this segment we obtain

y(t) = f(x(t)) = f((1− t)x[0] + tx[1])
35However, it still might reduce the amount of aliasing.
36Higher sampling rates lead to smaller relative increments of integrator states (at the same

cutoff value in Hz). Thus, at some point higher computation precision will be required. 32
bit floats might happen to become insufficient pretty quickly, but 64 bit floats should still do
in a wide range of high sampling rates.

37The approach was proposed independently by A.Huovilainen, E.Le Bivic, Dr. J.Parker
and possibly others. The application of the approach within zero-delay feedback context has
been developed by the author.

38Still, 44.1kHz would be usually insufficient and one will need to go to 88.2kHz or even
higher.
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Now we propose to compute the discrete time sample y[1] as

y[1] =
∫ 1

0

y(τ) dτ =
∫ 1

0

f((1− τ)x[0] + τx[1]) dτ =
F (x[1])− F (x[0])

x[1]− x[0]
(6.37)

where F (x) is some antiderivative of f(x), that is F ′(x) = f(x). Or, more
generally

y[n] =
∫ n

n−1

y(τ) dτ =
F (x[n])− F (x[n− 1])

x[n]− x[n− 1]
(6.38)

where y(t) = f(x(t)) and where x(t) is a piecewise linear continuous-time func-
tion arising out of linear interpolation of x[n]. It might seem that the averaging
of y(t) on t ∈ [n− 1, n] in (6.38) is a somewhat arbitrary operation. However, it
isn’t. In fact, such averaging can be considered as one of the simplest possible
forms of lowpass filtering the continuous-time signal, aiming to suppress the
aliasing frequencies above Nyquist.39

The averaging (6.38) does a reasonable job of reducing the aliasing in y[n]
compared to (6.35), however it is introducing two problems: latency and ill-
conditioning.

Latency

Assuming the transparency of the waveshaper at small signal levels f(x) ≈ x
we have F (x) ≈ x2/2 and (6.38) turns into

y[n] =
x2[n]/2− x2[n− 1]/2

x[n]− x[n− 1]
=
x[n] + x[n− 1]

2
(6.39)

The expression (6.39) describes a discrete time 1-pole lowpass filter with a cutoff
at half the Nyquist frequency. Indeed, let’s take the lowpass filter in Fig. 3.31.
At g = 1 (which corresponds to ωcT/2 = 1, which in turn corresponds to
prewarped half Nyquist frequency ωcT/2 = π/4) we have g/(g + 1) = 1/2 and
thus

v[n] =
x[n]− s[n]

2
(6.40a)

y[n] = v[n] + s[n] =
x[n] + s[n]

2
(6.40b)

s[n+ 1] = y[n] + v[n] = x[n] (6.40c)

Combining (6.40b) and (6.40c) we obtain

y[n] =
x[n] + x[n− 1]

2

which is the same as (6.39).
The lowpass filtering effect of (6.38) is actually another problem that we

didn’t mention so far. It arises out of the approximations that the method does
when converting from discrete-time signal x[n] to x(t) and back from y(t) to
y[n]. This problem is however not very noticeable at sampling rates of 88.2kHz
and higher. So, let’s concentrate on the latency introduced by (6.39).

39Similarly, linear interpolation can be interpreted in terms of continuous-time lowpass
filtering which suppresses the aliasing discrete time spectra.
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The averaging in (6.39) can be seen as a mid-way linear interpolation between
x[n] and x[n−1] and thus intuitively one could expect that it introduces a half-
sample delay. This is indeed the case. Taking x[n] = ejωn and assuming |ω| � 1,
so that the signal’s frequency is far below the cutoff of the lowpass filter (6.39),
we have

y[n] =
ejωn + ejω(n−1)

2
= exp jω

(
n− 1

2

)
· e

jω/2 + e−jω/2

2
=

= exp jω
(
n− 1

2

)
· cos

ω

2
≈ exp jω

(
n− 1

2

)
where cos(ω/2) ≈ 1 since ω ≈ 0.

It can be shown that the source of this half-sample delay is the averaging of
y(t) on [n− 1, n] done in (6.38). Taking y(t) = ejωt where |ω| � 1, we have∫ n

n−1

ejωτ dτ =
ejωn − ejω(n−1)t

jω
= exp jω

(
n− 1

2

)
· e

jω/2 − e−jω/2

2j · ω/2
=

= exp jω
(
n− 1

2

)
· sin(ω/2)

ω/2
= exp jω

(
n− 1

2

)
· sinc

ω

2
≈

≈ exp jω
(
n− 1

2

)
(where sincx = sin x

x is the cardinal sine function). Thus (6.39) and (6.38)
indeed introduce a delay of half sample. Inside a zero-delay feedback loop this
would be a serious problem. In order to develop an idea of how to address this
problem, let’s look at a few examples.

Waveshaper followed by an integrator

Suppose a waveshaper is immediately preceding an integrator, as shown in
Fig. 6.61 (this particularly happens in the OTA-style 1-poles in Figs. 6.35 and
6.36). Normally we recommended to use transposed direct form II integrators
however this time we suggest to use a direct form I integrator (Fig. 6.62). Look-
ing at the first half of the direct form I integrator (highlighted by the dashed
line in Fig. 6.62) we can notice that it exactly implements the formula (6.39).
So, the first part of the integrator implements a half-sample delay too and does
so in exactly the same way as the antialiased waveshaper for low-level signals.
This therefore leads to an idea to simply drop this part of the integrator, as it is
done in Fig. 6.63, since we are getting the same half-delay from the waveshaper
already.

f(x)//
∫

// //

Figure 6.61: Waveshaper immedidately followed by an integrator.

It is interesting to notice that what thereby remains of the integrator is the
native integrator contained in Fig. 3.3). Thus, in order to implement an an-
tialiased waveshaper followed by a trapezoidal integrator, simply use a naive



226 CHAPTER 6. NONLINEARITIES

f(x)//
MMMqqq
// •//

z−1//

+ '!&"%#$OO//
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //
ωcT 1/2

____________

�
�
�
�
�
�
�
�
�

_ _ _ _ _ _ _ _ _ _ _ _
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Figure 6.62: Antialiased waveshaper combined with direct form I
integrator. The dashed line highlights the part of the integrator
which is equivalent to the waveshaper at low signals.

f(x)//
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //
ωcT

Figure 6.63: Antialiased waveshaper combined with direct form I
integrator, the first part of the integrator being dropped, since its
implemented by the antialiased waveshaper already.

integrator instead. This effectively produces trapezoidal integrator, simultane-
ously “killing” the unwanted latency produced by the antialiased waveshaper.

The solution proposed in Fig. 6.63 works quite well. There is still one sub-
tlety though, which, depending on the circumstances, may be fully academic
or not. By “assigning” the functionality of the first part of the integrator to
the antialiased waveshaper, we effectively positioned the ωcT gain element into
the middle of the integrator (Fig. 6.64). This doesn’t affect the time-invariant
behavior of the integrator, but will introduce some changes if the cutoff ωc is
varying.

In order to avoid that effect, we would need to somehow include the varying
ωcT into the averaging implemented by (6.38). A straightforward possibility
would be to change (6.37) into

u[1] =
∫ 1

0

ωc(τ)y(τ) dτ (6.41)

(remember that we assume T = 1), where u(t) = ωc(t)y(t) = ωc(t)Ty(t). Trape-
zoidal integration assumes (kind of) that the signals are varying linearly in
between the samples, therefore (6.41) can be rewritten as

u[1] =
∫ 1

0

(
(1− τ)ωc[0] + τωc[1]

)
y(τ) dτ =

=
∫ 1

0

(
(1− τ)ωc[0] + τωc[1]

)
f((1− τ)x[0] + τx[1]) dτ (6.42)
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•//

z−1//

+ '!&"%#$OO//
MMMqqq
//

MMMqqq
// + '!&"%#$// •//

z−1 oo

OO //
ωcT1/2
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_______________

Figure 6.64: Structure in Fig. 6.63 implies positioning the ωcT gain
element in the middle of the integrator. The dashed line highlights
the part which is being replaced by the antialiased waveshaper.

Unfortunately, the formula (6.42) is not fully convincing. At f(x) = x we would
expect (6.42) to turn into ordinary trapezoidal integration of ωcf(x) yielding

ωc[0]f(x[0]) + ωc[1]f(x[1])
2

However (6.42) gives in this case

ωc[0] + ωc[1]
2

· f(x[0]) + f(x[1])
2

Of course, (6.42) can be further artificially amended. Whether one should at-
tempt anything like that, is an open question.

Waveshaper following an integrator

The opposite order of connection of a waveshaper and an integrator looks much
better at first sight, since in this case we could use a transposed direct form I
integrator (Fig. 6.65), which won’t require us to reposition the cutoff gain.40

A concern which this approach is raising though, is that, as we have seen,
the latency introduced by the waveshaper is caused by the averaging occurring
after the nonlinearity, whereas in Fig. 6.65 the averaging in the integrator,
which we are dropping, is occurring before the nonlinearity. On the other hand,
linear interpolation, which is used to construct x(t) from x[n] in (6.36), is also
having a lowpass filtering effect similar to the one of the averaging, while it
doesn’t actually matter, whether we compensate the latency before or after the
waveshaper. Therefore Fig. 6.65 may also provide an acceptable solution.

Waveshaper followed by a 1-pole lowpass

Let’s now consider the case of the feedback saturator in Fig. 6.6, where the
saturator is not exactly followed by an integrator, but by a complete 1-pole?
Fig. 6.66 depicts this situation explicitly showing the internal structure of the
1-pole.

40Technically the integrator in Fig. 6.65 is, formally, not exactly a transposed direct form
II integrator, as the 1/2 gain element should have been positioned in the middle. However,
since this is a constant gain, we can shift it without causing the same concerns as in the case
of shifting the potentially varying ωcT gain element.
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MMMqqq
// + '!&"%#$// •//

z−1 oo

OO •// + '!&"%#$//

z−1//

OO
MMMqqq
// f(x)// //

1/2ωcT
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Figure 6.65: Transposed direct form I trapezoidal integrator fol-
lowed by a waveshaper. The dashed line highlights the part of the
integrator which is about to be dropped.

f(x)// + '!&"%#$//
∫

// •//
−

OO //

Figure 6.66: Waveshaper followed by a 1-pole lowpass.

Replacing the integrator with its direct form I implementation we obtain the
structure in Fig. 6.67. Following the approach of Fig. 6.64, we reposition the
ωcT element, as shown in Fig. 6.68.

f(x)// + '!&"%#$//
MMMqqq
// •//

z−1//

+ '!&"%#$OO//
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO •//
−

OO //
ωcT 1/2
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�

_ _ _ _ _ _ _ _ _ _ _
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�
�
�

___________

Figure 6.67: Waveshaper followed by a 1-pole lowpass built around
a direct form I integrator.

Now we would like to drop the (1+z−1)/2 part of the direct form I integrator,
but only for the signal coming from the waveshaper. The feedback signal of the
1-pole should still come through the full integrator. This can be achieved by
injecting the waveshaped signal into a later point of the feedback loop. The
resulting structure in Fig. 6.69 thereby compensates the latency introduced by
the antialiased waveshaper.

The structure in Fig. 6.69 can be further simplified as shown in Fig. 6.70,
where we “slid” the inverter “−1” all the way through (1 + z−1)/2 to the injec-
tion point of the waveshaped signal. Such change doesn’t cause any noticeable
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f(x)// + '!&"%#$// •//
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Figure 6.68: Structure from Fig. 6.67 with a changed position of
the cutoff gain.
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Figure 6.69: Structure from Fig. 6.68 with the waveshaped signal
bypassing the first part of the direct form I integrator (thereby
compensating the introduced latency).

effects.41 Noticing that the two z−1 elements in Fig. 6.70 are actually sharing
the same input signal, we can combine both into one (Fig. 6.71).

Fig. 6.71 contains a zero-delay feedback loop, which can be resolved. Let’s
introduce helper variables u, v and s as shown in Fig. 6.71 and let g = ωcT .
Writing the equations implied by the block diagram we have

v = g ·
(
u− v + s+ s

2

)
from where

v · (1 + g/2) = g · (u− s)

v =
g

1 + g/2
· (u− s)

Considering that y = v + s we obtain the structure in Fig. 6.72.
Notice that the obtained structure in Fig. 6.72 is pretty much identical to

the structure of the naive 1-pole lowpass filter in Fig. 3.5, except that the cutoff
41The internal state stored in the first z−1 element is inverted compared to what it used to

be, but this is compensated by the new position of the inverter.
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f(x)//

+ '!&"%#$�� MMMqqq
// + '!&"%#$// •//

z−1 oo

OO •//•//

z−1//

+ '!&"%#$OO//
MMMqqq
//

−
// //

ωcT1/2

Figure 6.70: Structure from Fig. 6.69 with a changed position of
the inverter.

f(x)//

+ '!&"%#$�� MMMqqq
// + '!&"%#$// •//

z−1 oo•oo

OO •//+ '!&"%#$// OO
MMMqqq
//

−
// //

ωcT1/2

x[n]

y[n]

s

u

v

Figure 6.71: Structure from Fig. 6.70 with merged z−1 elements.

f(x)// + '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1 oo•oo

OO
−

OO //x[n] y[n]

ωcT
1+ωcT/2

s

u
v

Figure 6.72: Structure from Fig. 6.71 with resolved zero-delay feed-
back loop, implementing Fig. 6.66 with latency compensation.

gain is not ωcT but ωcT/(1+ωcT/2). Thus, in order to implement an antialiased
waveshaper followed by a 1-pole lowpass, we simply use a naive 1-pole lowpass
with adjusted cutoff instead, which effectively “kills” the unwanted latency.

In principle we could have tried to avoid the repositioning of the ωcT gain
element. Attempting to do so, we could have gone from Fig. 6.67 to the structure
in Fig. 6.73. However, this solves only one half of the problem, namely fixing
the issue in the feedback path, while the issue is still there for the waveshaped
signal. The considerations of possibly including the averaging of ωcT into the
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antialiased waveshaper apply, where we are having exactly the same situation
as in the case of an integrator following a waveshaper.

f(x)//
MMMqqq
//

+ '!&"%#$��
•//

z−1 oo

OO •//
MMMqqq
// •//

z−1//

+ '!&"%#$OO//
MMMqqq
//

−
// //

ωcT

ωcT 1/2

Figure 6.73: Structure from Fig. 6.67 with the waveshaped signal
bypassing the first part of the direct form I integrator (thereby
compensating the introduced latency) but without repositioning
of ωcT gain element.

1-pole lowpass followed by a waveshaper

In case of a 1-pole lowpass filter followed by a waveshaper (Fig. 6.74) we can use
the transposed direct form I integrator, as we did in Fig. 6.65. The respective
structure is shown in Fig. 6.75.

+ '!&"%#$//
∫

// •//
−

OO f(x)// //

Figure 6.74: 1-pole lowpass followed by a waveshaper.
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____________

Figure 6.75: 1-pole lowpass built around a transposed direct form
I integrator followed by a waveshaper.
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In this case we can simply pick up the waveshaper input signal in the middle
of the integrator, bypassing the second half (Fig. 6.76). Noticing that the two
z−1 elements in Fig. 6.76 are picking up the same signal, we could merge them
into a single z−1 element as shown in Fig. 6.77, thereby producing a direct form
II integrator (compare to Fig. 3.9).

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1 oo

OO •// •//

z−1//

+ '!&"%#$OO//
MMMqqq
//

−
OO

f(x)// //

ωcT

1/2

Figure 6.76: Structure from Fig. 6.75 with the waveshaper skipping
the second half of the transposed direct form I integrator (thereby
compensating the introduced latency).
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Figure 6.77: Structure from Fig. 6.76 with merged z−1 elements.
The dashed line highlights the direct form II integrator.

In order to resolve the zero-delay feedback loop in Fig. 6.77 we introduce
helper variables u, v and s as shown in Fig. 6.77 and we let g = ωcT . Then,
writing the equations implied by the block diagram, we have

u = g ·
(
x− u+ s+ s

2

)
from where

u · (1 + g/2) = g · (x− s)
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u =
g

1 + g/2
· (x− s)

Considering that v = u+ s we obtain the structure in Fig. 6.78.

+ '!&"%#$//
MMMqqq
// + '!&"%#$// •//

z−1 oo•oo

OO
−

OO f(x)// //x[n] y[n]

ωcT
1+ωcT/2

s

v
u

Figure 6.78: Structure from Fig. 6.77 with resolved zero-delay feed-
back loop, implementing Fig. 6.74 with latency compensation.

Notice that the obtained structure in Fig. 6.78 is identical to the structure
in Fig. 6.72, except for the the opposite order of the naive 1-pole lowpass and
the waveshaper. Thus, in order to implement a 1-pole lowpass followed by an
antialiased waveshaper we simply use a naive 1-pole lowpass with adjusted cutoff
instead.

Other positions of waveshaper

In Fig. 6.66 we had a waveshaper followed by a lowpass, but imagine it was a
highpass instead (Fig. 6.79).42 In this case, even if we use the tricks similar
to the ones we did in the lowpass case, we still won’t be able to eliminate the
latency on the feedforward path between x(t) and y(t).

f(x)// + '!&"%#$// •//

∫
oo

−
OO //x(t) y(t)

Figure 6.79: Waveshaper followed by a 1-pole highpass.

If there is e.g. a lowpass further after the the highpass:

f(x)// HP// LP// //

then we can eliminate the latency by changing the lowpass, exactly as we did
before. The highpass filter will work on a signal delayed by half a sample, but
this will be compensated in the immediately following lowpass. Similarly, if
there is a preceding lowpass:

LP// f(x)// HP// //

42The highpass in Fig. 6.79 might look different from the one in Fig. 2.9, however it’s not
difficult to realize that in fact both structures are identical.
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we could consider compensating the latency by changing that lowpass. The
same of course could be done if instead of a lowpass we find an integrator, or a
suitable structure containing one.

However it might happen that there is no lowpass or an integrator or any
other structure suitable for this purpose, neither after the waveshaper nor before
it. In such cases we could artificially insert a 1-pole lowpass immediately before
or after the waveshaper (Fig. 6.80), setting the cutoff of this lowpass to a very
high value. In this case we could hope that the insertion of the new lowpass
would not significantly change the signal, at least not in the audible range, if
its cutoff is lying well above.

f(x)// LP// + '!&"%#$// •//

∫
oo

−
OO //x(t) y(t)

Figure 6.80: Artificially inserted 1-pole lowpass.

One still has to be careful, since such lowpass will introduce noticeable
changes into the behavior of the system in the spectral range above the lowpass’s
cutoff and even, to an extent, below its cutoff. Even though a lowpass gener-
ally reduces the amplitude of signals, due to the changes in the phase it could
increase the system’s resonance, causing the system to turn to selfoscillation
earlier than expected.43 In a nonlinear system the inaudible parts of the spec-
trum could become audible through the so-called intermodulation distortion.44

So, it’s a good idea to test for the possible artifacts created by the introduction
of such lowpass.

Zero-delay feedback equation

The appearance of antialiased waveshapers in a zero-delay feedback loop creates
the question of solving the arising zero-delay feedback equations. Fortunately,
this doesn’t create any new problems, as the inistantaneous response of an
antialiased waveshaper can be represented in familiear terms.

Indeed, according to (6.38) the instantaneous response of an antialiased
waveshaper is simply another waveshaper:

f̃(x) =
F (x)− F (a)

x− a
(6.43)

where a = x[n − 1] is the waveshaper function’s parameter, which is having a
fixed value at each given time moment n. Thus we obtain the already familiar
kind of a zero-delay feedback equation with a waveshaper.

43This would be particularly the case in a 4-pole lowpass ladder filter, where the effect is
noticeable at ladder filter’s cutoff settings comparable or higher than the cutoff of the added
lowpass.

44Recall that e.g. in (6.33) the output signal of a waveshaper contained all sums and dif-
ferences of the frequencies of the original signal. Thus if the difference of two frequencies,
both lying well above the audible range, falls into the audible range, these originally inaudible
partials will create an audible one.
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Ill-conditioning

If x[n] ≈ x[n − 1], the denominator of (6.38) will be close to zero. Rather
fortunately this also means that the numerator will be close to zero as well,
so that, at least formally, their ratio should produce a finite value. However
practically this could mean precision losses in the numeric evaluation of the
right-hand side of (6.38) (or division by zero if x[n] = x[n− 1]).

Since x[n] ≈ x[n−1], the value of the interpolated signal x(t) and respectively
the value of y(t) = f(x(t)) shouldn’t change much on [n − 1, n] and thus the
integral in (6.38) can be well approximated by a value of y(t) somewhere on that
interval.45 In principle we could take any point on that interval, but intuitively
we should expect the midway point to give the best result, and thus we take

y[n] = f

(
x[n] + x[n− 1]

2

)
if x[n] ≈ x[n− 1] (6.44)

Notice that at f(x) ≈ x (6.44) turns into (6.39).
The fallback formula (6.44) creates no new problems for the solution of the

zero-delay feedback equation, since in instantaneous response terms it looks like
another waveshaper

f̃(x) = f

(
x+ a

2

)
(6.45)

where a = x[n− 1]. Note, however, that when using iterative approaches to the
solution of the zero-delay feedback equation, we potentially may need to switch
between (6.43) and (6.45) on each iteration step.

The choice between the normal and the ill-conditioned case formulas should
depend on the comparison of estimated precision losses in (6.38) and the error
in (6.44). In that regard note, that it might be a good idea to choose the
antiderivative F (x) so that F (0) = 0. This could improve the precision of
numerical computation of (6.38) and (6.43) at low signal levels, as subtraction
of two close numbers is the main source of precision losses here. On the other
hand, the main source of error in (6.44) and (6.45) is nonlinear behavior of f(x)
on the segment lying between x[n− 1] and x[n].46

SUMMARY

Nonlinear filters can be constructed by introducing waveshapers into block dia-
grams. Two important types of waveshapers are saturators and antisaturators.
Saturators used in resonating feedback loops prevent the signal level from infi-
nite growth. Antisaturators have a similar effect in damping feedback paths.

The discussed types of usage of saturators in filters included feedback loop
saturation, transistor ladder-style 1-pole saturation and OTA-style 1-pole sat-
uration. The discussed usage of antisaturators included the diode clipper-style
saturation of 1-poles and the usage in the damping path of an SVF.

45This is more precisely stated by the mean value theorem.
46Note that if f(x) is fully linear on that segment, then (6.44) gives the exact answer. One

could also obtain an estimation of the error of (6.44) by expanding f(x) in Taylor series around
x = (x[n] + x[n − 1])/2 and noticing that applying (6.38) just to the first two terms of this
expansion gives (6.44) (as the contribution of the first-order term of the series turns out to be
zero). Therefore the error of (6.44) is equal to the contribution of the remaining terms of the
Taylor series to (6.38).
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Waveshapers usually turn zero-delay feedback equations into transcendental
ones, which then need to be solved using approximate or numeric methods,
although in some cases analytic solution is possible.

Discrete-time waveshaping produces aliasing, which might need to be miti-
gated using oversampling and/or some more advanced methods.



Chapter 7

State-space form

Starting with this chapter we begin the discussion of subjects of a more theoret-
ical nature, not in the sense that they are not useful for practical purposes, but
rather that one can already do a lot without the respective knowledge. Simul-
taneously the mathematical level of the presented text is generally higher than
in the previous chapters. Readers who are not too interested in the respective
subjects may consider skipping directly to Chapter 11, where the discussion
returns to the previous “practical” level.

Transfer functions fully describe the behavior of linear time-invariant sys-
tems, but, as we already have seen, once the system parameters start to vary, we
find out that some important information about the system topology is lacking.
The state-space form provides a mathematical way to describe a system without
losing the essential information about the system’s topology.1 Practically it’s
not much different from block diagrams, just instead of a graphical representa-
tion of a system we represent it by mathematical equations. The state-space
form can help to obtain new insights into the way how differential and difference
systems work.

7.1 Differential state-space form

The term state-space form simply means that a differential system is written in
the form of ordinary differential equations of the first order, where the differen-
tiation is done with respect to time, and the equations have been algebraically
resolved in respect to derivatives. E.g. suppose we are interested in a 2-pole
allpass based on the state-variable filter (Fig. 4.1). In principle we already have
the respective equations in (4.1) but for the sake of demonstration let’s reobtain
them from the block diagram in Fig. 4.1.

Let u1 = yBP denote the output of the first integrator and u2 = yLP denote
the output of the second integrator. The input of the first integrator is x −
2RyBP − yLP, thus

u1 =
∫
ωc (x− 2Ru1 − u2) dt

1Except in cases where continuous-time block diagrams contain instantaneously unstable
integratorless feedback loops.

237
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The output of the second integrator is simply yBP:

u2 =
∫
ωcu1 dt

According to (4.23), the allpass signal can be obtained as y = x− 4RyBP:

y = x− 4Ru1

Writing all three equations together:

u1 =
∫
ωc (x− 2Ru1 − u2) dt

u2 =
∫
ωcu1 dt

y = x− 4Ru1

we have obtained the state-space form representation of Fig. 4.1, except that we
are having integral rather than differential equations. From the mathematical
point of view this is no more than a matter of notation and we can equivalently
rewrite the same equations as

u̇1 = ωc (x− 2Ru1 − u2)
u̇2 = ωcu1

y = x− 4Ru1

It is common to write the state-space equations in the matrix form:

d
dt

(
u1

u2

)
=
(
−2Rωc −ωc
ωc 0

)(
u1

u2

)
+
(
ωc
0

)
x (7.1a)

y =
(
−4R 0

)(u1

u2

)
+ x (7.1b)

or, by introducing

A =
(
−2Rωc −ωc
ωc 0

)
b =

(
ωc 0

)T
cT =

(
−4R 0

)
d = 1

we rewrite the same in vector notation:

u̇ = Au + bx

y = cTu + d · x

This is the general state-space form for a single-input single-output differential
system. We can promote it further to multiple inputs and multiple outputs by
promoting x and y to vectors and promoting b, cT and d to matrices:

u̇ = Au +Bx (7.2a)
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y = Cu +Dx (7.2b)

E.g. for a single-input multiple-output LP/BP/HP SVF the equation (7.1b)
turns into

y =

 0 1
1 0
−2R −1

(u1

u2

)
+

0
0
1

x

The term state-space form originates from the fact that the vector of differ-
ential variables u represents the states of the integrators, or simply the state of
the system. Respectively the linear space of vectors u is referred to as the state
space of the system.

The state-space form encodes the essential information about the system’s
topology, namely, which gains precede the integrators and which follow the
integrators. Specifically, B is the matrix of gains occuring on the paths from the
inputs to the integrators, C is the matrix of gains occurring on the paths from
the integrators to the outputs, D is the matrix of gains bypassing the integrators
and A is the matrix of gains on the feedback paths, thus they simultaneously
precede and follow the integrators.

Integral form

Equations (7.2) can be rewritten in the integral form, which is merely a nota-
tional switch:

u =
∫

(Au +Bx) dt = u(0) +
∫ t

0

(Au +Bx) dτ (7.3a)

y = Cu +Dx (7.3b)

The integral form also allows to convert the state-space form back to the block
diagram form. Each line of (7.3a) corresponds to an integrator, the respective
right-hand side describing the integrator’s input signal.

Nonlinear state-space form

The right-hand sides of the equations (7.2) actually can be arbitary nonlinear
vector functions of vector arguments, in which case we could write the equations
as

u̇ = F (u,x)
ẏ = G(u,x)

The discussion of nonlinear systems has been done in Chapter 6. Most of the
ideas discussed in Chapter 6 can be equally applied to the systems expressed as
a state-space form, and we won’t discuss nonlinear state-space forms further.

7.2 Integratorless feedback

Before we can convert a block diagram (or an equation system, for that mat-
ter) into a state-space form we need to resolve integratorless feedback loops,
if there are any. Integratorless feedback is a continuous-time version of zero-
delay feedback. While zero-delay feedback loops in discrete time systems are
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the loops containing no unit delays, integratorless feedback loops in continuous
time systems are the loops containing no integrators.

The resolution of integratorless feedback is therefore subject to the same
considerations and procedures as the resolution of zero-delay feedback. We are
going to demonstrate this using the TSK allpass from Fig. 5.35 as an example.

+ '!&"%#$// •// + '!&"%#$// •//
∫

// •//
−

OO + '!&"%#$//
− ��

+ '!&"%#$// •//
∫

// •//
−

OO + '!&"%#$//
− ��

•//

qqq
MMM oo

−
OO

MMMqqq
//

+ '!&"%#$��// //x y

k

k

u1

y1

u2 y2
y0

Figure 7.1: Allpass TSK filter from Fig. 5.35 with expanded 1-pole
allpass structures.

Expanding the internal structures of the 1-pole allpasses in Fig. 5.35 we
obtain the structure in Fig. 7.1. Denoting the 1-pole allpass states as u1 and
u2, their output signals as y1 and y2 and the input of the first 1-pole allpass as
y0 (as shown in Fig. 7.1) we obtain the following equations:

u̇1 = y0 − u1

y1 = u1 − (y0 − u1) = 2u1 − y0
u̇2 = y1 − u2

y2 = u2 − (y1 − u2) = 2u2 − y1
y0 = x− ky2
y = y2 + ky0

where this time we have assumed ωc = 1 for simplicity.
Apparently Fig. 7.1 contains an integratorless feedback loop, starting at y0,

going through the highpass path of the first allpass to y1, then through the
highpass path of the second allpass to y2 and returning via the global feedback
path to y0. This loop contains three inverters and a gain of k, thus the total
gain of this integratorless feedback loop is −k and it is not instantaneously
unstable provided k > −1. Under this assumption we can resolve it algebraically.
Selecting just the equations for yn we have

y1 = 2u1 − y0
y2 = 2u2 − y1
y0 = x− ky2

We would like to solve for y0, therefore we first eliminate y2 in the third equation:

y0 = x− k(2u2 − y1)
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and then y1 in the just obtained equation:

y0 = x− k(2u2 − (2u1 − y0)) = x− ky0 + 2k(u1 − u2)

(1 + k)y0 = x+ 2k(u1 − u2)

and

y0 =
x+ 2k(u1 − u2)

1 + k

Notice that the denominator corresponds to the instantaneously unstable case
occuring for k < −1.

Now that we have resolved the integratorless feedback, we need to substi-
tute the resolution result into the remaining equations of the original equation
system:

u̇1 = y0 − u1 =
(

2k
1 + k

− 1
)
u1 −

2k
1 + k

u2 +
1

1 + k
x =

(k − 1)u1 − 2ku2 + x

1 + k

u̇2 = y1 − u2 = 2u1 − y0 − u2 =

=
(

2− 2k
1 + k

)
u1 −

(
1− 2k

1 + k

)
u2 −

1
1 + k

x =

=
2u1 + (k − 1)u2 − x

1 + k

y = y2 + ky0 = 2u2 − y1 + ky0 = 2u2 − (2u1 − y0) + ky0 =
= 2(u2 − u1) + (1 + k)y0 = 2(u2 − u1) + x+ 2k(u1 − u2) =
= 2(k − 1)u1 − 2(k − 1)u2 + x

Or, in the matrix form

u̇ =
1

k + 1

(
k − 1 −2k

2 k − 1

)
u +

1
k + 1

(
1
−1

)
x (7.4a)

y = 2(k − 1) ·
(
1 −1

)
u + x (7.4b)

7.3 Transfer matrix

If x(t) = X(s)est, all other signals in the system have the same exponential
form and the system turns into

sU(s)est = AU(s)est +BX(s)est

Y(s)est = CU(s)est +DX(s)est

or

sU(s) = AU(s) +BX(s)
Y(s) = CU(s) +DX(s)

The first of the two equations is a linear equation system in a matrix form in
respect to the unknown U(s) and the solution is found from

(s−A)U(s) = BX(s)
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(where s−A is a short notation for sI −A where I is identify matrix), and

U(s) = (s−A)−1B ·X(s) (7.5)

and thus

Y(s) = CU(s) +DX(s) = C(s−A)−1B ·X(s) +D ·X(s)

Introducing the matrix

H(s) = C(s−A)−1B +D =
C adj(s−A)B

det(s−A)
+D (7.6)

we have
Y(s) = H(s)X(s)

Thus H(s) is the transfer matrix of the system, its elements being the individual
transfer functions corresponding to all possible input-output pairs of the system.
In case of a single-input single-output system H(s) reduces to a 1× 1 matrix:

H(s) = cT(s−A)−1b + d =
cT adj(s−A)b

det(s−A)
+ d (7.7)

being simply the familiar transfer function.
From the formula (7.6) or (7.7) we can derive why the transfer functions of

system built on integrators are nonstrictly proper rational functions. Indeed,
the elements of adj(s−A) are polynomials of s of up to (N −1)-th order (where
N is the dimension of the state space, that is simply the number of integrators).
On the other hand, det(s − A) is a polynomial of s of N -th order. Therefore,
the elements of (s − A)−1 are rational functions of s sharing the same N -th
order denominator det(s−A) and having numerators of up to (N −1)-th order.
Thus, if D = 0, the elements of H(s) are strictly proper rational functions.

If D 6= 0, (7.6) turns into

H(s) =
C adj(s−A)B

det(s−A)
+D =

C adj(s−A)B +D det(s−A)
det(s−A)

and thus the numerators of the elements of H(s) become polynomials of order
N , if the respective element of matrix D is nonzero. Thus, the transfer function
becomes nonstrictly proper only if there is a direct (in the sense that it contains
no integrators) path from the input to the output.

Note that, since the denominator of the transfer function(s) is det(s − A),
it follows that the roots of the det(s− A) polynomial are the system poles. At
the same time the roots of det(s − A) = 0 are the eigenvalues of A. Thus,
eigenvalues of A are the system poles.

7.4 Transposition

Computing the transfer matrix transpose we obtain from (7.6):

HT(s) =
(
C(s−A)−1B +D

)T
= BT(s−AT)−1CT +DT
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This looks like a transfer function of another system:

u̇′ = A′u′ +B′x′

y′ = C ′u′ +D′x′

where
A′ = AT B′ = CT C ′ = BT D′ = DT

We will refer to this new system as transposed system. The transposition of the
state-space form corresponds to the transposition of block diagrams described
in Section 2.14. Particularly, we swap the input gains B for the output gains C
and vice versa.

So, the transfer function of the transposed system is

H ′(s) = C ′(s−A′)−1B′ +D′ = BT(s−AT)−1CT +DT = HT(s)

where
Y′(s) = H ′(s)X′(s) = HT(s)X′(s)

or, in component form

Y ′n(s) = H ′nm(s)X ′m(s) = Hmn(s)X ′m(s)

while for the original system we have

Ym(s) = Hmn(s)Xn(s)

But the input/output pair x′m, y′n, is the transposed system corresponds to the
input/output pair xn, ym of the original system and the transfer function for
each pair is Hmn. Thus, transposition preserves the transfer function relation-
ships between the respective input/output pairs.

7.5 Basis changes

In the process of further analysis of state-space forms it will be highly useful to be
able to change the basis of the state-space. Since a basis change is equivalent to a
linear transformation of the linear space, let u′ = Tu denote such transformation
(where T is some nonsingular matrix). Remember that what we are doing is
changing the basis of the space, the transformation T is just a way to notate the
respective change of coordinates! Then u = T−1u′ and we can rewrite (7.2a) in
terms of u′:

d
dt
(
T−1u′

)
= AT−1u′ +Bx (7.8)

T−1u̇′ = AT−1u′ +Bx

u̇′ = TAT−1u′ + TBx

Respectively, (7.2b) in terms of u′ turns into

y = Cu +Dx = CT−1u′ +Dx

Introducing
A′ = TAT−1 B′ = TB C ′ = CT−1 (7.9)
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we obtain

u̇′ = A′u′ +B′x (7.10a)
y = C ′u′ +Dx (7.10b)

which has exactly the same form as (7.2). That is we have obtained a new
state-space representation of the system in the new basis. Note that thereby we
didn’t change the basis of the spaces of the input signals x or the output signals
y, but solely the basis of the state signals u. Thus, the basis change is a purely
internal operation and doesn’t affect the components of the vectors x and y.
Respectively, the transfer matrix is not affected either, which can be explicitly
shown by computing the transfer matrix in the new basis:

H ′(s) = C ′(s−A′)−1B′ +D = CT−1(s− TAT−1)−1TB +D =

= CT−1(TsT−1 − TAT−1)−1TB +D =

= CT−1(T (s−A)T−1)−1TB +D =

= CT−1T (s−A)−1T−1TB +D =

= C(s−A)−1B +D = H(s)

7.6 Matrix exponential

Another tool which we will need is the concept of the matrix exponential. We
define the matrix exponential by writing the Taylor series for an ordinary ex-
ponential:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

and replacing x with a matrix:

eX = 1 +X +
X2

2!
+
X3

3!
+ . . . (7.11)

The properties of the matrix exponential are similar to the ones of the ordinary
exponential, except that typically the commutativity of the involved matrices
is required. Particularly, the following properties are derived from (7.11) in a
straightforward manner, under the assumption XY = Y X and XX ′ = X ′X:

eXY = Y eX eX+Y = eXeY = eY eX
d
dt
eX(t) = eXX ′ = X ′eX

The value of eX is particularly easy to compute if X is diagonal:

X =


λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 · · · λN


In this case formula (7.11) turns into N parallel Taylor series for eλn and we
simply have

eX =


eλ1 0 · · · 0
0 eλ2 · · · 0

0 0
. . . 0

0 0 · · · eλN





7.7. TRANSIENT RESPONSE 245

If X is not diagonal, but diagonalizable by a similarity transformation TXT−1,
the value eX can be computed by noticing that matrix exponential commutes
with similarity trasformation:

eTXT
−1

= TeXT−1 (7.12)

which allows to express eX via eTXT
−1

. The formula (7.12) is obtainable from
(7.11) in a straightforward manner as well, where we also notice that (7.12)
holds for any T and X, they don’t have to commute.

If X is not diagonalizable, then Jordan normal form can be used instead.
We are going to address this case slightly later.

7.7 Transient response

The differential state-space equation (7.2a) can be solved in the same fashion as
we solved the differential equations for the 1-pole in Section 2.15. Indeed, the
difference between (7.2a) and the Jordan 1-pole (2.21) is that the former has
matrix form. Also in (7.2a) the input signal is additionally multiplied by the
matrix B, but that doesn’t change the picture essentially.

Repeating the same steps as in in Section 2.15, we multiply both sides of
(7.2a) by the matrix exponential e−At:

e−Atu̇ = e−AtAu + e−AtBx

or
e−Atu̇− e−AtAu = e−AtBx

Noticing that
d
dt
(
e−Atu

)
= e−Atu̇− e−AtAu

we rewrite the state-space differential equation further as

d
dt
(
e−Atu

)
= e−AtBx

Integrating with respect to time from 0 to t:

e−Atu− u(0) =
∫ t

0

e−AτBx dt

u = eAtu(0) + eAt
∫ t

0

e−AτBx dt = eAtu(0) +
∫ t

0

eA(t−τ)Bx dt (7.13)

The formula (7.13) is directly analogous to (2.22). Further, assuming complex
exponential x(t) = X(s)est (note that all elements of x share the same expo-
nential est, just with different amplitudes) we continue as:

u = eAtu(0) + eAt
∫ t

0

e−AτBX(s)esτ dt =

= eAtu(0) + eAt
∫ t

0

e(s−A)τ dt ·BX(s) =
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= eAtu(0) + eAt(s−A)−1e(s−A)τ

∣∣∣∣t
τ=0

·BX(s) =

= eAtu(0) + eAt(s−A)−1
(
e(s−A)t − 1

)
BX(s) =

= eAt
(
u(0)− (s−A)−1BX(s)

)
+ (s−A)−1BX(s)est

Comparing to the transfer matrix for u(t) defined by (7.5) we introduce the
steady-state response

us(t) = (s−A)−1B ·X(s)est

and therefore

u(t) = eAt (u(0)− us(0)) + us(t) = ut(t) + us(t) (7.14)

where ut(t) is the transient response.
Note that we have just explicitly obtained the fact (previously shown only for

the system orders N ≤ 2) that, given a complex exponential input X(s)est, the
elements of the steady-state response us will be the same complex exponentials
est, just with different amplitudes. An immediately following conclusion is that
the steady-state signals y, being linear combinations of u and x, are also the
same complex exponentials est. In fact, any other steady-state signal in the
system, being a linear combination of u and x, is the same complex exponential
est.

In a fully analogous to the 1-pole case way we can show that (7.14) also
holds for

x(t) =
∫ σ+j∞

σ−j∞
X(s)est

ds
2πj

in which case

us(t) =
∫ σ+j∞

σ−j∞
(s−A)−1BX(s)est

ds
2πj

Substituting (7.14) into (7.2b) we obtain

y(t) = CeAt (u(0)− us(0)) + Cus(t) +Dx(t) =

= eAt ((Cu(0) +Dx(0))− (Cus(0) +Dx(0))) + Cus(t) +Dx(t) =

= eAt (y(0)− ys(0)) + ys(t) = yt(t) + ys(t)

where
yt(t) = Cut(t) = eAt (y(0)− ys(0))

and

ys(t) = Cus(t) +Dx(t) = C

∫ σ+j∞

σ−j∞
(s−A)−1BX(s)est

ds
2πj

+Dx(t) =

=
∫ σ+j∞

σ−j∞

(
C(s−A)−1B +D

)
X(s)est

ds
2πj

=

=
∫ σ+j∞

σ−j∞
H(s)X(s)est

ds
2πj

(7.15)

The latter confirms the fact that ys is the steady-state response.
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7.8 Diagonal form

We have seen that the transient response part of the signals in the system
consists of linear combinations of elements of the matrix eAt. The elements
of eAt can be easily found if A is diagonalized by a similarity transformation.
However, instead of diagonalizing the matrix A taken in isolation, it will be
more instructive to consider this as diagonalization of the state-space system
itself.

According to (7.2a), the matrix A is an operator converting vectors from the
state space into vectors in the same space. This, diagonalization of A can be
achieved by a specific choice of the state space basis, where the basis vectors
must be the eigenvectors of A. After the change of basis we are having exactly
the same system, just expressed in different coordinates. In these coordinates
the matrix A becomes diagonal and its diagonal elements are eigenvalues of A
(which are basis-independent). Now recall that eigenvalues of A are the same
as the system poles. Therefore, a sufficient condition for the state-space system
to be diagonalizable is that all of its poles are distinct.2

Thus, in a diagonalizing basis the elements of A are simply the system poles:

A =


p1 0 · · · 0
0 p2 · · · 0

0 0
. . . 0

0 0 · · · pN


and the system falls apart into a set of parallel Jordan 1-poles:

u̇n = pnun + bT
n · x (7.16a)

y = Cu +Dx =
∑
n

cnun +Dx (7.16b)

where bT
n are the rows of matrix B (respectively bT

n · x are the input signals of
the Jordan 1-poles), and cn are the columns of matrix C.

Stability

We already know that the transient response utn(t) of a 1-pole is an exponent
Kne

pnt (where Kn is the exponent’s amplitude). Respectively, the transient
response part of y in (7.16b) is a linear combination of transient responses of
the Jordan 1-poles:

yt = Cut =
∑
n

cnutn =
∑
n

cnKne
pnt

That is, the elements of yt are linear combinations of exponents epnt.
Now recall that y is independent on the choice of basis and so must be

its separation into steady-state and transient response parts. Note that this is
in agreement with the fact that according to (7.15) the steady-state response
depends only on the transfer matrix and thus is independent of the basis changes.
This means that the fact that the elements of yt are linear combinations of

2A little bit later we will establish the fact that a system where some poles coincide is most
likely not diagonalizable.
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exponents epnt is also independent of basis choice. Respectively yt → 0 if and
only if Re pn < 0 ∀n. Thus we have obtained the explanation of the stability
criterion for linear filters which we introduced in Section 2.9 and have partially
shown for lower-order systems.3

Transfer matrix

Computing the transfer matrix for the diagonal form we notice that

(s−A)−1 =



1
s− p1

0 · · · 0

0
1

s− p2
· · · 0

0 0
. . . 0

0 0 · · · 1
s− pN


(7.17)

that is we have transfer functions of the Jordan 1-poles on the main diagonal.
Respectively the main term of the transfer matrix C(s−A)−1B is just a linear
combination of the Jordan 1-pole transfer functions. Apparently the common
denominator of the terms of this linear combination is

N∏
n=1

(s− pn)

which is simultaneously the common denominator of the transfer matrix ele-
ments.

It can be instructive to explicitly write out the elements of the transfer
matrix H(s) in the diagonal case:

Hnm(s) =
N∑
k=1

cnk
1

s− pk
bkm + dnm =

N∑
k=1

cnkbkm
s− pk

+ dnm (7.18)

that is, we are having a partial fraction expansion of the rational function
Hnm(s) into fractions of 1st order. Thus, if a transfer matrix is given in advance,
there is not much freedom in respect to the choice of the elements of B and C.
The poles pk are prescribed by the common denominator of the transfer matrix
and the values of the products cnkbkm and of dnm are prescribed by the specific
functions Hnm(s) occurring in the respective elements of the transfer matrix.

In the single-input single-output case the transfer matrix has 1 × 1 dimen-
sions, while C has 1×N and B has N × 1 dimensions respectively. Thus there
is only one equation (7.18) and we have N freedom degrees in respect to the
choice of cnk and bkm giving the required values of the products cnkbkm. Each
such degree can be associated with a variable αk, where we replace bkm with
αkbkm and cnk with cnk/αk. Apparently such replacement doesn’t affect the
value of the product cnkbkm. One can also realize that αk simply scale the levels

3Of course, exactly the same results would have been obtained if we simply computed
the explicit form of the matrix exponential eAt for the diagonal matrix At. However then
we would have missed the interpretation of the diagonalizing basis as the basis in which the
system can be seen simply as a set of parallel 1-poles.



7.8. DIAGONAL FORM 249

of the signals uk, which corresponds to different choices of the lengths of the
basis vectors.

Now if we add one more output signal, thereby the dimensions of C becoming
2×N , we can notice that we still have exactly the same N degrees of freedom.
If we attempt to change any of bkm we need to compensate this in both of cnk
for the same k by dividing these cnk by αk, the latter being the ratio of the new
and old values of bkm. Respectively, if we change any of cnk in one of the two
rows of C, this immediately requires the compensating change of bkm, which in
turn requires that the same change occurs not just in one but in both rows of
C. Adding more rows to C and/or more columns to B we see that the available
freedom degrees are still the same and correspond to the freedom of choice of
the basis vector lengths.

Thus, aside from the free choice of the basis vector lengths (and of their
ordering) the transfer matrix uniquely defines the diagonal form of the state-
space system. Respectively, for a non-diagonal form, if the matrix A is given,
then the transformation T to the diagonal form is uniquely defined (up to the
lengths and the ordering of the basis vectors), and, since the transfer function
uniquely defines the matrices B′, C ′ and D′ of the diagonal form, the matrices
B = T−1B′, C = C ′T and D = D′ are also uniquely defined.

Steady-state response

Apparently, there is the usual freedom in regards to the choice of the steady-state
response arising out of evaluating the inverse Laplace transform of H(s)X(s)
to the left or to the right of the poles of H(s). The change of the steady-
state response (7.15) depending on the choice of the inverse Laplace transform’s
integration path in (7.15) to the left or to the right (or in between) the poles of
H(s) poses no fundamentally new questions compared to the previous discussion
in the analysis of 1- and 2-pole transient responses and results simply in the
changes of the amplitudes of transient response partials.

Diagonalization in case of coinciding poles

Even if two or more poles of the system coincide, it still might be diagonalizable,
if the eigenvectors corresponding to these poles are distinct. It might seem that
this is the most probable situation, after all, what are the changes of two vectors
coinciding, or at least being collinear? Without trying to engage ourselves into
an analysis of the respective probabilities, we are going to look at this fact from
a different angle.

Namely, given a diagonal state space form with some of the eigenvalues
coinciding, we are going to have identical entires in the matrix (s − A)−1, as
one can easily see from (7.17). This means that the order of the common
denominator of the elements of (s− A)−1 will be less than N and respectively
the order of the denominator of the transfer matrix H(s) will also be less than
N . This means that the effective order of the system is less than N and the
system is degenerate.

Thus, a non-degenerate system with coinciding poles cannot be diagonalized.
In such cases we will have to use the Jordan normal form, which we discuss a
bit later.
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7.9 Real diagonal form

Given a state-space system we could decide to implement it in a diagonal form
by first performing a diagonalizing change of basis and then implementing the
obtained diagonal state space form. However, if the system has complex poles,
the underlying Jordan 1-poles of the system will become complex too, respec-
tively generating complex signals un. So, while the system has real input and
real output, internally it would need to deal with complex signals. Of course, in
a digital world using complex signals internally in a system shouldn’t be a big
problem. But, for one, this is simply unusual and complicates the implementa-
tion structure. More importantly, operations on complex numbers are at least
twice as expensible as the same operations on real numbers. We therefore wish
to convert a diagonal form containing complex poles to a purely real system,
while retaining as much of the diagonalization as possible.

Since the system itself and the matrix A in the original basis are real, the
complex poles need to come in conjugate pairs. Without loss of generality we
can order the poles in such a way that complex-conjugate pairs come first,
followed by purely real poles: p1, p∗1, p3, p∗3, . . ., pN (where p2 = p∗1, p4 = p∗3,
etc.) We will refer to the complex poles p1, p3, . . . as the odd poles and to p∗1,
p∗3, . . . as the even poles. When referring to odd/even poles we will mean only
the essentially complex poles, the purely real poles being excluded. Since the
poles pn are eigenvalues of A, we will be referring to even/odd eigenvalues and
respectively to even/odd eigenvectors.

Let v1 be the eigenvector corresponding to p1, that is Av1 = p1v1. Then,
since A has purely real coefficients, Av1 = Av1 = p1v1 = p∗1v1, (where v
denotes conjugation of vector’s components). Thus v1 is the eigenvector corre-
sponding to p∗1. Obviously, the same applies to any other even/odd eigenvector.
Therefore we can choose a set of eigenvectors such that even eigenvectors are
component conjugates of odd eigenvectors: v1, v1, v3, v3, . . ., vN .

If u′ = Tu is the diagonalizing transformation of the system, the new basis
must consist of eigenvectors of A. Respectively, since u = T−1u′, the columns
of T−1 must consist of the new basis vectors, that is of the eigenvectors of A
(or, more precisely, consist of coordinates of these eigenvectors in the original
basis). We will choose

T−1 =
(
v1 v1 v3 v3 . . . vN

)
This means that applying component conjugation to T−1 swaps the even and
the odd columns of T−1, which can be expressed as

T−1 = T−1S

where

S =



0 1 0 0 · · · 0
1 0 0 0 · · · 0
0 0 0 1 · · · 0
0 0 1 0 · · · 0

0 0 0 0
. . . 0

0 0 0 0 · · · 1


is the “swapping matrix”. Note that elements of S are purely real and that
S−1 = S.
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Since
T · T−1 = TT−1 = 1∗ = 1

component conjugation and matrix inversion commute:

T
−1

= T−1 = T−1S

Reciprocating the leftmost and the rightmost expressions we have

T =
(
T−1S

)−1
= S−1T = ST

That is, component conjugation of T swaps its even and odd rows. Or, put in
a slightly different way, the even/odd rows of T are component conjugates of
each other, and so are the even/odd columns of T−1.

Let’s now concentrate on the first conjugate pair of poles. Taking the diag-
onalized form equations (7.16) we extract those specifically concerning the first
two poles:

u̇′1 = p1u
′
1 + b′T1 · x (7.19a)

u̇′2 = p∗1u
′
2 + b′T2 · x (7.19b)

y = c′1u
′
1 + c′2u

′
2 +

N∑
n=3

c′nu
′
n +Dx (7.19c)

(where we need to employ the prime notation (7.10) for the diagonalized form,
since we explicitly used the diagonalizing transformation u′ = Tu, thus the
non-primed state u referring to the non-diagonalized form).

Using (7.9) and recalling that the first two rows of T are component con-
jugates of each other, we must conclude that so are the first two rows of B’,
that is b′T2 = b′T1 . Recalling that the first two colums of T−1 are component
conjugates of each other, we conclude that c′2 = c′1. On the other hand, writing
out the first two rows of (7.13) in the diagonal case we have

u′1(t) = ep1tu′1(0) +
∫ t

0

ep1(t−τ)b′T1 x dt

u′2(t) = ep
∗
1tu′2(0) +

∫ t

0

ep
∗
1(t−τ)b′T1 x dt

Except for the initial state term, the right-hand side of the second equation is a
complex conjugate of the right-hand side of the first one. Regarding the initial
state term, practically seen, we would have the following situations

- the initial state would be either zero, in which case u′2(t) = u′∗1 (t),

- or it would be a result of some previous signal processing by the system,
where previously to that processing the initial state would be zero, in
which case u′2(0) = u′∗1 (0) and respectively u′2(t) = u′∗1 (t).

Therefore, we can simply require that u′2(0) = u′∗1 (0), and thus the output
signals u′1(t) and u′2(t) of the first two Jordan 1-poles are mutually conjugate.
Respectively, the contribution of u′1(t) and u′2(t) into y in (7.19c), being equal
to c′1u

′
1 + c′2u

′
2, turns out to be a sum of two conjugate values and is therefore
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purely real. Obviously, the same applies to all other complex conjugate pole
pairs.

Thus, even equations of (7.16a) do not contribute any new information about
the system and we could drop them, simply computing even state signals as
conjugates of odd state signals: u′2 = u′∗1 , u′4 = u′∗3 , etc. At the same time we
could rewrite the odd equations of (7.16a) explicitly using real and imaginary
parts of the signals u′:

d
dt

Reu′n = Re pn Reu′n − Im pn Imu′n +
(
Re b′Tn

)
· x (7.20a)

d
dt

Imu′n = Im pn Reu′n + Re pn Imu′n +
(
Im b′Tn

)
· x (7.20b)

Therefore we can introduce the new state variables, taking purely real values:

u′′n = Reu′n =
u′n + u′n+1

2

u′′n+1 = Imu′n =
u′n − u′n+1

2j

 for odd pn (7.21a)

and

u′′n = u′n for purely real pn (7.21b)

Then (7.20) turn into

u̇′′n = Re pn · u′′n − Im pn · u′′n+1 +
(
Re b′Tn

)
· x (7.22a)

u̇′′n+1 = Im pn · u′′n + Re pn · u′′n+1 +
(
Im b′Tn

)
· x (7.22b)

and the respective terms in (7.19c) turn into

c′nu
′
n + c′n+1u

′
n+1 = c′nu

′
n + c′∗n u

′∗
n = c′nu

′
n + (c′nu

′
n)∗ = 2 Re (c′nu

′
n) =

= 2 Re c′n · u′′n − 2 Im c′n · u′′n+1

Thus we have obtained a purely real system

u̇′′ =



Re p1 − Im p1 0 0 · · · 0
Im p1 Re p1 0 0 · · · 0

0 0 Re p3 − Im p3 · · · 0
0 0 Im p3 Re p3 · · · 0

0 0 0 0
. . . 0

0 0 0 0 · · · pN


u′′ +



Re b′T1
Im b′T1
Re b′T3
Im b′T3
...

b′TN


x

(7.23a)

y =
(
2 Re c′1 −2 Im c′n 2 Re c′3 −2 Im c′3 · · · c′N

)
u′′ +Dx (7.23b)

We will refer to (7.23) as the real diagonal form. It represents the system as a
set of parallel 2-poles (7.22) (and optionally additional parallel 1-poles if some
of the system poles are real).

Note that the substitutions (7.21) are expressible as another linear transfor-
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mation u′′ = T ′u′ where

T ′ =



1
2

1
2 0 0 · · · 0

1
2j − 1

2j 0 0 · · · 0
0 0 1

2
1
2 · · · 0

0 0 1
2j − 1

2j · · · 0

0 0 0 0
. . . 0

0 0 0 0 · · · 1


Therefore the real diagonal form of the system is related to the original form by
a change of basis, where the respective transformation matrix is T ′ T .

Jordan 2-poles

The 2-poles (7.22) in the real diagonal form are fully analogous to the 1-poles
occuring in the diagonal form. They will also occur in the real Jordan normal
form. For that reason we will refer to them as Jordan 2-poles. They are also
sometimes (especially in their discrete-time counterpart form) referred to as
coupled-form resonators.

The key feature of the Jordan 2-pole topology is that in the absence of the
input signal, the system state is spiralling in a circle of an exponentially decaying
(or growing) radius. Indeed, recalling that equations (7.22) are simply separate
equations for the real and imaginary components of a complex signal u′n, we can
return to using the equation (7.19a), which by letting x = 0 and turns into

u̇ = pu

where we also dropped the indices and the prime notation for simplicity. Re-
spectively

d
dt

log u =
u̇

u
= p = Re p+ j Im p (7.24)

On the other hand
log u = ln |u|+ j arg u

therefore
d
dt

log u =
d
dt

ln |u|+ j
d
dt

arg u (7.25)

Equating the right-hand sides of (7.24) and (7.25), we obtain

d
dt

ln |u|+ j
d
dt

arg u = Re p+ j Im p

or

d
dt

ln |u| = Re p

d
dt

arg u = Im p

from where

ln |u(t)| = ln |u(0)|+ Re p · t
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arg u(t) = arg u(0) + Im p · t

or

|u(t)| = |u(0)| · etRe p

arg u(t) = arg u(0) + Im p · t

Thus the complex value u(t) is rotating around the origin with the angular
speed Im p, it’s distance from the origin changing as etRe p, thereby moving in
a decaying spiral if Re p < 0, an expanding spiral if Re p > 0, or a circle if
Re p = 0. Recalling that the state components of (7.22) are simply the real
and imaginary parts of u in the above equations, we conclude that the state of
(7.22) in the absence of the input signal is moving in the same spiral trajectory.

Notably, the separation of u into real and imaginary parts works only if the
pole is complex.4

Transfer matrix

In order to obtain the transfer matrix of the real diagonal form we could first
obtain the transfer matrices of the individual 2-poles (7.22). Concentrating on
a single 2-pole, we write (7.22) as

u̇1 = Re p · u1 − Im p · u2 + x1

u̇2 = Im p · u1 + Re p · u2 + x2

where we ignored the input mixing coefficients B (in principle we can understand
this form in the sense that the input signals are picked up past the mixing
coefficients B, or as a particular case of B being identity matrix). We could
explicitly compute the matrix (s−A)−1 for the above system, or we could derive
it “manually”, which is what we’re going to do.

Given x1 = X1(s)est, x2 = X2(s)est we have

sU1(s)est = Re p · U1(s)est − Im p · U2(s)est +X1(s)est

sU2(s)est = Im p · U1(s)est + Re p · U2(s)est +X2(s)est

Respectively

(s− Re p)U1(s) + Im p · U2(s) = X1(s)
− Im p · U1(s) + (s− Re p)U2(s) = X2(s)

Attempting to eliminate U1(s), we multiply each equation by a different factor:

(s− Re p) Im p · U1(s) + (Im p)2 · U2(s) = Im p ·X1(s)

− (s− Re p) Im p · U1(s) + (s− Re p)2U2(s) = (s− Re p)X2(s)

and add both equations together:(
(s− Re p)2 + (Im p)2

)
U2(s) = Im p ·X1(s) + (s− Re p)X2(s)

4This is strongly related to the appearance of Jordan normal form at the moment when
two complex conjugate poles coincide on the real axis.
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Respectively attempting to eliminate U2(s), we multiply each equation by a
different factor:

(s− Re p)2U1(s) + (s− Re p) Im p · U2(s) = (s− Re p)X1(s)

− (Im p)2 · U1(s) + (s− Re p) Im p · U2(s) = Im p ·X2(s)

and subtract the second equation from the first one:(
(s− Re p)2 + (Im p)2

)
U1(s) = (s− Re p)X1(s)− Im p ·X2(s)

Thus (
U1(s)
U2(s)

)
=

1
(s− Re p)2 + (Im p)2

(
s− Re p − Im p

Im p s− Re p

)(
X1(s)
X2(s)

)
=

=
1

s2 − 2 Re p · s+ |p|2

(
s− Re p − Im p

Im p s− Re p

)(
X1(s)
X2(s)

)
and, since for this system the matrix B is identity matrix,

(s−A)−1 =
1

s2 − 2 Re p · s+ |p|2

(
s− Re p − Im p

Im p s− Re p

)
(7.26)

Note that the denominator is the standard 2-pole filter’s transfer function de-
nominator, written in terms of the pole. Indeed, the complex conjugate poles p
and p∗ of two complex Jordan 1-poles were combined into a Jordan 2-pole by
means of a linear combination. Respectively the Jordan 2-pole has exactly the
same poles.

Generalizing the result obtained in (7.26) to systems of arbitrary order,
containing multiple parallel 2-poles, we conclude that the main diagonal of (s−
A)−1 contains the matrices of the form

G(s) =
1

s2 − 2 Re p · s+ |p|2

(
s− Re p − Im p

Im p s− Re p

)
(7.27)

similarly to how the transfer functions 1/(s − pn) of the Jordan 1-poles are
occurring on the main diagonal of (s−A)−1 in (7.17). Thus (s−A)−1 has the
form

(s−A)−1 =


G1(s) 0 · · · 0

0 G2(s) · · · 0

0 0
. . . 0

0 0 · · · 1
s− pN


where G(s) have the form (7.27).

Similarly to what we did in the diagonal case, in the real diagonal case we
also would like to explicitly write out the elements of the transfer matrix H(s).
For the sake of notation simplicity we will write them out for the case of a 2× 2
matrix A. First, let’s notice that

(
c1 c2

)(ρ11 ρ12

ρ21 ρ22

)(
bT

1

bT
2

)
=
(
c1 c2

)(ρ11bT
1 + ρ12bT

2

ρ21bT
1 + ρ22bT

2

)
=
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=
(
c1ρ11bT

1 + c1ρ12bT
2 + c2ρ21bT

1 + c2ρ22bT
2

)
=

=

(
2∑

k,l=1

ρklckbT
l

)

where ρnm are the elements of (s − A)−1 and where cnbT
m denotes the outer

product of the n-th column of C by the m-th row of B. Then, for a 2× 2 real
diagonal system we obtain:

Hnm(s) =
2∑

k,l=1

ρklcnkblm + dnm =

=
(cn1b1m + cn2b2m)(s− Re p) + (cn2b1m − cn1b2m) Im p

s2 − 2 Re p · s+ |p|2
+ dnm =

=
αnms+ βnm

s2 − 2 Re p · s+ |p|2
+ dnm

where αnm and βnm are obtained by summing the respective products of the
elements of b and c. Respectively, for higher-order systems we have

Hnm(s) =
∑

Im pk>0

αnmks+ βnmk
s2 − 2 Re pk · s+ |pk|2

+
∑

Im pk=0

cnkbkm
s− pk

+ dnm (7.28)

Since real diagonal form is nothing more than a linear transformation of the
diagonal form, there are the same freedom degrees in respect to the choice of the
coefficients of B and C matrices, corresponding to choosing the basis vectors of
different lengths.

7.10 Jordan normal form

We have shown that if a non-degenerate system has coinciding poles, it is not
diagonalizable. The generalization of the diagonalization idea, which also works
in this case, is Jordan normal form. The process of diagonalization implies that
there is a similarity transformation of the matrix which brings the matrix into
a diagonal form. Such transformation might not exist. However, there is always
a similarity transformation bringing the matrix into the Jordan normal form.

The building element of a matrix in the Jordan normal form is a Jordan cell.
A Jordan cell is a matrix having the form

Jn =



pn 0 0 · · · 0 0
1 pn 0 · · · 0 0
0 1 pn · · · 0 0

0 0
. . .

. . .
... 0

0 0 0
. . . pn 0

0 0 0 · · · 1 pn


(7.29)

That is it contains one and the same eigenvalue pn all over its main diagonal,
and it contains 1’s on the subdiagonal right below its main diagonal, all other
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elements being equal to zero.5 Respectively, a matrix in the Jordan normal form
consists of Jordan cells on its main diagonal:

A =


J1 0 · · · 0
0 J2 · · · 0

0 0
. . . 0

0 0 · · · JM


(where M is the number of different Jordan cells), all other entries in the matrix
being equal to zero.

Apparently the sizes of all Jordan cells should sum up to the dimension of
the matrix A. The total number of times an eigenvalue appears on the main
diagonal of A is equal to the multiplicity of the eigenvalue. Typically there
would be a single Jordan cell corresponding to a given eigenvalue. Thus, if an
eigenvalue has a multiplicity of 5, typically there would be a single Jordan cell
of size 5× 5 containing that eigenvalue. It is also possible that there are several
Jordan cells corresponding to the same eigenvalue, e.g. given an eigenvalue of a
multiplicity of 5, there could be a 2× 2 and a 3× 3 Jordan cell containing that
eigenvalue. If there are several Jordan cells for a given eigenvalue, the respective
state-space system is degenerate, fully similar to the case of repeated poles in
the diagonalized case.

It is easy to notice that, compared to the diagonal form, Jordan cells appear
on the main diagonal instead of eigenvalues. A Jordan cell may have a 1×1 size,
in which case it is identical to an eigenvalue appearing on the main diagonal. If
all Jordan cells have 1× 1 size Jordan normal form turns into diagonal form.

Similarly to diagonal form being unique up to the order of eigenvalues, the
Jordan normal form is unique up to the order of Jordan cells. That is, the
number and the sizes of Jordan cells corresponding to a given pole is a property
of the original matrix A. The process of finding the similarity transformation
converting a matrix into Jordan normal form is not much different from the
diagonalization process: we need to find a basis in which the matrix takes
Jordan normal form, which immediately implies a set of equations for such
basis vectors. More details can be found outside of this book.

Jordan chains

It’s not difficult to realize that a Jordan cell corresponds to a series of Jordan
1-poles, which we introduced in Section 2.15 under the name of a Jordan chain.
So, now we should be able to understand the reason for that name.

Indeed, suppose A is in Jordnal normal form and suppose there is a Jordan
cell of size N1 located at the top of the main diagonal of A. Then, writing out
the first N1 rows of (7.2) we have

u̇1 = p1u1 + bT
1 · x

u̇2 = p1u2 +
(
u1 + bT

2 · x
)

u̇3 = p1u3 +
(
u2 + bT

3 · x
)

· · ·
5Some texts place 1’s above the main diagonal. This is simply a matter of convention. One

can convert from one version to the other by simply reindexing the basis vectors.
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u̇N1 = p1uN1 +
(
uN1−1 + bT

N1
· x
)

Note that except for the first line, the input signal of the respective 1-pole
contains the output of the previous 1-pole. In Fig. 2.24 we had a single-input
single-output Jordan chain, now we are having a multi-input multi-output one
(Fig. 7.2).

1
s−p

// •// + '!&"%#$// 1
s−p

// •// + '!&"%#$// · · ·// + '!&"%#$// 1
s−p

//

��

�� �� ��

�� ��

bT
1 · x bT

2 · x bT
3 · x bT

N1
· x

u1 u2 uN1

Figure 7.2: Multi-input multi-output Jordan chain

Transfer matrix

In the diagonal case the transfer matrix had a diagonal form (7.17) correspond-
ing to the fact that the diagonal form is just a set of parallel Jordan 1-poles.
Now we need to replace these 1-poles with Jordan chains. Thus, instead of
single values 1/(s − pn) on the main diagonal, the transfer matrix will have
submatrices of the size of respective Jordan cells. From Fig. 7.2 it’s not difficult
to realize that a transfer submatrix corresponding to a Jordan cell of the form
(7.29) will have the form

1
s− pn

0 0 · · · 0 0

1
(s− pn)2

1
s− pn

0 · · · 0 0

1
(s− pn)3

1
(s− pn)2

1
s− pn

· · · 0 0

...
...

. . .
. . .

... 0
1

(s− pn)N1−1

1
(s− pn)N1−2

1
(s− pn)N1−3

. . .
1

s− pn
0

1
(s− pn)N1

1
(s− pn)N1−1

1
(s− pn)N1−2

· · · 1
(s− pn)2

1
s− pn


Transient response

According to (7.13), the elements of the matrix eAt are the exponent terms in
u(t) which have the amplitudes un(0). Apparently, being a part of the transient
response, these terms do not explicitly depend on the system input signal and
thus are the same in the single-input single-output and multiple-input multiple-
output cases. Comparing to the explicit expression (2.25) for the output signal
of a single-input single-output Jordan chain, we realize the following.
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The elements of eAt are tνepnt/ν!. These elements are organized into sub-
matrices of eAt corresponding to Jordan cells of A. Each such submatrix has
the following form:6

1 0 0 · · · 0 0
t 1 0 · · · 0 0
t2

2
t 1 · · · 0 0

...
...

. . .
. . .

... 0
tN1−2

(N1 − 2)!
tN1−3

(N1 − 3)!
tN1−4

(N1 − 4)!
. . . 1 0

tN1−1

(N1 − 1)!
tN1−2

(N1 − 2)!
tN1−3

(N1 − 3)!
· · · t 1


· epnt

This confirms that the stability criterion Re pn < 0 ∀n stays the same even if
the system is not diagonalizable.

Real Jordan normal form

If the system has pairs of mutually conjugate poles, the Jordan cells for these
poles will also come in conjugate pairs. Following the same steps as for diagonal
form, we can introduce new state variables for the real and imaginary parts of
complex state signals. Respectively, we each pair of conjugate Jordan cells will
be converted to a purely real cell of double size. We will refer to such cells as
real Jordan cells.

In order to understand how a real Jordan cell looks like, we can recall the
interpretation of Jordan cells as Jordan chains (Fig. 7.2). Let’s imagine that
the signals passing through this chain are complex. This can be equivalently
represented as passing real and imaginary parts of these signals separately. Re-
spectively, an element of a real Jordan chain must simply forward the real and
imaginary parts of its output signal to the real and imaginary inputs of the next
element. E.g. for a pair of conjugate 2nd-order Jordan cells

p 0 0 0
1 p 0 0
0 0 p∗ 0
0 0 1 p∗


the corresponding real Jordan cell would be

Re p − Im p 0 0
Im p Re p 0 0

1 0 Re p − Im p
0 1 Im p Re p


7.11 Ill-conditioning of diagonal form

Suppose we are having a system where all poles are distinct, which is therefore
diagonalizable. And suppose, as a matter of a thought experiment, we begin

6The explicit form of an exponent of a Jordan normal form matrix can also be obtained
directly from (7.11), but that approach is more involved and we won’t do it here.
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to modify the system parameters in a continuous way, simultaneously keeping
track of the diagonal form of this system. We also keep track of the similarity
transformation matrix T defined by u′ = Tu, where u is the original state and
u′ is the “diagonalized” state. Note, that by this experiment we don’t mean
that we are varying the system parameters in respect to time, rather we consider
it as looking at different systems with different parameter values.

Suppose, we modify the system parameters in such a way, that some poles
of the system get close to each other and finally coincide. Assuming the system
order doesn’t degenerate, at this point we should switch from a diagonal matrix
A′ to a Jordan normal form matrix A′. The difference between these two matices
is clearly non-zero, thus there is a sudden jump in the components of matrix A′

at the moment of the switching. Respectively, there is a jump in the components
of T as well. We wish to analyse more closely, what’s happening in this case.

If two eigenvalues of a matrix become close then the respective eigenvectors
might either also get close to each other or not. If they don’t, the eigenspace
retains the full dimension as the poles coincide, respectively the system is diag-
onalizable and the system order degenerates. Thus, if the order of the system
doesn’t degenerate, the eigenvectors corresponding to closely located eigenval-
ues must get close to each other too. Note that by saying that the eigenvectors
are getting close to each other we mean that they are becoming almost collinear.
Apparently, eigenvectors simply having different lengths but the same (or the
opposite) directions don’t count as different eigenvectors.

Let’s pick a pair of such eigenvectors which are getting close to each other.
Without loss of generality we may denote these two eigenvectors as v1 and v2.
In order to simplify the discussion, we will first assume that both eigenvectors
are normalized: |v1| = |v2| = 1 (where here and further the lengths will be
defined in terms of the original basis, that is we are treating the original basis
as an orthonormal one). Again, without loss of generality we may assume that
v1 and v2 are pointing in (almost) the same direction.

Suppose we have a state vector u lying fully in the two-dimensional subspace
spanned by v1 and v2. Therefore its coordinate expansion in the diagonalizing
basis is a linear combination of v1 and v2, the other coordinates being zeros:

u = α1v1 + α2v2

We are going to show that α1 and α2 are not well defined.
Let’s introduce two other unit-length vectors into the same two-dimensional

subspace:

v+ =
v1 + v2

|v1 + v2|

v− =
v1 − v2

|v1 − v2|

Apparently, v+ and v− are orthogonal to each other and we could expand u in
terms of v+ and v−:

u = α+v+ + α−v−
such expansion being well-defined, since the basis v+, v− is orthonormal.

Now we wish to express α1 and α2 via α+ and α−:

u = α+v+ + α−v− = α+
v1 + v2

|v1 + v2|
+ α−

v1 − v2

|v1 − v2|
=
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=
(

α+

|v1 + v2|
+

α−
|v1 − v2|

)
v1 +

(
α+

|v1 + v2|
− α−
|v1 − v2|

)
v2

from where

α1 =
α+

|v1 + v2|
+

α−
|v1 − v2|

α2 =
α+

|v1 + v2|
− α−
|v1 − v2|

Since α+ and α− are coordinates in an orthonormal basis, both α+ and α− are
taking values of comparable orders of magnitude, bounded by the length of the
vector u. On the other hand, since |v1 − v2| ≈ 0, the values of α1 and α2 will
get extremely large, unless α− is very small.

Now consider a conversion from the basis v1, v2 to a more “decent” basis,
e.g. to v+, v−. Expressing v1, v2 via v+, v−, we have

v1 = β+v+ + β−v−
v2 = β+v+ − β−v−

where β+ ≈ 1 and β− ≈ 0. Therefore

u = α1v1 + α2v2 = α1 (β+v+ + β−v−) + α2 (β+v+ − β−v−) =
= (α1 + α2)β+ · v+ + (α1 − α2)β− · v− = α+v+ + α−v−

As we have noted, usually α1 and α2 are having very large magnitudes, while
α2

+ + α2
− ≤ |u|. This means that usually α1 and α2 are having opposite signs,

in order to have |(α1 + α2)β+| < 1, since β+ ≈ 1. Respectively their difference
α1 − α2 is usually having a very large magnitude which is being compensated
by the multiplication by β− = 0.

Thus, the problematic equation is

α+ = (α1 + α2)β+ ≈ α1 + α2

where we add two very large numbers of opposite sign in order to obtain a
value of α+ of a reasonable magnitude. Such computations are associated with
large numeric precision losses. Choosing different lengths for v1 and v2 will
not change the picture, we still will need to obtain α+ as the sum of the same
opposite values of a much larger magnitude.

A conversion from the basis v1, v2 to a “decent” basis other than v+, v−
can be viewed as converting first to v+, v− and then to the desired basis.
Apparently, converting from one “decent” basis to another “decent” one neither
introduces new precision-related issues, nor removes the already existing ones.

Now realize, that essentially we have just been analysing the precision issues
arising in the transformations from the original to the diagonalizing basis and
back. It’s just that we have restricted the analysis to a particular subspace of
the state space, but the transformation which we have been analysing was a
diagonalizing transformation of the entire space. We have therefore determined
that there are range and precision issues arising in the diagonalizing transfor-
mation when two eigenvectors become close to each other. We have also found
out that this situation always occurs in non-degenerate cases of poles getting
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close to each other. Thus, diagonal form becomes ill-conditioned if the poles are
located close to each other, the effects of ill-conditioning being huge precision
losses and the values possibly going out of range. Jordan cells of size larger than
1 are nothing more than a limiting case of this ill-conditioned situation, where
a different choice of basis avoids the precision issues.

The reader may also recall at this point the ill-conditioning in the analysis
of the transient response of the 2-pole filters, which occurs at R ≈ 1, when both
poles of the system coincide on the real axis. That was exactly the same effect
as the one which we analysed in this section.

7.12 Time-varying case

Until now we have been assuming that the system coefficients are not changing.
If the system coefficients are varying with time, then quite a few of the previously
derived statements do not hold anymore. This also causes problems with some
of the techniques. The fact that the transfer function doesn’t apply in the time-
varying case should be well-known by now, however the other issues arising out
of parameter variation are not that obvious. Let’s look through them one by
one.

Basis change

If the matrix A is varying with time, we might need T to vary with time as well,
e.g. if T is a matrix of the diagonalizing transformation. However, if T is not
constant anymore, the transformations of (7.8) get a more complicated form,
since instead of

d
dt
(
T−1u′

)
= T−1u̇′

we are having
d
dt
(
T−1u′

)
= T−1u̇′ +

d
dt
T−1 · u′

Thus (7.8) transforms as

T−1u̇′ +
d
dt
T−1 · u′ = AT−1u′ +Bx

respectively yielding

T−1u̇′ =
(
AT−1 − d

dt
T−1

)
u′ +Bx

and

u̇′ =
(
TAT−1 − T d

dt
T−1

)
u′ + TBx

Thus the first of the equations (7.9) is changed into

A′ = TAT−1 − T d
dt
T−1 (7.30)

The extra term in (7.30) is the main reason why different topologies have dif-
ferent time-varying behavior. If two systems are to share the same transfer
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function, they need to share the poles. In this case the matrices A and A′ have
the same diagonal or Jordan normal form (unless the system order is degenerate)
and are therefore related by a similarity transformation. Given that B, C and
B′, C ′ are related via the same transformation matrix according to (7.9), the
difference between the two systems will be purely the one of a different state-
space basis, and we would expect a fully identical behavior of both. However,
in order to have identical time-varying behavior, the matrices A and A′ would
need to be related via (7.30) rather than via a similarity transformation. In fact
(7.30) cannot hold, unless at least one of the matrices A and A′ depends not
only on some externally controlled parameters (such as cutoff and resonance),
but also on their derivatives, which is a highly untypical control scenario.

Transient response

In the derivation of the transient response in Section 7.7 we have been using the
fact that

d
dt
(
e−Atu

)
= e−Atu̇− e−AtAu

However if A is not constant then the above needs to be written as

d
dt
(
e−Atu

)
= e−Atu̇−

(
d
dt
e−At

)
· u

We might want to rewrite the derivative of e−At as(
d
dt
e−At

)
= e−At

d
dt

(−At) = e−At ·
(
−A− t d

dt
A

)
but actually we cannot do that, since we don’t know whether the derivative of
−At will commute with At. Thus, our derivation of the transient response stops
right there.7

Diagonal form

Given that we are using a diagonal form as a replacement for another non-
diagonal system, we already know that such replacement changes the time-
varying behavior of the system due to the extra term in (7.30).

A more serious problem occurs in this situation if we want to go through
parameter ranges where the system poles get close or equal to each other. Such
situation is unavoidable if we want a pair of mutually conjugate complex poles
of a real system to smoothly change into real poles, since such poles would need
to become equal on the real axis before they can go further apart. As we have
found out, the diagonal form doesn’t support the case of coinciding poles in
a continuous manner, since switching from poles to Jordan cells on the main
diagonal is a non-continuous transformation of the state space.

7Notably, the same was the case for our transient response derivations for 1- and 2-pole
cases, where we were assuming the fixed values of system parameters. Except for the 1-pole
case, where the only available freedom degree in the 1 × 1 matrix A could be represented as
the cutoff, leading to an equivalent representation of the modulation via time-warping.
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Cutoff modulation

If all cutoff gains are identical and precede the integrators, it is convenient to
factor them out of matrices A and B:

u̇ = ωc · (Au +Bx) (7.31a)
y = Cu +Dx (7.31b)

If the cutoff is varying with time, we could explicitly reflect this in the first
equation, where we can also let B (but not A) vary with time:

d
dt

u(t) = ωc(t) · (Au(t) +B(t)x(t))

Introducing dτ = ωc(t)dt we have

d
dτ

u(t(τ)) = Au(t(τ)) +B(t(τ))x(t(τ))

or
d
dτ

ũ(τ) = Aũ(τ) + x̃(τ) (7.32)

where
ũ(τ) = u(t(τ)) x̃(τ) = B(t(τ))x(t(τ))

Thus, as we have already shown in Section 2.16, cutoff modulation is expressible
as a warping of the time axis, provided the cutoff is bounded to a finite positive
range

τ(t) =
∫
ωc(t)dt where 0 < ωmin ≤ ωc(t) ≤ ωmax < +∞

where the time-warped system defined by (7.32) is time-invariant.
Note that cutoff modulation in (7.31) is a transformation of A which changes

its eigenvalues but not its eigenvectors. Thus, if we diagonalize the system by a
basis change, the new basis can stay unchanged, and there will not be the extra
term in (7.30). Respectively, the diagonalized system will stay fully equivalent
to the original one, even though the cutoff is being modulated. Apparently the
diagonalized system also can be written in the factored-out-cutoff form (7.31).

A somewhat more complicated reasoning can include the less restrictive case
ωc(t) ≥ 0. Specifically, ωc = 0 simply freezes the system state, while infinitely
growing ωc is not a problem as long as it doesn’t grow to infinity over a finite
time range.

Equivalence of systems under cutoff modulation

It’s not difficult to realize that the equivalence under the condition of cutoff
modulation in (7.31) holds not only between the original system and its diago-
nalized version, but between any two systems related by a basis change, since
the cutoff modulation is not affecting the transformation between the two sys-
tems. Suppose we are having two systems sharing the same transfer function.
In such case they have an equivalent behavior in the time-invariant case, but
we wish to have it equivalent in the time-varying case too. More specifically,
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we would like to make the second system have the time-varying behavior of the
first one.

Since the transfer function is the same, both systems share the same diagonal
form up to the ordering and the lengths of the basis vectors. The transformations
between both systems and the shared diagonal form are cutoff-independent and
therefore the systems are equivalent.

Equivalence under other modulations

We have already shown that two systems sharing the same transfer function
are equivalent under the cutoff modulation (7.31). We often would wish to also
analyse for the equivalence under modulation of other parameters. Generally
this will not be the case, but the state-space form techniques may allow us to
find out more details about the specific differences between the systems. In
order to demonstrate some of the analysis possibilities, we are going to analyse
the TSK allpass (Fig. 7.1), which we have been converting to the state-space
form in Section 7.2.

Taking (7.4) let’s replace the feedback amount k with damping R. From
(5.17) we are having

2k
k + 1

= 1 +
k − 1
k + 1

= 1−R

1
1 + k

=
1

1 + 1−R
1+R

=
1 +R

1 +R+ 1−R
=
R+ 1

2

k − 1 =
1−R
1 +R

− 1 =
1−R− 1−R

1 +R
= − 2R

1 +R

and thus (7.4) turns into

u̇1 = −Ru1 + (R− 1)u2 +
R+ 1

2
x (7.33a)

u̇2 = (R+ 1)u1 −Ru2 −
R+ 1

2
x (7.33b)

y = − 4R
R+ 1

u1 +
4R
R+ 1

u2 + x (7.33c)

Looking at the output mixing coefficients we notice a strong similarity to (4.23)
where we subtract the bandpass signal (which, as we should remember, is ob-
tained directly from one of the state variables of an SVF) from the input, the
bandpass signal being multiplied by 4R. On the other hand for the TSK allpass
we have just obtained (7.33c):

y = − 4R
R+ 1

u1 +
4R
R+ 1

u2 + x = x− 4R
R+ 1

(u1 − u2)

This motivates to attempt an introduction of new state variables, where one of
the variables will be a difference of u1 and u2. We expect this variable to behave
somewhat like an SVF bandpass signal.

Attempting to turn 4R/(R+1)·(u1−u2) into exactly 4Ru′1 (which is what we
would have had for an SVF) might be not the best idea, since the transformation
would be dependent onR, and it would be difficult to assess possible implications
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of such dependency. Instead we want something which is proportional to u1−u2,
but the transformation should be independent of R. This is achieved by e.g.

u1 = u′2 + u′1

u2 = u′2 − u′1

which implies u′1 = (u1−u2)/2. Applying this transformation to (7.33) we have

u̇′2 + u̇′1 = −R(u′2 + u′1) + (R− 1)(u′2 − u′1) +
R+ 1

2
x =

= (1− 2R)u′1 − u′2 +
R+ 1
x

u̇′2 − u̇′1 = (R+ 1)(u′2 + u′1)−R(u′2 − u′1)− R+ 1
2

x =

= (1 + 2R)u′1 + u′2 −
R+ 1

2
x

y = − 4R
R+ 1

(u′2 + u′1) +
4R
R+ 1

(u′2 − u′1) + x = − 8R
R+ 1

u′1 + x

from where

2u̇′1 = −4Ru′1 − 2u′2 + (R+ 1)x
2u̇′2 = 2u′1

y = − 8R
R+ 1

u′1 + x

or

u̇′1 = −2Ru′1 − u′2 +
R+ 1

2
x

u̇′2 = u′1

y = − 8R
R+ 1

u′1 + x

Now this looks very much like an SVF allpass, except that the input signal has
been multiplied by (R+ 1)/2 and the bandpass signal is respectively multiplied
by 8R/(R+1) instead of multiplying by 4R (Fig. 7.3). Note that the product of
pre- and post-gains is still 4R, exactly what we would normally use to build an
SVF allpass. Thus, the only difference between the SVF allpass and the TSK
allpass is the distribution of the pre- and post-bandpass gains.

•//

MMMqqq
// SVF BP//

MMMqqq
//

+ '!&"%#$OO// //

R+1
2

8R
R+1

Figure 7.3: An equivalent representation of the allpass TSK filter
from Fig. 5.35 using an SVF bandpass.

We could also cancel the denominator 2 of the pre-gain with the numerator
of the post-gain (Fig. 7.4). Since 2 is a constant, “sliding” it through the SVF



7.13. DISCRETE-TIME CASE 267

bandpass system effectively just rescales the internal state of the SVF by a factor
of 2 (without introducing any new time-varying effects), but this rescaling is then
compensated in the post-gain. Thus the system in Fig. 7.4 is fully equivalent to
the one in Fig. 7.3.

•//

MMMqqq
// SVF BP//

MMMqqq
//

+ '!&"%#$OO// //

R+1 4R
R+1

Figure 7.4: An equivalent modification of Fig. 7.3.

7.13 Discrete-time case

Discrete-time block diagrams can be converted to the discrete-time version of
the state-space form, which is also referred to as the difference state-space form.
The main principles are the same, except that instead of Au+Bx delivering the
input signals of the integrators, it delivers the input signals of the unit delays.
The same values will occur at the outputs of the unit delays one sample later,
thus the first state-space equation takes the form

u[n+ 1] = Au[n] +Bx[n]

The second equation is the same as in the continuous-time case:

y[n] = Cu[n] +Dx[n]

Writing both equations together we obtain the discrete-time state-space form:

u[n+ 1] = Au[n] +Bx[n] (7.34a)
y[n] = Cu[n] +Dx[n] (7.34b)

Transfer matrix

Substituting the complex exponential signal x[n] = X(z)zn into (7.34) we obtain

U(z)zn+1 = AU(z)zn +BX(z)zn

Y(z)zn = CU(z)zn +DX(z)zn

from where

zU(z) = AU(z) +BX(z)
Y(z) = CU(z) +DX(z)

From the first of the equations we have

(z −A)U(z) = BX(z)

U(z) = (z −A)−1BX(z) (7.35)
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Substituting this into the second equation we have

Y(z) = C(z −A)−1BX(z) +DX(z)

and thus
Y(z) = H(z)X(z)

where

H(z) = C(z −A)−1B +D =
C adj(z −A)B

det(z −A)
+D

therefore the eigenvalues of A are the system poles.

Transient response

Substituting the complex exponential input x[n] = X(z)zn into (7.34a) we can
rewrite (7.34a) as

u[n+ 1] = Au[n] +BX(z)zn

or as
u[n] = Au[n− 1] +BX(z)zn−1 = Au[n− 1] + qzn (7.36)

where
q = BX(z)z−1

Recursively substituting (7.36) into itself at progressively decreasing values of
n we obtain

u[n] = Au[n− 1] + qzn =

= A
(
Au[n− 2] + qzn−1

)
+ qzn =

= A2u[n− 2] +
(
Az−1 + 1

)
qzn =

= A2
(
Au[n− 3] + qzn−2

)
+
(
Az−1 + 1

)
qzn =

= A3u[n− 3] +
((
Az−1

)2
+Az−1 + 1

)
qzn =

. . .

= Anu[0] +
((
Az−1

)n−1
+
(
Az−1

)n−2
+ . . .+Az−1 + 1

)
qzn =

= Anu[0] +
(

1−
(
Az−1

)n) (
1−Az−1

)−1
qzn =

= Anu[0] + (zn −An) (z −A)−1 qz =

= Anu[0] + (zn −An) (z −A)−1
BX(z) =

= (z −A)−1
BX(z)zn +An

(
u[0]− (z −A)−1

BX(z)
)

=

= us[n] +An (u[0]− us[0])

where
us[n] = (z −A)−1

BX(z)zn = (z −A)−1
Bx[n]

is the steady-state response (compare to the transfer matrix for u in (7.35)),
respectively

ut[n] = An (u[0]− us[0]) (7.37)

The generalization to arbirary signals x[n] is done in the same way as in the
continuous-time case. The steady-state and transient responses for y are triv-
ially obtained from those for u.
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Stability

Considering the transient response in (7.37), we could diagonalize the system
by a change of basis. If diagonalization is successful, then it’s obvious than An

decays to zero if and only if |pn| < 1 ∀n and grows to infinity if ∃pn : |pn| > 1.
Since neither the system poles nor the decaying of the transient response to zero
depend on the basis choice, we have thereby established the criterion of stability
of discrete time systems.

The non-diagonalizable case can be handled by using Jordan normal form,
where the discrete-time Jordan 1-poles of the Jordan chains will be stable if and
only if |pn| < 1 ∀n.

7.14 Trapezoidal integration

Writing (7.31) in an integral form we have

u =
∫
ωc (Au +Bx) dt (7.38a)

y = Cu +Dx (7.38b)

On the other hand, expressing direct form I trapezoidal integration Fig. 3.8 in
equation form we have

y[n] = y[n− 1] +
x[n− 1] + x[n]

2
T (7.39)

Applying (7.39) to the integral in (7.38a) we obtain

u[n] = u[n− 1] + ωc
A(u[n] + u[n− 1]) +B(x[n] + x[n− 1])

2
T

from where(
1− ωcT

2
A

)
u[n] =

(
1 +

ωcT

2
A

)
u[n− 1] +

ωcT

2
B
(
x[n] + x[n− 1]

)
and

u[n] =
(

1− ωcT

2
A

)−1((
1 +

ωcT

2
A

)
u[n− 1] +

ωcT

2
B
(
x[n] + x[n− 1]

))
(7.40)

Equation (7.40) is the resolved zero-delay feedback equation for the state-space
form (7.31) (or, equivalently (7.38)). Since we have used direct form I inter-
gators, it needs additional state variables for the storage of the previous input
values, which we could have spared if direct form II or transposed direct form
II integration was used.

Let’s apply trasposed direct form II integration (3.3) to the integral in
(7.38a). Apparently, we have a notation clash, since in (3.3) the variable u
is an internal variable of the integrator. Notating this internal variable as v and
notating the input signals of the integrators as 2w, and also not forgetting to
introduce a non-unit sampling period T , we obtain from (3.3) a set of equations:

u[n] = v[n− 1] + w[n] obtained from (3.3a)
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v[n] = u[n] + w[n] obtained from (3.3b)

w[n] =
ωcT

2
(Au[n] +Bx[n]) obtained from (7.38a)

Solving for w[n] we have

w[n] =
ωcT

2
(
A(w[n] + v[n− 1]) +Bx[n]

)
where v[n− 1] are the previous states of the integrators, and respectively(

1− ωcT

2
A

)
w[n] =

ωcT

2
(
Av[n− 1] +Bx[n]

)
and

w[n] =
(

1− ωcT

2
A

)−1
ωcT

2
(
Av[n− 1] +Bx[n]

)
(7.41)

Equation (7.41) is another variant of the resolved zero-delay feedback equa-
tion (7.40), this time written for transposed direct form II form. The benefit,
compared to (7.40), is that we only need to store the previous states of the
integrators v[n− 1].

Since M−1 = adjM/detM , the denominator of both equations (7.40) and
(7.41) is det(1 − ωcT/2 · A). Since det(λ −M) = 0 is the eigenvalue equation,
the denominator turns to zero when 1 becomes an eigenvalue of ωcT/2 · A, or
respectively when 2/T becomes an eigenvalue of ωcA. Thus, we have a limitation

ωc · max
pn∈R

{pn} < 2/T (7.42)

under which the system doesn’t get instantaneously unstable. Apparently ωcpn
are simply the poles of the system, thus (7.42) simply states that the real poles
of the system must be located to the left of 2/T .8

SUMMARY

The state-space form essentially means writing the system as a differential (or
difference, in the discrete-time case) equation system in a matrix form. Thereby
we have a compact abstract representation of the system, which, differently
from to the transfer function, doesn’t lose essential information about the time-
varying behavior. A particularly useful way to approach the state-space form
analysis is by diagonalizing the matrix, which essentially separates the effects
of different poles of the system from each other.

8Of course if there are complex poles sufficiently close to the real semiaxis [2/T,+∞), the
performance of trapezoidal integration is also questionable.



Chapter 8

Raising the filter order

As the order of the filter grows, there are more and more different choices of
the transfer function. Particularly, there is more than one way to introduce the
resonance into a transfer function of order higher than 2. Some of the most
interesting options were already discussed in the previous chapters.

We have also introduced the state-space form as a general representation
for differential systems. However, being so general, the state-space form leaves
lots of open questions in regards to the choice of topology and the user-facing
parameters.

In this chapter we are going to discuss a number of standard topologies which
can be used to construct a system of any given order and also a number of ways
to map commonly used user-facing parameters, such as cutoff and resonsance,
to the internal parameters of such systems. Note, however, that these structures
and techniques are useful only occasionally, for rather specific purposes.

8.1 Generalized SVF

We have seen that the idea of the ladder filter can be generalized from a 4-pole
to other numbers of poles, even though there are problems arising at pole counts
other than 4. Could we somehow attempt to generalize the SVF?

The most natural way to generalize the SVF is probably to treat it as the so-
called controllable canonical form, (Fig. 8.1) which is the analog counterpart of
direct form II (Fig. 3.33). Apparently, the main difference between Fig. 3.33 and
Fig. 8.1 is simply that all unit delays are replaced by integrators. The other
differerence, namely the inverted feedback is merely a matter of convention,
resulting in opposite signs of the coefficients an compared to what they would
have been in the absence of the feedback inversion. We chose the convention
with the inverted feedback mainly because it’s more similar to the 2-pole SVF
structure in Fig. 4.1.

The controllable canonical form allows to implement an arbitrary transfer
function of N -th order (the requirement that the transfer function is a non-
strictly proper rational function being implicitly understood). Indeed, it’s not
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Figure 8.1: Generalized SVF (controllable canonical form).

difficult to figure out that the tranfer function of the system in Fig. 8.1 is

H(s) =

N∑
n=0

bns
−n

1 +
N∑
n=1

ans
−n

=

N∑
n=0

bns
N−n

1 +
N∑
n=1

ans
N−n

=

N∑
n=0

bN−ns
n

sN +
N−1∑
n=0

aN−ns
n

Thus an and bn are simply the denominator and numerator coefficients of the
transfer function. Notice that bn are essentially modal pickups and we can share
the feedback part of the structure (consisting of integrators and an gains) among
several different sets of pickup coefficients bn to simultaneously implement a
number of filters sharing a common denominator.

Normally Fig. 8.1 assumes unit-cutoff integrators, because the an and bn
coefficients provide enough freedom to implement any transfer function of the
given order. However, in music DSP applications cutoff control is a common
feature, therefore we could also allow the integrators to take identical non-unit
cutoffs. Further, letting N = 2, a2 = 1 and a1 = 2R we obtain an SVF with bn
serving as modal mixing coefficients for HP, BP and LP outputs. On the other
hand, at N = 1, a1 = 1 we obtain the 1-pole filter we discussed in the beginning
of this book.

Generally, letting aN have a fixed value is a good way to remove the re-
dundancy introduced into the system control by the embedded cutoffs of the
integrators. It is not difficult to realize that

aN =
∏

(−pn)

where pn are the positions of the system poles when ωc = 1. Notably, although
it is mostly academic, this also can support the case of real poles of opposite
signs, which cannot be implemented by a classical 2-pole SVF due to aN being
fixed to 1.

Unfortunately, there is no clear answer to what the coefficients an should
be for N > 2. The simplicity of the 2-pole case was due to the fact that
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the denominator of a 2-pole transfer function essentially has only 2 degrees of
freedom (corresponding to a1 and a2), one degree being taken by the cutoff, and
we are being left with the remaining degree which just happens to correspond to
the resonance. With the 1-pole there was only one freedom degree, being taken
by the cutoff. At N > 2 there are too many different options of how to map the
freedom degrees to filter control parameters and there is no definite answer to
that, although some of the options will be discussed later in this chapter.

With the numerator coefficients bn there is a bit more clarity, as there are
certain general considerations applying more or less for any choice of an. E.g.
if the numerator is equal to aN , we get some kind of an N -th order lowpass,
since H(0) = 1 and H(s) ∼ aN/s

N for s → ∞. For the sN numerator we
have H(∞) = 1 and H(s) ∼ sN/aN for s → 0, corresponding to some kind
of an N -th order highpass. For an even N and an a

1/2
N sN/2 numerator we get

H(s) ∼ sN/2/a
1/2
N for s → 0 and H(s) ∼ a

1/2
N /sN/2 for s → ∞, corresponding

to some kind of a bandpass. This however defines only the asymptotic behavior
at 0 and ∞, the amplitude response shape in the middle can be pretty much
arbitrary, being defined by the denominator.

By transposing the controllable canonical form one obtains the so-called
observable canonical form. We are not going to address it in detail, as most of
the discussion of the controllable canonical form above applies to the observable
canonical form as well.

8.2 Serial cascade representation

Another structure which allows implementing arbitrary transfer functions is the
serial cascade. It is probably the one most commonly used. Compared to the
generalized SVF, in the serial cascade representation we are using only 1- and
2-pole filters and we can choose commonly known and well-studied structures
to implement those.1 The benefit compared to the parallel implementation
(discussed later in this chapter) is that the serial cascade form doesn’t get ill-
conditioned when system poles get close to each other.

Cascade decomposition

Given an arbitrary N -th order real transfer function, let’s write it in the multi-
plicative form:

H(s) = g ·

Nz∏
n=1

(s− zn)

Np∏
n=1

(s− pn)

(8.1)

where Nz ≤ Np, since H(s) must be nonstrictly proper. Since H(s) has real
coefficients, all complex poles of H(s) will come in conjugate pairs, and the
same can be said about the zeros.

1Serial cascade implementation is especially popular in classical DSP, since direct forms
commonly used there are reportedly starting to have more issues as the filter order grows,
although the author didn’t verify that by his own experiments.
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Now we are going to write each pair of conjugate poles as a purely real
2nd-order factor in the denominator:

(s− p)(s− p∗) = s2 − s · 2 Re p+ |p|2

and we are going to write each pair of conjugate zeros as a purely real 2nd-order
factor in the numerator:

(s− z)(s− z∗) = s2 − s · 2 Re z + |z|2

Further, if necessary, we can combine any two real poles into a 2nd-order factor
in the denominator:

(s− p1)(s− p2) = s2 − (p1 + p2) · s+ p1p2

and we can combine any two real zeros into a 2nd-order factor in the numerator:

(s− z1)(s− z2) = s2 − (z1 + z2) · s+ z1z2

Thus we can distribute all conjugate pair of poles and zeros into 2nd-order real
rational factors of the form

s2 + as+ b

s2 + cs+ d

unless we do not have enough zeros, in which case there will be one or more
2nd-order real rational factors of the form

s+ b

s2 + cs+ d
and/or

1
s2 + cs+ d

The remaining pairs of real poles and zeros can be combined into 1st-order real
rational factors of the form

s+ a

s+ b
and/or

1
s+ b

or they can be also combined into 2nd-order real rational factors, e.g.:

s+ a1

s+ b1
· s+ a2

s+ b2
=
s2 + (a1 + a2)s+ a1a2

s2 + (b1 + b2)s+ b1b2

Thus the entire transfer function is represented as a product of purely real 2nd-
and 1st-order factors:

H(s) = g ·
N2∏
n=1

H2n(s) ·
N1∏
n=1

H1n(s) (8.2)

where H2n(s) and H1n(s) are the 2nd- and 1st-order factors respectively. The
gain coefficient g, if desired, can be factored into the numerator of one or several
of the factors H2n(s) and H1n(s), so that the product expression gets a simpler
form:

H(s) =
N2∏
n=1

H2n(s) ·
N1∏
n=1

H1n(s) (8.3)

Now recall that 1-pole multimode can implement any stable real 1st-order trans-
fer function and SVF can implement any stable real 2nd-order transfer function.
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This means that we can implement pretty much any H(s) as a serial chain of
SVFs2 and 1st-order multimodes.3 We will refer to the process of representing
H(s) is a cascade form as cascade decomposition of H(s).

Cutoff control

The denominator 1 + s/ωc of a 1-pole filter is controlled by a single parameter,
which is the filter cutoff. The denominator 1+2Rs/ωc+(s/ωc)2 of a 2-pole filter
is controlled by cutoff and damping. Thus each of the 2- and 1-poles in (8.3)
has a cutoff, defined by the positions of the respective poles. Writing explicitly
these cutoff parameters in (8.3) we obtain

H(s) =
N2∏
n=1

H̄2n(s/ω2n) ·
N1∏
n=1

H̄1n(s/ω1n)

where H̄2n and H̄1n are unit-cutoff versions of the same 2- and 1-poles and ω2n

and ω1n are the respective cutoffs.
Suppose the above H(s) defines a unit-cutoff filter. Then non-unit cutoff for

H(s) is achieved by

H(s/ωc) =
N2∏
n=1

H̄2n(s/ωcω2n) ·
N1∏
n=1

H̄1n(s/ωcω1n) (8.4)

which means that the cutoffs of the underlying 2- and 1-poles are simply mul-
tiplied by ωc and we have ωcω2n and ωcω1n as the 2- and 1-pole cutoffs.

One should remember, that it is important to apply one and the same pre-
warping for all filters in the cascade, as discussed in Section 3.8. E.g. we could
choose to prewarp (8.4) at ω = ωc, which means that we prewarp only ωc
(rather than individually prewarping the 2- and 1-pole cutoffs ωcω2n and ωcω1n),
thereby obtaining its prewarped version ω̃c, and then simply substitute ω̃c for
ωc in (8.4):

H(s/ω̃c) =
N2∏
n=1

H̄2n(s/ω̃cω2n) ·
N1∏
n=1

H̄1n(s/ω̃cω1n)

Thus, the 2- and 1-pole cutoffs become ω̃cω2n and ω̃cω1n respectively.

Cascaded model of a ladder filter

As an example of the just introduced technique we are going to implement the
transfer function of a 4-pole lowpass ladder filter by a serial chain of two SVFs.
A 4-pole lowpass ladder filter has no zeros and two conjugate pairs of poles
for k > 0. By considering two coinciding poles on a real axis also as mutually
conjugate, we can assume k ≥ 0.

2Of course a multimode TSK, a multimode SKF, or any other 2nd-order filter with sufficient
freedom in transfer function parameters would do instead of an SVF.

3Apparently H(s) can be implemented by 1-poles and SVFs if its factors can be imple-
mented by 1-poles and SVFs. Those which can not, can be implemented by generalized SVFs.
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Since there are no zeros, we simply need a 2-pole lowpass SVF for each
conjugate pair of poles. Let p1, p∗1, p2, p∗2 be the poles of the ladder filter.
According to (5.2)

p1,2 = −1 +
±1 + j√

2
k1/4 (8.5)

By (4.13), the cutoffs of the 2-pole lowpasses ω1,2 = |p1,2| andR = −Re p1,2/|p1,2|.
Respectively the transfer function of the ladder filter can be represented as

H(s) = g
1(

s

ω1

)2

+ 2R1
s

ω1
+ 1

· 1(
s

ω2

)2

+ 2R2
s

ω2
+ 1

(8.6)

The unknown gain coefficient g can be found by evaluating (5.1) at s = 0,
obtaining the condition H(0) = 1/(1 + k). Evaluating (8.6) at s = 0 yields
H(0) = g. Therefore

g =
1

1 + k

This gives us a cascade of 2-poles implementing a unit-cutoff ladder filter. Ex-
tending (8.6) to arbitrary cutoffs is respectively done by

H(s) =
1

1 + k
· 1(

s

ωcω1

)2

+ 2R1
s

ωcω1
+ 1

· 1(
s

ωcω2

)2

+ 2R2
s

ωcω2
+ 1

Cascaded multimode

The cascade decomposition can be also used to provide modal outputs, sharing
the same transfer function denominator. In order to demonstrate this we will
consider a serial connection of two SVFs.4

The transfer function of such structure can have almost any desired 4th or-
der stable denominator.5 We would like to construct modal outputs for such
connection, so that by mixing those modal signals we should be able to ob-
tain arbitrary numerators. This should allow us to share this chain of SVFs
for generation of two or more signals which share the same transfer function’s
denominator.

We have several options of connecting two SVFs in series, depending on
which of the modal outputs of the first SVF is connected to the second SVF’s
input. The most symmetric option seems to be picking up the bandpass output
(Fig. 8.2).

Now let

D1(s) = s2 + 2R1ω1s+ ω2
1

D2(s) = s2 + 2R2ω2s+ ω2
2

be the denominators of the transfer functions of the two SVFs and let D(s) =
D1(s)D2(s) be their product. Writing out the transfer functions for the signals

4The idea to specifically address this is the book arose from a discussion with Andrew
Simper.

5Denominators not achievable by classical SVFs can be achieved by using generalized 2nd-
order SVFs.
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SVF1
// SVF2

//

//

//

//

//

//x(t) BP1

HP1

LP1

HP2

LP2

BP2

Figure 8.2: A multimode cascade of two SVFs.

at the SVF outputs (in respect to the input signal x(t) in Fig. 8.2) we obtain

HLP1(s) =
ω2

1

D1(s)
=
ω2

1D2(s)
D(s)

HBP1(s) =
ω1s

D1(s)
=
ω1sD2(s)
D(s)

HHP1(s) =
s2

D1(s)
=
s2D2(s)
D(s)

HLP2(s) =
ω2

2

D2(s)
·HBP1(s) =

ω2
2ω1s

D(s)

HBP2(s) =
ω2s

D2(s)
·HBP1(s) =

ω2ω1s
2

D(s)

HHP2(s) =
s2

D2(s)
·HBP1(s) =

ω1s
3

D(s)

Or, since we have the common denominator D(s) everywhere, we could concen-
trate just on the numerators:

NLP1(s) = ω2
1D2(s)

NBP1(s) = ω1sD2(s)

NHP1(s) = s2D2(s)

NLP2(s) = ω2
2ω1s

NBP2(s) = ω2ω1s
2

NHP2(s) = ω1s
3

Noticing from Fig. 8.2 that BP1 can be obtained as LP2 + 2R2BP2 + HP2
anyway, we can drop the respective numerator from the list and try to arrange
the remaining ones in the order of the descending polynomial order:

NHP1(s) = s2D2(s) = s4 + 2R2ω2s
3 + ω2

2s
2

NHP2(s) = ω1s
3

NBP2(s) = ω2ω1s
2

NLP2(s) = ω2
2ω1s

NLP1(s) = ω2
1D2(s) = ω2

1s
2 + 2R2ω

2
1ω2s+ ω2

1ω
2
2

The last line doesn’t really fit, and the first one looks more complicated than
the next three, but we can fix that by replacing the first and the last lines by
linear combinations:

NHP1(s)− 2R2
ω2

ω1
NHP2(s)− ω2

ω1
NBP2(s) = s4
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NHP2(s) = ω1s
3

NBP2(s) = ω2ω1s
2

NLP2(s) = ω2
2ω1s

NLP1(s)− ω1

ω2
NBP2(s)− 2R2

ω1

ω2
NLP2(s) = ω2

1ω
2
2

Thus we can obtain all powers of s from linear combinations of LP1, HP1, LP2,
BP2 and HP2, thereby being able to construct arbitrary polynomials of orders
up to 4 for the numerator.

Notably, instead of connecting the bandpass output of the first SVF to the in-
put of the second SVF, as it has been shown in Fig. 8.2, we could have connected
the lowpass or the highpass output. This would have resulted in somewhat dif-
ferent math, but essentially gives the same modal mixture options.

8.3 Parallel representation

Real poles

Given a transfer function which has only real poles which are all distinct, we
could expand it into a sum of 1st-order partial fractions. Each such 1st-order
fraction corresponds to a 1-pole and we could implement the transfer function
as a sum of 1-poles. Essentially this is identical to the diagonal state-space
form, which, provided all system poles are real and sufficiently distinct (so that
no ill-conditioning occurs), is just a set of parallel Jordan 1-poles.

In the case of a single-input single-output system, which we are currently
considering, the transfer function of such diagonal system, given by (7.18), has
the form

H(s) =
N∑
n=1

cnbn
s− pn

+ d (8.7)

where bn and cn are the input and output gains respectively. Given a particular
nonstrictly rational H(s), the partial fraction expansion (8.7) uniquely defines
d and the products cnbn. The respective freedom of choice of cn and bn can be
resolved by letting bn = 1 ∀n and thus we control the numerator of the transfer
function by the output mixing coefficients cn (Fig. 8.3).6

We could also replace Jordan 1-poles by ordinary 1-pole lowpasses, where we
need to divide the mixing coefficients by the respective cutoffs ωcn (Fig. 8.4).

The global cutoff control of the entire filter in Fig. 8.3 or Fig. 8.4 is achieved
in the same way as with serial cascades. Obviously, the usual consideration of
common prewarping of the 1-pole components applies here as well.

Complex poles

If system poles are complex we need to use the real diagonal form, which replaces
the complex Jordan 1-poles with Jordan 2-poles. For a single-input single-

6Of course, we could instead let cn = 1 and control the transfer function numerator by the
input gains bn, or distribute the control between bn and cn.
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Figure 8.3: Implementation by parallel Jordan 1-poles.
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Figure 8.4: Implementation by parallel 1-pole lowpasses.

output system, equation (7.28) takes the form

H(s) =
∑

Im pn>0

αns+ βn
s2 − 2 Re pn · s+ |pn|2

+
∑

Im pn=0

cnbn
s− pn

+ d (8.8)

We could obtain the explicit expressions for αn and βn from the derivation of
(7.28), but it would be more practical to simply obtain their values from the
partial fraction expansion of H(s). That is, given H(s), we find αn and βn
(as well as, of course, cnbn and d) from (8.8). We also should remember that,
according to the freedom of choice of the state space basis vectors lengths, we
could choose any non-zero input gains vector, e.g.

(
1 0

)T which means that we
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are using only the “real part” input of the Jordan 2-pole.7 According to (7.26),
the contribution of such Jordan 2-pole to H(s) will be

1
s2 − 2 Re pn · s+ |pn|2

(
cn cn+1

)(s− Re pn − Im pn
Im pn s− Re pn

)(
1
0

)
=

=
cn(s− Re pn) + cn+1 Im pn
s2 − 2 Re pn · s+ |pn|2

=
cns+ (cn+1 Im pn − cn Re pn)

s2 − 2 Re pn · s+ |pn|2

Thus

αn = cn

βn = cn+1 Im pn − cn Re pn

from where

cn = αn

cn+1 =
βn + αn Re pn

Im pn

Thus, having found αn and βn, we can find cn and cn+1. The respective struc-
ture is shown in Fig. 8.5. Notice that as Im pn becomes smaller, cn+1 becomes
larger. This is the ill-conditioning effect of the diagonal form discussed in Sec-
tion 7.11.

•//
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// + '!&"%#$//

H1

• + '!&"%#$
+ '!&"%#$

�� OO

OO

//Re Re

//Im Im
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�� OO
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//Re Re
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// //
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...
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//
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...OO
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//x(t) y(t)
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c3

c4

cN

d

Figure 8.5: Implementation by parallel Jordan 2- and 1-poles. Dis-
connected imaginary part inputs are receiving zero signals.

Similarly to how we could replace Jordan 1-poles with ordinary 1-pole low-
passes, we could replace Jordan 2-poles by some other 2-poles, e.g. by SVFs.
Finding the output mixing coefficients becomes simpler, since, apparently, the
coefficients αn and βn in (8.8) now simply correspond to SVF bandpass and
lowpass output gains (properly scaled by the cutoff). Fig. 8.6 illustrates.

7The dual approach would be to let the output mixing vector
(
1 0

)
, in which case we

control the transfer function’s numerator by the input gains.
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Figure 8.6: Implementation by parallel SVFs and 1-pole lowpasses.

Another benefit of an SVF is that it doesn’t have a problem at the point
where its poles coincide and also can support the case of real poles, meaning
that we could convert arbitrary pairs of parallel 1-poles into an SVF. The same
apparently could be done by an SKF/TSK. There would still be a problem
though, if poles of different parallel 2-poles coincide, resulting in the already
known ill-conditioning effect.

Regarding the cutoff control of the entire system, there is no difference from
the parallel 1-poles case.

Coinciding poles

Generally, anything with repeated or close to each other poles cannot be imple-
mented in a parallel form and needs some non-parallel implementation (SVF,
a chain of SVFs, Jordan chain, etc.) However the implementation could still
be partially parallel, where the poles may be repeated within each block, but
different parallel blocks shouldn’t have poles at the same locations.

8.4 Cascading of identical filters

So we have learned a number of different ways to implement higher-order trans-
fer functions, of which cascaded form is said to be usually the best option,
however, how do we construct these transfer functions in the first place? E.g.
how do we generalize a resonating 2-pole transfer function to a 4-th or 8-th
order? Or how do we generalize a 1-st order lowpass to a 5-th or 8-th order?

One possible way which could immediately occur to us is to stack several
identical filters together. Note that, given a filter with the transfer function
G(s) and another one with the transfer function H(s) = GN (s) and looking at
their decibel-scale amplitude responses, we notice that the latter is simply the
former multiplied by N , that is the amplitude response becomes scaled N times
vertically (obviously, the same scaling is happening to the phase response).
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Particularly this means that the rolloff slope of the filter becomes N times
steeper.

Therefore in order to generalize a 1-st order lowpass 1/(1 + s) to the N -th
order we could simply connect N such lowpasses in series:

H(s) =
(

1
1 + s

)N
resulting in the amplitude response curve in Fig. 8.7. It looks as if the cutoff of
H(s) = GN (s) is is too low. In principle we could address this by shifting the
filter cutoff, so that |GN (j)| = 1/

√
2. In order to do so we solve the equation

1
|1 + jω|N

=
1√
2

obtaining the frequency which should be treated as the cutoff point of each of
the chain’s elements:

ω =
√

21/N − 1

so the transfer function becomes

H(s) =
(

1
1 + s

√
21/N − 1

)N
(8.9)

This looks a bit better (Fig. 8.8) and can be taken as a possible option.

ω

|H(jω)|, dB

ωcωc/8 8ωc

0

-6

-12

-18

Figure 8.7: Amplitude response of a 1-pole lowpass filter (dashed)
vs. amplitude response of a serial chain of 4 identical 1-pole lowpass
filters (solid).

.

In the same way we could generalize a resonating 2-nd order lowpass 1/(1 +
2Rs+ s2) to the 2N -th order by connecting N of such lowpasses together

H(s) =
(

1
1 + 2Rs+ s2

)N
However in this case the situation is somewhat worse than with 1-poles. First
we notice that the resonance peak becomes much higher at the same damping
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Figure 8.8: Amplitude response of a 1-pole lowpass filter (dashed)
vs. amplitude response of a serial chain of 4 identical 1-pole lowpass
filters with adjusted cutoff (solid).

.

(Fig. 8.9). At first sight it doesn’t look like a big problem, we could simply use
smaller values of the damping. However if we compare the ampiltude response
curves of a 2-pole vs. N stacked 2-poles with the damping adjusted to produce
the same peak height,8 we notice that due to the now smaller damping value
the resonance peak of the 2-pole chain is much wider than the peak of a single
2-pole (Fig. 8.10), all in all not a very desirable scenario.

8.5 Butterworth transformation

We have seen that cascading N identical filters is one possible way to obtain
higher-order filters, which effectively scales the decibel-scale amplitude response
and the phase response of the filter N times vertically, respectively making the
filter rolloff N times steeper.

Another way to make the rolloff N times steeper would be finding a trans-
formation which shrinks the amplitude response in the logarithmic frequency
scale N times:

logω ← N logω ω ≥ 0 N = 2, 3, 4, . . .

(where we don’t care about ω < 0 because for real filters |H(jω)| = |H(−jω)|,
and where log 0 = −∞). Or equivalently

ω ← ωN ω ≥ 0 (8.10)

The readers may recall the LP to HP transformation s← 1/s which flips the
responses in the logarithmic frequency axis. One could try to draw an analogy
and attempt substitutions of the form s ← sN or s ← asN (a ∈ C, |a| = 1),
however it’s not difficult to convince oneself that such substitutions do not work.
Nevertheless, the basic direction is mostly right. Just instead of of performing

8We can do this using formulas (4.7) and (4.8).
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Figure 8.9: Amplitude response of a 2-pole filter (dashed) vs. am-
plitude response of a serial chain of 4 identical 2-pole filters (solid).
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Figure 8.10: Amplitude response of a 2-pole filter (dashed) vs.
amplitude response of a serial chain of 4 identical 2-pole filters
with adjusted damping (solid).

.

an argument substitution on the transfer function, we will directly apply (8.10)



8.5. BUTTERWORTH TRANSFORMATION 285

to the amplitude response |H(jω)|. That is we will be looking for such H ′(s)
that

|H ′(jω)| = |H(jωN )| ω ≥ 0 (8.11)

We will refer to the transformation of H(s) into H ′(s) defined by (8.11) as
Butterworth transformation.9 The integer N will be respectively referred to
as the order of the Butterworth transformation. We will denote Butterworth
transformation as

H ′(s) = B [H(s)]

or, if we want to explicitly specify the order

H ′(s) = BN [H(s)]

where H ′(s) denotes the new transfer function obtained as the result of the
transformation.10

Without having developed the transformation details yet, we can already
establish several properties of this transformation, which follow from (8.11):

- the transformation doesn’t change a constant function:

B [a] = a (8.12a)

- a constant gain can be simply factored out of the transformation:

B [g ·H(s)] = g · B [H(s)] (8.12b)

- a change of the cutoff is shrunk N times in the logarithmic scale after the
transformation:

BN [H(s/a)] = BN [H(s)]
∣∣∣∣
s←s/a1/N

(8.12c)

- the transformation commutes with LP to HP substitution

BN [H(1/s)] = BN [H(s)]
∣∣∣∣
s←1/s

(8.12d)

- the transformation distributes over multiplication:

B [H1(s)H2(s)] = B [H1(s)] · B [H2(s)] (8.12e)

- the transformation distributes over division:

B [H1(s)/H2(s)] = B [H1(s)] /B [H2(s)] (8.12f)
9The term Butterworth transformation has been coined by the author and is originating

from the fact that this transformation, when applied to 1-pole filters, generates Butterworth
filters. At the time of the writing the author is not aware of this concept being described
elsewhere in the literature and would be thankful for any pointers to the commonly used
terminology, if any exists.

10Of course, (8.11) doesn’t uniquely define H′(s). E.g. if H′(s) satisfies (8.11), then so does
−H′(s). In that sense Butterworth transformation is not uniquely defined. However during
the development of the Butterworth transformation we will suggest some default choices which
will work most of the time. Assuming these default choices, the Butterworth transformation
becomes uniquely defined.
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- Butterworth transformations can be chained:

BN [BM [H(s)]] = BN ·M [H(s)] (8.12g)

Since (8.11) doesn’t uniquely define the transformation result, the above
properties have to be understood in the sense that the right-hand side can be
taken as one possible result of the transformation in the left-hand side. However
the amplitude responses of the transformation results are uniquely defined and
in those terms the above properties can be understood as usual equalities. E.g.
the property (8.12g) can be understood as

|BN [BM [H(s)]]| = |BN ·M [H(s)]| ∀s = jω, ω ∈ R

Instead of developing Butterworth transformation immediately for arbitrary
order filters we are going to first find a way to apply it to 1-pole filters and then
to 2-pole filters. At that point we will be able to simply use the property (8.12e)
to apply Butterworth transformation to arbitrary-order filters by representing
these arbitrary order filters as cascades of 1-st and 2-nd order filters.

8.6 Butterworth filters of the 1st kind

As we just mentioned, first we will develop a way to apply Butterworth transfor-
mation to 1-pole filters, in which case we will more specifically refer to this trans-
formation as Butterworth transformation of the 1st kind. The results of But-
terworth transformation of the 1st kind coincide with filters commonly known
as Butterworth filters. However in this book later we will generalize the idea
of Butterworth filters to include the results of Butterworth transformation of
filters of orders higher than 1. In order to be able to tell between different
kinds of Butterworth filters, we are going to more specifically refer to the filters
obtained by Butterworth transformation of 1-pole filters as Butterworth filters
of the 1st kind.

Considering that a 1-pole transfer function is essentially a ratio of two 1st-
order polynomials

H(s) =
P1(s)
P2(s)

and that the amplitude response of H(s) can be written as a ratio of formal
amplitude responses of these polynomials:

|H(jω)| = |P1(jω)|
|P2(jω)|

it is sufficient to develop the transformation for 1st-order polynomials. The
transformation of H(s) can be then trivially obtained as:

H ′(s) = B [H(s)] =
B [P1(s)]
B [P2(s)]

=
P ′1(s)
P ′2(s)

where P ′1(s) and P ′2(s) are transformed polynomials P1(s) and P2(s).
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Transformation of polynomial P (s) = s+ 1

We begin by obtaining the Butterworth transformation of the polynomial P (s) =
s+ 1. Its formal amplitude response is

|P (jω)| =
√

1 + ω2

and we wish to find P ′(s) = B [P (s)] such that

|P ′(jω)| = |P (jωN )| =
√

1 + ω2N

In order to get rid of the square root we can deal with squared amplitude
response instead

|P (jω)|2 = 1 + ω2

|P ′(jω)|2 = 1 + ω2N

Now we would like to somehow obtain P ′(s) from the latter equation.
In order to do so, let’s notice that

|P (jω)|2 = 1 + ω2 = 1− (jω)2 = (1 + jω)(1− jω) = P (jω)P (−jω) = Q(jω)

where Q(s) = P (s)P (−s), so the roots of Q(s) consist of the root of P (s) at
s = −1 and of its origin-symmetric image at s = 1, the latter being the root of
P (−s). This motivates to introduce Q′(s) such that

Q′(jω) = 1 + ω2N

and then try to factor it into P ′(s)P ′(−s) in such a way that

|P ′(jω)|2 = P ′(jω)P ′(−jω) = Q′(jω)

In order to find the possible ways to factor Q(s) into P ′(s)P ′(−s) let us find
the roots of Q(s). Instead of solving Q′(s) = 0 for s let’s solve Q′(jω) = 0 for
ω, where we formally let ω take complex values. The solutions in terms of s are
related to the solutions in terms of ω through s = jω.

Solving Q′(jω) = 1 + ω2N = 0 for ω we obtain

ω = (−1)1/2N = ejα α = π
2n+ 1

2N
= π

1
2 + n

N
n = 0, . . . , 2N − 1 (8.13)

The solutions are illustrated in Figs. 8.11 and 8.12 where the complex plane can
be alternatively interpreted in terms of s or in terms of ω (note the labelling of
the axes), thus these figures simultaneously illustrate the solutions in terms of
ω or in terms of s. Thus the 2N roots of Q′(s) are equally spaced on a unit
circle with an angular step of π/N . If N is odd there will be roots at s = ±1
otherwise there are no real roots.

Another possible way to look at the solutions of Q′(jω) = 0 is to rewrite the
equation 1 + ω2N = 0 as

1 + ω2N = ω2N − j2 = (ωN + j)(ωN − j) = 0

In this case the roots obtained from the equation ωN − j = 0 will be interleaved
with the roots obtained from the equation ωN + j = 0 (Figs. 8.11 and 8.12



288 CHAPTER 8. RAISING THE FILTER ORDER
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0 Re s
(−Im ω)
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(Re ω)

Figure 8.11: Roots of Q′(s) for the Butterworth transformation
of the 1st kind of an even order (N = 6). White and black dots
correspond to even and odd roots.
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−j
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(−Im ω)
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Figure 8.12: Roots of Q′(s) for the Butterworth transformation
of the 1st kind of an odd order (N = 5). White and black dots
correspond to even and odd roots.

illustrate). Sometimes therefore such roots are referred to as even and odd
roots respectively, since they occur respectively at even and odd n in (8.13).
This distinction usually can be ignored, but occasionally becomes important.

Having found the roots of Q′(s) how do we split them into the roots of P ′(s)
and the roots of P ′(−s)? Obviously we cannot do this splitting in an arbitrary
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way, since there are several special properties which need to be satisfied.

- For any possible polynomial P ′(s) its roots are origin-symmetric to the
roots of P ′(−s), so our root splitting must respect this property.

- P ′(s) must be a real polynomial. This requires its roots to be either real
or coming in complex conjugate pairs.

- If P ′(s) is the denominator of the filter’s transfer function, then its roots
must be located in the left complex semiplane (in order for the filter to be
stable).

- The requrement |P ′(jω)|2 = P ′(jω)P ′(−jω) implies |P ′(jω)| = |P ′(−jω)|.
In order to satisfy the latter, the roots of P ′(s) must be symmetric to the
roots of P ′(−s) with respect to the imaginary axis (essentially it is the
same reasoning which we had in the discussion of minimum phase and
maximum phase zero positioning).

Looking at Figs. 8.11 and 8.12 it’s not difficult to notice that all of the
above requirements will be satisfied if we choose the roots in the left complex
semiplane to be the roots of P ′(s) and the roots in the right complex semiplane
as the roots of P ′(−s) respectively.11

Having found the roots p′n of P ′(s) we still need to find the leading coefficient
g′ of P ′(s):

P ′(s) = g′ ·
∏
n

(s− p′n)

In order to do so, notice that (8.11) implies |P ′(0)| = |P (0)|. Since P (0) = 1
and |P (0)| = 1 we should have |P ′(0)| = 1. Actually, if we let g′ = 1 we will
obtain P ′(0) = 1. Indeed,

P ′(0) =
N∏
n=1

(0− p′n) =
N∏
n=1

(−p′n)

That is P ′(0) is equal to the product of all roots of P ′(−s). Looking at Figs. 8.11
and 8.12 we notice that the product of all roots of P ′(−s) is equal to 1 and thus
P ′(0) = 1.12

Thus, by finding the roots and the leading coefficient of P ′(s) we have ob-
tained a real polynomial P ′(s) = B [P (s)] in the multiplicative form. In practical
filter implementations the complex conjugate pairs of factors of P ′(s) will be
represented by 2nd-order filter sections, the purely real factor of P ′(s) appearing
for odd N will be represented by a 1st-order filter section:

P ′(s) = (s+ 1)N∧1 ·
∏
n

(s2 + 2Rns+ 1)

11If P (s) is the numerator of a transfer function, then the roots all being in the left semiplane
imply the minimum phase implementation. However in this case we could instead pick up
the right semiplane roots as the roots of P (s), thereby obtaining a maximum phase transfer
function. Or one could take the minimum phase implementation and exchange one conjugate
pair of roots of P (s) against the matching conjugate pair of roots of P (−s). Or one could
exchange several of such pairs. Or one could exhange the real roots of P (s) and P (−s) if the
transformation order is odd. Still, the default choice will be to take the roots from the left
semiplane.

12Obviously g′ = −1 would also ensure |P ′(0)| = 1. However, the default choice will be
g′ = 1.
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where

N ∧ 1 =

{
1 if N is odd
0 if N is even

stands for bitwise conjunction.

Arbitrary 1st-order polynomials

Considering P (s) of a more generic form P (s) = s + a (a > 0) we notice that
essentially the procedure is the same as for P (s) = s+ a except that instead of
the equation ω2N + 1 = 0 we obtain the equation

ω2N + a2 = 1

This means that the roots of Q′(s) are no longer located on the unit circle but
on a circle of radius a1/N . It is not difficult to see that the leading coefficient
of P ′(s) is still equal to 1.

The above result also could have been obtained by rewriting P (s) as P (s) =
a · (s/a + 1) and applying properties (8.12b) and (8.12c), which on one hand
gives a more intuitive understanding of why the circle of roots is scaled by
a1/N , on the other hand can serve as an explicit proof of (8.12c) for the case of
Butterworth transformation of the 1st kind.

The case of a = 0 (P (s) = s) can be obtained as a limiting case13 a → +0
resulting in P ′(s) = sN .

If a < 0 then, noticing that the amplitude responses of P (s) = s + a and
P (s) = s − a are identical (for a ∈ R), we could obtain P ′(s) as Butterworth
transformation of P (s) = s− a. However, since the root of P (s) is in the right
semiplane, it would be logical to also pick the right semiplane roots of Q′(s) as
the roots of P ′(s). Particularly, if P (s) is the numerator of a maximum phase
filter, the transformation result will retain the maximum phase property.

The 1st-order polynomials of the most general form P (s) = a1s + a0 can
be treated by rewriting them as P (s) = a1 · (s + a0/a1), if a1 6= 0. The case
of a1 = 0 can be simply treated as a limiting case a1 → 0, where we drop the
vanishing higher-order terms of P ′(s), resulting in P ′(s) = a0.

Lowpass Butterworth filter of the 1st kind

Given

H(s) =
1

s+ 1
(8.14)

we transform the denominator P (s) = s+1 according to the previous discussion
of the Butterworth transformation of a 1st order polynomial. The roots of the
transformed polynomial (located on the unit circle) become the poles of H ′(s).
The numerator of H ′(s) is obviously unchanged by the transformation. Thus
we obtain

H ′(s) =
(

1
s+ 1

)N∧1

·
∏
n

1
s2 + 2Rns+ 1

13Treating as a limiting case (here and later in the text) is important because it ensures the
continuity of the result at the limiting point.
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where the 1/(s + 1) term occurs in case of an odd N (“N ∧ 1” standing for
bitwise conjunction). Therefore H ′(s) can be implemented as a series of 1-pole
and 2-pole lowpass filters, where the 1-pole appears in case of an odd N .

Fig. 8.13 compares the amplitude response of a Butterworth lowpass filter
of the 1st kind (N = 2) against the prototype 1-pole lowpass filter. One can
observe the increased steepness of the cutoff slope resulting from the shrinking
along the logarithmic frequency axis. Fig. 8.14 compares the same Butterworth
lowpass filter against cascading of identical 1st order lowpasses, that is compar-
ing the shrinking along the logarithmic frequency axis vs. stretching along the
logarithmic amplitude axis. One can see that the Butterworth lowpass filter has
the sharpest cutoff corner among different filters in Figs. 8.13 and 8.14.

ω

|H(jω)|, dB

11/8 8

0

-6

-12

-18

Figure 8.13: 2nd order lowpass Butterworth filter of the 1st kind
(solid line) vs. 1st order lowpass filter (dashed line).

ω

|H(jω)|, dB

11/8 8

0

-6

-12

-18

Figure 8.14: 2nd order lowpass Butterworth filter of the 1st kind
(solid line) vs. duplicated 1st order lowpass filter without and with
cutoff adjustment (dashed lines).

It is useful to know and recognize the expression for the squared amplitude
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response of a Butterworth lowpass filter of the 1st kind. Since the squared
amplitude response of (8.14) is

|H(jω)|2 =
1

1 + ω2

after the substitution ω ← ωN we obtain

|H ′(jω)|2 =
1

1 + ω2N
(8.15)

This expression is used in traditional derivation of Butterworth filters. Essen-
tially the N -th order lowpass Butterworth filter is traditionally defined as a
filter whose the amplitude response satisfies (8.15). Note that by (8.15) the
1-pole lowpass is the Butterworth filter of order 1. We can formally treat it as
a 1st-order Butterworth transformation of itself

1
1 + s

= B1

[
1

1 + s

]
It is also useful to explicitly know the transfer function of the Butterworth

lowpass filter of the 1st kind of order N = 2. It’s not difficult to realize that
for P (s) = s+ 1 the roots of P ′(s) are located 45◦ away from the negative real
semiaxis. Thus the respective damping is R = arccos 45◦ = 1/

√
2 and

H ′(s) =
1

s2 +
√

2s+ 1

This damping value and the 2nd-order term s2 +
√

2s + 1 appears in all But-
terworth filters of the 1st kind of order N = 2 (highpass, bandpass, etc.) The
readers may also recall the appearance of the damping value R = 1/

√
2 in the

discussion of 2-pole filters, where it was mentioned that at R = 1/
√

2 the 2-
pole filter turns into a Butterworth filter. This also corresponds to the fact that
among all non-resonating (in the sense of the missing resonance peak) 2nd-order
filters the Butterworth filter is the one with the sharpest possible cutoff corner
in the amplitude response.

Highpass Butterworth filter of the 1st kind

For
H(s) =

s

1 + s

we have the same denominator as for the respective lowpass. Thus the result of
the denominator transformation is the same as for the lowpass. The result of
the numerator transformation is sN and thus

H ′(s) =
(

s

s+ 1

)N∧1

·
∏
n

s2

s2 + 2Rns+ 1

That is we obtain the same result as for the 1-pole lowpass, except that instead
of a series of lowpasses we should take a series of highpasses. Fig. 8.15 illustrates
the respective amplitude response.

It is not difficult to verify that the highpass Butterworth filter obtained in the
described above way is identical to the result of LP to HP substitution applied
to the lowpass Butterworth filter of the same order, which is in agreement with
(8.12d).
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Figure 8.15: 2nd order highpass Butterworth filter of the 1st kind
vs. 1st order highpass filter (dashed line).

Bandpass Butterworth filter of the 1st kind

For an even N , by formally putting a numerator sN/2 over the Butterworth
transformation of a polynomial P (s) = 1 + s we obtain a kind of a bandpass
filter:

H ′(s) =
∏
n

sN/2

s2 + 2Rns+ 1

(Fig. 8.16), which can be also formally seen as a Butterworth transformation of
H(s) = s1/2/(s+ 1).
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Figure 8.16: 2nd order bandpass Butterworth filter of the 1st kind.

Note that thereby this bandpass filter doesn’t have any parameters to con-
trol, except the cutoff. As we will see a bit later in the discussion of Butter-
worth filters of the 2nd kind, this filter also can be obtained by an order N/2
Butterworth transformation of the 2-pole bandpass H(s) = s/(s2 +

√
2s + 1).

Therefore there is not much point in specifically using Butterworth bandpass
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filters of the 1st kind, one can simply use Butterworth bandpass filters of the
2nd kind instead, achieving exactly the same response at a particular resonance
setting.

A bandpass filter which has controllable bandwidth can be obtained by ap-
plying the LP to BP substitution to a Butterworth lowpass filter of the 1st kind.
Apparently this produces a normalized bandpass (Fig. 8.17). This filter does
not coincide with the result of the Butterworth transformation of the normal-
ized 2-pole bandpass H(s) =

√
2s/(s2 +

√
2s + 1). The reason is that in the

first case we have a Butterworth transformation of a 1-pole lowpass 1/(1 + s)
followed by the LP to BP substitution, while in the second case we first have
the LP to BP substitution (with an appropriately chosen bandwidth) applied
to 1/(1 + s) yielding H(s) =

√
2s/(s2 +

√
2s+ 1), which is then followed by the

Butterworth transformation. So it’s the opposite order of the application of LP
to BP substitution and the Butterworth transformation.

ω

|H(jω)|, dB

11/8 8

0

-12

-24

-36

Figure 8.17: A bandwidth-tuned LP to BP substitution of a low-
pass Butterworth filter of the 1st kind vs. Butterworth transfor-
mation of H(s) =

√
2s/(s2 +

√
2s+ 1) (dashed line).

The LP to BP substitution can be performed algebraically on the transfer
function of the Butterworth lowpass. In order to simplify things, the substi-
tution can be applied in turn to the poles of each of the underlying 1- and
2-pole filters of the cascaded implementation of the Butterworth lowpass. After
organizing the transformed poles into mutually conjugate pairs, we can simply
construct the result as a series of normalized 2nd order bandpasses, defined by
those pole pairs. Alternatively the LP to BP substitution can be implemented
using the integrator substitution technique (Fig. 4.19).

8.7 Butterworth filters of the 2nd kind

Now we are going to apply the Butterworth transformation to 2nd order poly-
nomials and respectively 2nd order filters. Such transformation will be referred
to as Butterworth transformation of the 2nd kind and the filters obtained as the
results of the tranformation will be referred to Butterworth filters of the 2nd
kind.
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Transformation of polynomial P (s) = s2 + 2Rs+ 1

We will first consider the following 2nd order polynomial

P (s) = s2 + 2Rs+ 1

corresponding to the denominator of a unit-cutoff 2-pole filter.
It will be most illustrative to obtain the Butterworth transformation of the

2nd kind as a combination of two opposite perturbations of two Butterworth
transformations of the 1st kind. Factoring P (s) we obtain

P (s) = (s+ a1)(s+ a2) = P1(s)P2(s)

At R = 1 we have a1 = a2 = 1 and P (s) is a product of two 1st-order polynomi-
als P1(s) = P2(s) = s+ 1. Applying the Butterworth transformation of the 1st
kind to each of the polynomials P ′1(s) and P ′2(s) we obtain two identical sets of
the roots of P ′1(s) and P ′2(s) respectively. We can also consider the respective
(also identical) extended polynomials

Q1(s) = P1(s)P1(−s)
Q2(s) = P2(s)P2(−s)
Q(s) = P (s)P (−s) = Q1(s)Q2(s)
Q′1(s) = P ′1(s)P ′1(−s)
Q′2(s) = P ′2(s)P ′2(−s)
Q′(s) = P ′(s)P (−s) = Q′1(s)Q′2(s)

which additionally contain the right-semiplane roots. As we should remember
from the discussion of the Butterworth transformation of the 1st kind, the roots
in each of the two sets corresponding to Q′1(s) and Q′2(s) are equally spaced on
the unit circle.14

Now suppose we initially have R = 1 and then increase R to a value R > 1,
resulting in a1 growing and a2 decreasing, staying reciprocal to each other:

a1 = R+
√
R2 − 1 a2 = R−

√
R2 − 1 (a1a2 = 1)

(Fig. 8.18). Since a1 and a2 are the “cutoffs” of the 1st-order polynomials s+a1

and s + a2, from the properties of the Butterworth transformation of the 1st
kind we obtain that the radii of the circles, on which the roots of Q′1(s) and
Q′2(s) are located, become equal to

r′1 = (R+
√
R2 − 1)1/N r′2 = (R−

√
R2 − 1)1/N (r′1r

′
2 = 1)

Thus, one circle grows and the other circle shrinks, while their radii are staying
reciprocal to each other (Fig. 8.19).

Now let’s decrease R from 1 to a value 0 < R < 1. This makes a1 and a2

complex:
a1 = ejα a2 = e−jα (cosα = R, a1a2 = 1)

14With Butterworth transformation of the 2nd kind we won’t be making a distinction be-
tween even and odd roots. Instead we will be paying attention to which roots originate from
Q1(s) and which from Q2(s).
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Figure 8.18: Roots of Q(s) for R > 1 (black dots are roots of
Q1(s), white dots are roots of Q2(s)) and their positions at R = 1
(indicated by circled dots, where each such dot denotes a root of
Q1(s) coinciding with a root of Q2(s)).
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Figure 8.19: Roots of Q′(s) for R > 1 (black dots are roots of
Q′1(s), white dots are roots of Q′2(s)) and their positions at R = 1
(indicated by circled dots, where each such dot denotes a root of
Q′1(s) coinciding with a root of Q′2(s)). Butterworth transforma-
tion order N = 2.

Writing out the “amplitude response” we have

|P (jω)|2 = P (jω)P (−jω) = P1(jω)P2(jω) · P1(−jω)P2(−jω) =
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= P1(jω)P1(−jω) · P2(jω)P2(−jω) =

= Q1(jω)Q2(jω) = (ω2 + a2
1) · (ω2 + a2

2)

Respectively, our goal is to have

|P ′(jω)|2 = Q′1(jω)Q′2(jω) = Q1(jωN )Q2(jωN ) = (ω2N + a2
1) · (ω2N + a2

2)

So how do we find the roots of Q′1(s) and Q′2(s)? If a1 = 1 (α = 0, R = 1)
then, as we just discussed, Q′1(s) simply generates a set of the Butterworth
roots of the 1st kind on the unit circle. Now if we replace α = 0 with α > 0
(corresponding to replacing R = 1 with R < 1) this means a rotation of a1 by
the angle α (Fig. 8.20). This rotates all roots of Q′1(jω) = ω2N + a2

1 by α/N
(Fig. 8.21). At the same time a2 will be rotated by −α and respectively all
roots of Q′2(jω) = ω2N + a2

2 by −α/N .
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Figure 8.20: Roots of Q(s) for 0 < R < 1 (black dots are roots of
Q1(s), white dots are roots of Q2(s)) and their positions at R = 1
(indicated by circled dots, where each such dot denotes a root of
Q1(s) coinciding with a root of Q2(s)).

Even though generally for α > 0 the set of roots of ω2N+a2
1 is not symmetric

relatively to the imaginary axis and neither is the set of roots of ω2N + a2
2, the

combination of the two sets is symmetric (as one can observe from Fig. 8.21).
Thus we can simply drop the roots in the right semiplane, the same way as we
did for R ≥ 1. Note that this also means that we do not need to rotate the
full set of roots of Q′1(s) and Q′2(s). Since at the end we are interested just in
the left-semiplane roots, it suffices to rotate only the left-semiplane halves of
the roots of Q′1(s) and Q′2(s) (that is, the roots of P ′1(s) and P ′2(s)), as long as
the roots do not cross the imaginary axis. It is not difficult to realize that the
said crossing of the imaginary axis happens at α = π/2 corresponding to R = 0,
where one of the roots on the imaginary axis will be from P ′1(s) and the other
from P ′2(s).
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Figure 8.21: Roots of Q′(s) for 0 < R < 1 (black dots are roots
of Q′1(s), white dots are roots of Q′2(s)) and their positions at
R = 1 (indicated by circled dots, where each such dot denotes
a root of Q′1(s) coinciding with a root of Q′2(s)). Butterworth
transformation order N = 2.

So, let’s reiterate. At R = 1 (α = 0) the roots of P ′(s) consist of two
identical sets, each set being just the (left-semiplane) roots of a Butterworth
transformation of a 1st-order polynomial s+1, all roots in such set being located
on the unit cicle. For R > 1 we need to change the radii of both sets in a
reciprocal manner:

r′ = (R+
√
R2 − 1)±1/N

(Fig. 8.19). For R < 1 we need to rotate both sets by opposite angles

∆α′ = ±α/N α = arccosR

(Fig. 8.21).
We have mentioned that at R = 0 (α = π/2) two of the rotated roots of P ′(s)

reach the imaginary axis. Another special case occurs when the roots of P (s)
are halfway from the “neutral position” (α = 0) to selfoscillation (α = π/2),
that is when α = π/4 (R = 1/

√
2). In this case the four roots of Q(s) are

equally spaced on the unit circle with the angular step π/2. In the process
of the Butterworth transformation we rotate the roots of Q′1(s) and Q′2(s) by
±α/N = ±π/4N , resulting in the set of roots of Q′(s) being equally spaced
on the unit circle by the angular step π/2N . But this is the set of roots of
the Butterworth transformation of the 1st kind of order 2N (which produces
the same polynomial order 2N as the order N Butterworth transformation of
the 2nd kind). This result becomes obvious if we notice that at R = 1/

√
2

and α = π/4 the polynomial s2 + 2Rs + 1 is the result of the Butterworth
transformation of the 1st kind of order 2 of the polynomial s+1. It is therefore no
wonder that a Butterworth transformation of order 2 followed by a Butterworth
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transformation of order N is equivalent to the Butterworth transformation of
order 2N (in other words, shrinking along the frequency axis by the factor 2N
is equivalent to shrinking first by the factor of 2 and then by the factor of N).

Seamless transition at R = 1

In the derivation of the Butterworth transformation of the 2nd kind we have
been treating the cases R > 1 and R < 1 separately. In practice however
we would like to be able to smoothly change R from R > 1 to R < 1 and
back in a seamless way (without clicks or other artifacts arising from an abrupt
reconfiguration of a filter chain). This means that we need to find a way to
distribute the roots of P ′(s) among 2nd-order factors in a continuous way, where
there are no jumps in the values of the coefficients of these factors if R is varied
in a continuous way. Formally saying, the coefficients of the 2nd-order factors
must be continuous functions of R everywhere. The continuity for R 6= 1 should
occur for granted, thus we are specifically concerned about continuity at R = 1.

First, let’s assume the order of the transformation is even.
Let R ≥ 1. There is an even count of the roots of P ′1(s) and these roots come

in complex-conjugate pairs (Fig. 8.19). Therefore each conjugate pair of roots
of P ′1(s) can be grouped into a single 2nd-order factor. The same can be done
for P ′2(s) and this half of our second-order factors corresponds to P ′1(s) and the
other half to P ′2(s).

At R = 1 both sets of 2nd-order factors become identical, since P ′1(s) be-
comes identical to P ′2(s).

At R < 1 the roots of P ′1(s) are rotated counterclockwise and the roots
of P ′2(s) are rotated clockwise (Fig. 8.21), therefore the roots of each of the
polynomials won’t combine into conjugate pairs and thus the polynomials won’t
be real anymore (Fig. 8.22).

−1 1

−j

j
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Im s

Figure 8.22: Movement of roots of P ′1(s) (black dots) and P ′2(s)
(white dots) as R smoothly varies around R = 1.
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However, since we started the rotation from two identical sets of roots with
conjugate pairwise symmetry within each set, for each root of P ′1(s) there is now
a conjugate root in P ′2(s) and vice versa. We can therefore formally redistribute
the roots between P ′1(s) and P ′2(s) in such a way, that the roots P ′1(s) will be
rotated by α/N towards the negative real semiaxis (compared to R = 1) and
the roots P ′2(s) will be rotated by α/N away from the negative real semiaxis
(Fig. 8.23).

−1 1

−j

j

0 Re s

Im s

Figure 8.23: Movement of redistributed roots of P ′1(s) (black dots)
and P ′2(s) (white dots) as R smoothly varies around R = 1.

Thus, at R = 1 we have two identical sets of roots. At R > 1 the roots of
P ′1(s) move outwards from the unit circle, at R < 1 the roots of P ′1(s) move
towards the negative real semiaxis. The roots of P ′2(s) move inwards from the
unit circle (R > 1) and away from the negative real semiaxis (R < 1). This way
we can keep the same assignment of the roots to the 2nd-order factors.15

If the order of the transformation is odd, then besides the conjugate pairs
that we just discussed, we get two “special” roots, corresponding to the purely
real root of the Butterworth transformation of the 1st kind of s+ 1 (Fig. 8.24).
These two roots are real for R ≥ 1 and complex conjugate for R < 1, where
at R = 1 both roots are at −1. Thus, they can simply be assigned to one and
the same 2nd-order factor of the form s2 + 2R′s+ 1 (which cannot be formally
assigned to P ′1(s) or P ′2(s), but can be thought of as being “shared” among P ′1(s)
and P ′2(s)), where R′ depends on R.

Arbitrary 2nd-order polynomials

The non-unit-cutoff polynomials P (s) = s2 + 2Ras + a2 can be simply treated
using (8.12c).

15Of course we could have done the opposite redistribution of roots among P ′1(s) and P ′2(s),
where the roots of P ′1(s) move outwards from the unit circle and away from the negative real
semiaxis, while the roots of P ′1(s) move inwards from the unit circle and towards the negative
real semiaxis.
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Figure 8.24: Movement of the “special” root of P ′1(s) (black dot)
and the “special” root of P ′2(s) (white dot) as R smoothly varies
around R = 1.

The case a = 0 can be taken in the limiting sense a→ 0 giving P ′(s) = s2N .

The case R = 0 also can be taken in the limiting sense R→ +0.

The case R < 0 can be treated by noticing that the amplitude responses
of P (s) = s2 + 2Ras + a2 and P (s) = s2 − 2Ras + a2 are identical. Thus, we
can apply the Butterworth transformation to the positive-damping polynomial
P (s) = s2 − 2Ras + a2. Since the roots of P (s) in case of R < 0 lie in the
right complex semiplane, we might as well pick the right semiplane roots for
P ′(s). Particularly, if P (s) is the numerator of a maximum phase filter, the
transformation result will retain the maximum phase property.

The polynomial of the most general form P (s) = a2s
2 + a1s + a0 can be

treated by rewriting it as P (s) = a2 · (s2 + (a1/a2)s + a0/a2) where usually
a2 6= 0, a0/a2 > 0. If a0/a2 < 0 then P (s) has two real roots of opposite sign
and can be handled as a product of two 1st-order polynomials, to which we can
apply Butterworth transformation of the 1st kind. If a2 = 0, we can treat this
as a limiting case a2 → 0. Noticing that at a2 → 0 the damping a1/2a2 → ∞
we rewrite P (s) as a product of real 1st-order terms:

P (s) = a2 ·

(
s+

a1 +
√
a2
1 − 4a2a0

2a2

)
·

(
s+

a1 −
√
a2
1 − 4a2a0

2a2

)
∼

∼ (a2s+ a1) · (s+ a0/a1) (for a2 → 0)

and as a2 vanishes we discard the infinitely large root of the polynomial a2s+a1

(and the associated roots of P ′(s)), formally replacing the polynomial a2s+ a1

with the constant factor a1.
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Lowpass Butterworth filter of the 2nd kind

Given

H(s) =
1

1 + 2Rs+ s2

and transforming its denominator according to the previous discussion of the
Butterworth transformation of a 2nd order polynomial we obtain

H ′(s) =
∏
n

1
s2 + 2Rns+ 1

Therefore H ′(s) can be implemented as a series of 2-pole lowpass filters.
Fig. 8.25 compares the amplitude response of a Butterworth lowpass filter

of the 2nd kind (N = 2) against the prototype resonating 2-pole lowpass filter.
Note the increased steepness of the cutoff slope and the fact that the resonance
peak height is preserved by the transformation.
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-12

-18
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Figure 8.25: 4th order lowpass Butterworth filter of the 2nd kind
vs. 2nd order lowpass filter (dashed line).

Fig. 8.26 compares the same Butterworth lowpass filter against cascading
of identical 2nd order lowpasses, where the resonance has been adjusted to
maintain the same resonance peak height. Note the much larger width of the
resonance peak of the latter.

As mentioned before in the discussion of the Butterworth transformation
of the 2nd kind, at R = 1/

√
2 we get the same set of poles as for order N

Butterworth transformation of the 1st kind. Thus, at this resonance setting our
lowpass Butterworth filter of the 2nd kind (the filter order of which is 2N) is
equal to the lowpass Butterworth filter of the 1st kind of the same filter order
2N .
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Figure 8.26: 4th order lowpass Butterworth filter of the 2nd kind
vs. duplicated 2nd order lowpass filter of the same resonance peak
height (dashed line).

Highpass Butterworth filter of the 2nd kind

The highpass Butterworth filter of the 2nd kind is obtained from

H(s) =
s2

1 + 2Rs+ s2

resulting in

H ′(s) =
∏
n

s2

s2 + 2Rns+ 1

ThereforeH ′(s) can be implemented as a series of 2-pole highpass filters. Fig. 8.27
shows the respective amplitude response.

As with lowpass Butterworth filter of the 1st kind, the highpass Butterworth
filter of the 2nd kind can be equvalently obtained by applying the LP to HP
substitution to a lowpass Butterworth filter of the 2nd kind.

As with lowpass Butterworth filter of the 2nd kind, at R = 1/
√

2 we get a
highpass Butterworth filter of the 1st kind.

Bandpass Butterworth filter of the 2nd kind

The bandpass Butterworth filter of the 2nd kind is obtained from

H(s) =
s

1 + 2Rs+ s2

resulting in
H ′(s) =

∏
n

s

s2 + 2Rns+ 1
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Figure 8.27: 4th order highpass Butterworth filter of the 2nd kind
vs. 2nd order highpass filter (dashed line).

Therefore H ′(s) can be implemented as a series of 2-pole bandpass filters. Dif-
ferently from the bandpass Butterworth filter of the 1st kind, this one allows
to control the amount of resonance. Fig. 8.28 shows the respective amplitude
response.
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Figure 8.28: 4th order bandpass Butterworth filter of the 2nd kind
vs. 2nd order bandpass filter (dashed line).
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As with lowpass and highpass, at R = 1/
√

2 we get a bandpass Butterworth
filter of the 1st kind. Since bandpass Butterworth filter of the 1st kind occurs
only for an even transformation order 2N , any bandpass Butterworth filter of
the 1st kind is simply a bandpass Butterworth filter of the 2nd kind (of the
same filter order 2N) at a particular resonance setting.

By replacing the underlying 2-pole bandpasses with their normalized versions
one can obtain the normalized bandpass Butterworth filter of the 2nd kind:

H ′(s) =
∏
n

2Rns
s2 + 2Rns+ 1

One can of course also apply the LP to BP substitution to a Butterworth
lowpass of the 2nd kind. Note, however, that if the lowpass has a resonance
peak, then the resulting bandpass will have two of those, so this would be a
rather special kind of a bandpass.

8.8 Generalized ladder filters

Now that we have learned to construct generic higher-order filters with resonance
(by means of Butterworth transformation) we might consider going into the
selfoscillation range by letting the 2nd kind Butterworth poles in Fig. 8.21 to
rotate past the imaginary axis (that is by letting α > π/2). Clearly we would
need a nonlinear implementation structure then, to prevent the selfoscillating
filter from explosion.

So far we have discussed 3 different implementations of generic high-order
filters: generalized SVF and serial and parallel cascades. The SVF structure
doesn’t accomodate nonlinearities easily, even though there can be ways. With
serial and parallel cascades we of course could use various nonlinear 2-poles (and
possibly nonlinear 1-poles) in the implementation, however this doesn’t feel very
natural, compared to the nonlinearities appearing in the ladder filters. As we
should remember, in ladder filters the resonance is created by the feedback, the
more feedback, the more resonance, so that a saturator in the feedback loop was
an efficient way to build a nonlinear ladder filter. In such filter the nonlinearity
is a part of a feedback loop going through the entire filter, whereas in cascade
implementations different nonlinearities would be independent. Of course, both
approaches work in a way, but the approach where we have independent nonlin-
earities feels somewhat more artificial than the one with a “global” nonlinearity
affecting the entire filter. For that reason we will make another attempt at
generalizing the 4-pole ladder filter to abitrary pole counts.

We have seen that one can apply the general idea of a ladder filter to pole
counts other than 4 by simply increasing the number of underlying 1-poles, but
it hardly looks as a smooth generalization, as, except for bandpass16 ladders,
the resonance behavior of the resulting filters is obtaining “special features”,
like e.g. an offset of the resonant peak position for the 8-pole lowpass. We will
start now with a different approach, namely with the generalized SVF (Fig. 8.1)
where we replace all integrators with 1-pole lowpass filters (which, as it’s not
diffiult to realize, corresponds to the substitution s← s+1). Fig. 8.29 illustrates
(compare to Fig. 8.1).

16And allpass, as covered in Chapter 11.
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Figure 8.29: Generalized ladder (generalized TSK) filter.

Comparing to Fig. 5.9 we notice that the difference is that we are taking
the feedback signal as a linear combination of all modal outputs, rather than
simply from the last modal output. Comparing to Fig. 5.26 we notice that the
latter essentially implements the same idea: taking a mixture of modal outputs
as feedback signal, where both structures become equivalent at a1 = −k and
a2 = k. Thus, one could see Fig. 8.29 also as a generalization of the TSK filter.

The transfer function of Fig. 8.29 can be obtained from the transfer function
of Fig. 8.1 by s← s+ 1 substitution:

H(s) =

N∑
n=0

bN−n(s+ 1)n

(s+ 1)N +
N−1∑
n=0

aN−n(s+ 1)n

Given a prescribed transfer function in the usual form

H(s) =

N∑
n=0

βns
n

sN +
N−1∑
n=0

αns
n

we could obtain the an and bn coefficients from αn and βn by equating both
transfer function forms

N∑
n=0

bN−n(s+ 1)n

(s+ 1)N +
N−1∑
n=0

aN−n(s+ 1)n
=

N∑
n=0

βns
n

sN +
N−1∑
n=0

αns
n
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and then performing the s + 1 ← s (or equivalently s ← s − 1) subtitution on
the entire equation:

N∑
n=0

bN−ns
n

sN +
N−1∑
n=0

aN−ns
n

=

N∑
n=0

βn(s− 1)n

sN +
N−1∑
n=0

αn(s− 1)n

Now we simply expand all (s− 1)n in the right-hand side and equate the coef-
ficients at the same powers of s to obtain the expressions for an and bn via αn
and βn.

Nonlinearities

Letting all an = 0 in Fig. 8.29 we obtain an N -th order lowpass of the form
1/(s + 1)N . This consideration shows that the resonance in Fig. 8.29, if any,
would be created through non-zero an coefficients and one could prevent the
filter from exploding selfoscillation by inserting a saturator into the feedback
path, which would effectively reduce the values of an, bringing them almost to
zero at excessive signal levels. Fig. 8.30 illustrates.
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Figure 8.30: Nonlinear generalized ladder.

The feedback modal mixing coefficients an serve the role of the feedback gain
coefficient k from Fig. 5.9. That is we don’t have anymore a single gain coeffi-
cient to control the feedback amount. Therefore we can’t place the saturator in
Fig. 8.30 before the gains. If a reverse placement of the saturator relatively to
the gains is desired, we can use the transposed version of Fig. 8.30.

In order to compare Fig. 8.31 to Fig. 5.9, or, even better, this time to Fig. 5.1
we should assume in Fig. 8.31 all bn = 0 except bN = 1, which corresponds to
modal gains for the pure N -th order lowpass mode. Then we can see that
Fig. 8.31 differs from Fig. 5.1 by the fact that the feedback is going not only
to the input of the first lowpass stage, but to all lowpass stages. It is also
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Figure 8.31: Transposed nonlinear generalized ladder.

instructive to compare Fig. 8.31 to Fig. 5.31, where we should be able to see
that Fig. 8.31 is a generalized version of Fig. 5.31 with a1 = −k and a2 = k.

Non-lowpass generalizations

In principle we could perform other substitutions in the generalized SVF struc-
ture. E.g. we could replace integrators with highpass filters, which corresponds
to the substitution 1/s ← s/(1 + s) or, equivalently s ← 1 + 1/s. This would
correspond to generalized highpass ladder filters. More complicated substitu-
tions could also be done, e.g. replacing some integrators with highpasses and
some with lowpasses. One also doesn’t have to be limited by using 1-poles as
substitutions. Having outlined the basic idea, we won’t go into further detail.

SUMMARY

We have introduced four general topology classes: the generalized SVF, the
serial cascade form, the parallel form and the generalized ladder filter. These
topologies can be used to implement almost any transfer function (with the
most prominent restriction being that the parallel form can’t deal with repeated
poles).

We also introduced two essentially different ways to obtain a higher-order
filter from a given filter of a lower order: identical filter cascading and But-
terworth transformation. The former is stretching the amplitude and phase
responses vertically (which may cause a number of unwanted effects), while the
latter is shrinking the amplitude response horizontally.



Chapter 9

Classical signal processing
filters

In Chapter 8 we have introduced, among other ideas, Butterworth filters of
the 1st kind. In this chapter we are going to construct further similar filter
types by allowing the amplitude response to have ripples of equal amplitude
(a.k.a. equiripples) in the pass- or stop-band, or in both. These filters as well
as Butterworth filters of the 1st kind are the filter types used in classical signal
processing. They have somewhat less prominent role in music DSP, therefore
we first concentrated on other filter types. Still, they are occasionally useful.

9.1 Riemann sphere

Before we begin discussing equiripple filters we need to go into some detail of
complex algebra, concerning the Riemann sphere and some derived concepts.
The key feature of the Riemann sphere is that infinity is treated like any other
point, and this (among with some other possibilities arising out of using the
Riemann sphere) will be quite helpful in our discussions. It seems there are a
number of slightly different conventions regarding the Riemann sphere. We are
going to introduce now one particular convention which will be most useful for
our purposes.1

Given a complex plane w = u+jv we introduce the third dimension, thereby
embedding the plane into the 3-dimensional space (x, y, z). The x and y axes
coincide with u and v axes, the z axis is directed upwards. The Riemann sphere
will be the sphere of a unit radius x2 + y2 + z2 = 1 (Fig. 9.1). Thus, the
intersection of the Riemann sphere with the complex plane is at the “equator”
which in terms of w is simply the complex unit circle |w| = 1. The center of
projection will be at the “north pole” (0, 0, 1) of the Riemann sphere, which
thereby is the image of w = ∞. Respectively, the complex unit circle |w| = 1
coincides with its own projection image on the Riemann sphere.

We will denote and refer to the points on the Riemann sphere by the complex
values that they represent. E.g. the “north pole” will be simply denoted as ∞,

1The general discussion of the idea of the Riemann sphere is not a part of this book.
Readers unfamiliar with this concept are advised to consult the respective literature.
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∞
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w = u+ jv

x
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z

Figure 9.1: Riemann sphere.

the “south pole” as 0, the point on the “zero meridian” as 1, the point on the
90◦ meridian as j etc. Some of these points are shown on Fig. 9.1.

Real Riemann circle

The 2-dimensional subspace (x, z) of the (x, y, z) space in Fig. 9.1 contains just
the real axis u of the complex plane and the real axis’s image on the Riemann
sphere which is a circle of unit radius x2 + z2 = 1 (Fig. 9.2). It will be intuitive
to refer to this circle as the real Riemann circle.

ϕ

ϕ
2

u

(x, z)

x

z

1

0

∞

−1

Figure 9.2: Real Riemann circle. The 0, 1, ∞, −1 labels denote
the points on the circle which correspond to these values.
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We can use the polar angle ϕ (defined as shown in Fig. 9.2) as the coordinate
on the Riemann circle. One of the reasons for this choice of definition of ϕ are
the following convenient mappings between u and ϕ:

u = 0 ⇐⇒ ϕ = 2πn

u = 1 ⇐⇒ ϕ =
π

2
+ 2πn

u = −1 ⇐⇒ ϕ = −π
2

+ 2πn

u =∞ ⇐⇒ ϕ = π + 2πn

Also, if we restrict ϕ to (−π, π), then

u = 0 ⇐⇒ ϕ = 0
u > 0 ⇐⇒ ϕ > 0
u < 0 ⇐⇒ ϕ < 0

From Fig. 9.2, using some basic geometry it’s not difficult to find that u and ϕ
are related as

u = tan
ϕ

2
(9.1)

and that
u =

x

1− z
(9.2a)

By introducing the “homogeneous” coordinate z̄ = 1 − z the equation (9.2a)
can be rewritten in a more intuitive form:

u = x/z̄ (9.2b)

Conversely, using Fig. 9.2 and equation (9.1) we have

x = sinϕ =
2u

u2 + 1
(9.3a)

z = − cosϕ =
u2 − 1
u2 + 1

(9.3b)

z̄ =
2

u2 + 1
(9.3c)

Symmetries on the real Riemann circle

Certain symmetries between a pair of points on the real axis correspond to
symmetries on the real Riemann circle. Specifically, from (9.1) we obtain:

u1 + u2 = 0 ⇐⇒ ϕ1 + ϕ2 = 2πn (9.4a)
u1u2 = 1 ⇐⇒ ϕ1 + ϕ2 = π + 2πn (9.4b)
u1u2 = −1 ⇐⇒ ϕ1 − ϕ2 = π + 2πn (9.4c)

or, by restricting ϕ1 and ϕ2 to [−π, π]

u1 + u2 = 0 ⇐⇒ ϕ1 + ϕ2 = 0 (9.5a)

u1u2 = 1 ⇐⇒ ϕ1 + ϕ2

2
= ±π

2
(9.5b)

u1u2 = −1 ⇐⇒ ϕ1 − ϕ2 = ±π (9.5c)

Fig. 9.3 illustrates.
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Figure 9.3: Symmetries of the values on the real Riemann circle.

Coordinate relationships for the Riemann sphere

The equations (9.2) and (9.3) generalize to the 3-dimensional space (x, y, z)
containing the complex plane w = u+jv and the Riemann sphere x2+y2+z2 = 1
in an obvious way as:

u =
x

1− z
= x/z̄ (9.6a)

v =
y

1− z
= y/z̄ (9.6b)

w = u+ jv =
x+ jy

z̄
(9.6c)

and

x =
2u

|w|2 + 1
(9.7a)

y =
2v

|w|2 + 1
(9.7b)

z =
|w|2 − 1
|w|2 + 1

(9.7c)

z̄ =
2

|w|2 + 1
(9.7d)

(9.7e)

The equation (9.1) can be generalized if we restrict ϕ to [0, π], in which case

|w| = tan
ϕ

2
(9.8)

In principle we could also introduce the spherical azimuth angle, which is simply
equal to argw, but we won’t do it in this book.

Imaginary Riemann circle

The (y, z) subspace of the (x, y, z) space in Fig. 9.1 contains just the imaginary
axis v of the complex plane and the imaginary axis’s image on the Riemann
sphere which is a circle of unit radius x2 + y2 = 1. We will refer to this circle
as the imaginary Riemann circle.
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There are no essential differences to the real Riemann circle. The same
illustrations and formulas hold, except that we should use v in place of u. Fig. 9.4
provides a simple illustration of the circla and its symmetries. Note that the
reciprocal symmetries change sign if expressed in terms of the complex variable
w, since 1/jv = −j/v.

j

∞

−j

0

−1/w

w

1/w

−w

Figure 9.4: Symmetries of the values on the imaginary Riemann
circle, where w = jv, v = Imw.

9.2 Arctangent scale

From the Riemann circle one can derive a special scale which will be useful
for plotting function graphs with interesting behavior around infinity. One
commonly known special scale is a logarithmic scale x′ = log x which maps
the logical values x to the geometric positions x′ on the plot. In a similar
fashion, we introduce the arctangent scale

x′ = 2 arctanx (9.9)

which is using the polar angle ϕ of the real Riemann circle as the geometric
position x′. It is easy to notice that (9.9) is equivalent to (9.1), where we have
x in place of u and x′ in place of ϕ.

The actangent scale warps the entire real axis (−∞,+∞) into the range
(−π, π). Due to the periodic nature of the Riemann circle’s polar angle it is not
unreasonable to require the scale x′ to be periodic as well, in which case we can
also support the value x =∞ which will map to π + 2πn.

Treating the infinity like any other point, the arctangent scale provides a
convenient means for plotting the functions where the range of the values of
interest includes infinity. E.g. we could plot the graph of the cosecant function
y = cscx = 1/ sinx using the arctangent scale for the function’s value axis, as
illustrated by Fig. 9.5

Symmetries in the arctangent scale

The symmetries of a graph plotted in the arctangent scale are occurring in agree-
ment with Riemann circle symmetries (9.4) and (9.5) (illustrated in Fig. 9.3).
Specifically:

1. Mutually opposite values are symmetric with respect to points 0 and ∞.
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Figure 9.5: Graphs of y = sinx (dashed) and y = cscx = 1/ sinx
(solid) using arctangent scale for the ordinate.

2. Mutually reciprocal values are symmetric with respect to points 1 and −1.

3. Values whose product is −1 map are spaced by the distance equal to the
half of the arctangent scale’s period, that is e.g. to the distance between
−1 and 1 or between 0 and ∞.

One can observe all of these properties if Fig. 9.5, where the third property
can be observed between the cscx and the half-period-shifted sinx.

9.3 Rotations of Riemann sphere

We are going to introduce two special transformations of the complex plane:

ρ+1(w) =
1 + w

1− w
(9.10a)

ρ−1(w) =
w − 1
w + 1

(9.10b)

where w ∈ C∪∞. It is easy to check by direct substitution that ρ−1(ρ+1(w)) =
ρ+1(ρ−1(w)) = w, that is the transformations ρ1 and ρ−1 are each other’s
inverses.2 As we shall see, ρ±1 are simply rotations of the Riemann sphere by
90◦ in two opposite directions.

Letting w = u+ jv where u and v are the real and imaginary parts of w, we
have

w′ = u′ + jv′ = ρ+1(w) =
1 + w

1− w
=

1 + (u+ jv)
1− (u+ jv)

=
(1 + u) + jv)
(1− u) + jv

=

=

(
(1 + u) + jv

)(
(1− u) + jv

)(
(1− u)2 + v2

) =
(1− u2 − v2) + 2jv

1 + u2 + v2 − 2u
=

(1− |w|2) + 2jv
1 + |w|2 − 2u

That is

u′ =
1− |w|2

1 + |w|2 − 2u
2One could also notice that (9.10) are very similar to the bilinear transform and its inverse,

where the latter two have an additional scaling by T/2.
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v′ =
2v

1 + |w|2 − 2u

On the other hand,

|w′|2 =
∣∣∣∣1 + w

1− w

∣∣∣∣2 =
|1 + w|2

|1− w|2
=

(1 + u)2 + v2

(1− u)2 + v2
=

1 + |w|2 + 2u
1 + |w|2 − 2u

and

|w′|2 + 1 =
(1 + |w|2 + 2u) + (1 + |w|2 − 2u)

1 + |w|2 − 2u
= 2

1 + |w|2

1 + |w|2 − 2u

from where by (9.7d)

z̄′ =
2

|w′|2 + 1
=

1 + |w|2 − 2u
1 + |w|2

Then, using (9.7) we obtain

x′ = z̄′u′ =
1− |w|2

1 + |w|2
= −z

y′ = z̄′v′ =
2v

1 + |w|2
= y

z′ = 1− z̄′ =
(1 + |w|2)− (1 + |w|2 − 2u)

1 + |w|2
=

2u
1 + |w|2

= x

That is x′ = −z, y′ = y, z′ = x which is simply a rotation by 90◦ around the
y axis in the direction from the (positive) x axis towards the (positive) z axis.
Thus ρ+1 simply rotates the Riemann sphere around the imaginary axis of the
complex plane w by 90◦ in the direction from 1 to ∞, or, which is the same,
in the direction from 0 to 1 (where by 0, 1 and ∞ we mean the points on the
Riemann sphere which are the projection images of w = 0, w = 1 and w = ∞
respectively). The points ±j are thereby untouched, which can be also seen by
directly evaluating ρ+1(±j) = ±j. The transformation ρ−1 being the inverse of
ρ+1 simply rotates in the opposite direction.

In terms of the real Riemann circle ρ±1 clearly correspond to a counterclock-
wise (for ρ+1) or clockwise (for ρ−1) rotation by 90◦ (Fig. 9.6).3 Respectively,
in the arctangent scale they correspond to shifts by a quarter of the arctangent
scale’s period.

The imaginary Riemann circle is rotated into the unit circle |w′| = 1, which is
its own image on the Riemann sphere. Therefore for ρ+1 the polar angle ϕ from
Fig. 9.2 becomes the polar angle in the complex plane (since ϕ = 0 ⇐⇒ w = 0
and since arg ρ+1(0) = arg 1 = 0), therefore ϕ = arg ρ+1(w) and by (9.1) we
have

ρ+1

(
j tan

ϕ

2

)
= ejϕ

This can also be verified by direct substitution, where it’s easier to use the
inverse transformation:

ρ−1(ejϕ) = =
ejϕ − 1
ejϕ + 1

=
ejϕ/2 − e−jϕ/2

ejϕ/2 + e−jϕ/2
=

3This is also the reason for the notation ρ+1: the subscript simply indicates the result of
the transformation of w = 0.



316 CHAPTER 9. CLASSICAL SIGNAL PROCESSING FILTERS

1

∞

−1

0

Figure 9.6: Transformation of the real Riemann circle by ρ+1.

= j
ejϕ/2 − e−jϕ/2

2j
· 2
ejϕ/2 + e−jϕ/2

= j tan
ϕ

2

For ρ−1 the polar angle ϕ gets mapped into arg ρ−1(w) = π − ϕ. Conversely a
polar angle equal to π − ϕ will be mapped into arg ρ−1(w) = ϕ, thus

ejϕ = ρ−1

(
j tan

π − ϕ
2

)
= ρ−1

(
j tan

(π
2
− ϕ

2

))
= ρ−1

(
j

tan ϕ
2

)
Summing up:

ρ+1

(
j tan

ϕ

2

)
= ejϕ (9.11a)

ρ−1

(
j

tan ϕ
2

)
= ejϕ (9.11b)

ρ−1

(
ejϕ
)

= j tan
ϕ

2
(9.12a)

ρ+1

(
ejϕ
)

=
j

tan ϕ
2

(9.12b)

Note that (9.12) do not simply give the inverse versions of (9.11), but also reflect
the fact the complex unit circle gets rotated into the imaginary Riemann circle.

Symmetries

The transformations of symmetries by ρ±1 can be derived in an intuitive way
from the symmetries on the real Riemann circle and the arctangent scale and
from the fact that these transformations are ±90◦ rotations of the real Riemann
circle or (equivalently) shifts of the arctangent scale by the scale’s quarter period,
if we assume w ∈ R ∪∞.

Particularly, a ±90◦ rotation of the real Riemann circle maps 0 and∞ to ±1
and vice versa. Respectively, points on the Riemann circle which are symmetric
relatively to 0 and ∞ map to points symmetric relatively to ±1 and vice versa.
Thus, mutually opposite values map to mutually reciprocal values and vice
versa:

ρ+1(w)ρ+1(−w) = 1 (9.13a)
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ρ−1(w)ρ−1(−w) = 1 (9.13b)
ρ+1(w) + ρ+1(1/w) = 0 (9.13c)
ρ−1(w) + ρ−1(1/w) = 0 (9.13d)

Fig. 9.7 illustrates, where more properties are immediately visible. E.g. one
could notice that ρ±1(w) are obtained by rotating w by ±90◦, therefore the
results are 180◦ apart, which means:

ρ+1(w)ρ−1(w) = −1 (9.14)

or that rotating the opposite points ±w by 90◦ in opposite directions produces
opposite points:

ρ±1(−w) = −ρ∓1(w) (9.15)

etc.

1

∞

−1

0

ρ+1(w) = ρ−1(1/w)

ρ+1(−w) = ρ−1(−1/w)

ρ+1(1/w) = ρ−1(−w)

ρ+1(−1/w) = ρ−1(w)
w−w

1/w−1/w

Figure 9.7: Symmetries of the transformations ρ±1 on the real
Riemann circle, where they represent 90◦ rotations.

The formulas (9.13), (9.14) and other similarly obtained symmetry-related
properties of ρ±1 work not only for w ∈ R ∪ ∞ but actually for any w ∈
C ∪∞ which can be verified algebraically. However, the interpretation of these
symmetries in terms of the real Riemann circle obviously works only for w ∈
R ∪∞.

The imaginary Riemann circle gets rotated by ρ±1 into the complex unit
circle, where the results of the two transformations are thereby symmetric rela-
tively to the imaginary axis. Fig. 9.8 illustrates some of the symmetries arising
out of this rotation. More illustrations of this kind can be created, particularly
for the transformation of the values lying on the complex unit circle, but the
ones we are already having should be sufficient for our purposes in this book.

Unit circle rotations

The Riemann sphere rotations ρ±1 can be described as rotations of the Riemann
sphere around the imaginary axis or as rotations of the real Riemann circle.
Similarly the Riemann sphere rotations around the vertical axis z can be thought
of as rotations of the unit circle.

Apparently, such rotations are simply achived by a multiplications of com-
plex values by a unit-magnitude complex constant, where we are not restricted
to rotations by multiples of 90◦. We won’t need a special notation for this
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0

j

−1

−j

ρ+1(j tanϕ) = ejϕ

ρ+1(−j tanϕ) = e−jϕ

ρ+1

(
j

tanϕ

)
= −e−jϕ

ρ+1

(
−j

tanϕ

)
= −ejϕ

Figure 9.8: Symmetries of the results of the transformation ρ+1 of
the imaginary axis (lying on the complex unit circle).

transformation and will simply write

w′ = aw (|a| = 1)

Obviously

|w′| = |w|
argw′ = argw + arg a

The rotations by +90◦ and −90◦ are simply multiplications by j and −j respec-
tively.

There is not much more to say in this respect as this rotation is pretty trivial.

Imaginary rotations

We could also wish to rotate the imaginary Riemann circle. We will denote the
respective transformations as ρ±j , where the subscript, as with ρ±1, denotes the
image of the zero after the transformation.

We could rotate the imaginary circle by doing the three steps in succession:

1. First, we rotate the Riemann sphere by 90◦ around its “vertical” axis,
thereby turning the imaginary Riemann circle into the real Riemann circle,
where w = ±j is transformed into w = ±1 respectively, while 0 and ∞
stay in place. Such rotation is simply achieved by multiplying w by −j.

2. Now we apply ρ±1 to rotate the real circle.

3. We convert the real circle back to the imaginary one by multiplying the
rotation result by j.

Therefore we simply have

ρ±j(w) = jρ±1(−jw) = −jρ∓1(jw) (9.16)

(where the second expression is obtained in the same way as the first one, except
that we rotate the Riemann sphere in the other direction, both vertically and
horizontally).

In order to distinguish between ρ±1 and ρ±j we could refer to the former as
real rotations of the Riemann sphere and to the latter as imaginary rotations
of the Riemann sphere.
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9.4 Butterworth filter revisited

In Chapter 8 we have developed the lowpass Butterworth filters of the 1st kind
(also simply known as Butterworth filters) as a Butterworth transformation of
the 1-pole lowpass filter, where we also mentioned that the tranditional defini-
tion of the Butterworth filter simply defines the (lowpass) Butterworth filter as
a (stable) filter whose amplitude response is

|H(jω)|2 =
1

1 + ω2N
(ω ∈ R) (9.17)

Apparently both definitions are equivalent.
We could generalize this idea by replacing ωN in (9.17) by some other poly-

nomial function f(ω):

|H(jω)|2 =
1

1 + f2(ω)
(ω ∈ R) (9.18)

The practical application of (9.18) essentially follows the steps of the But-
terworth transformation of the 1st kind, which includes solving 1 + f2 = 0
to obtain the poles of |H(s)|2 and then discarding the right-semiplane poles,
thereby effectievely obtaining the desired transfer function H(s) expressed in
the cascade form. Note that there are two implicit conditions which need to be
fulfilled in order for this procedure to work:

- There is the symmetry of the poles of |H(s)|2 with respect to the real axis:
if s is a pole then so is s∗ (where s∗ may be the same pole as s if s is real).
This is necessary in order for H(s) to be a real function of s.

- There is the pairwise symmetry of the poles |H(s)|2 with respect to the
imaginary axis: if s is a pole then −s∗ is another pole (it must be another
pole even if s = −s∗, in which case it simply means that the pole is
duplicated). This guarantees that we can split the poles into the left-
and right-semiplane halves with identical contributions to the amplitude
response. Therefore by discarding the right-semiplane half of the poles,
we effectively go from |H(jω)|2 to |H(jω)|.

We could expect that these properties will not be fulfilled for an arbitrary f(ω).
However, let’s require that

- The function f(ω) is a real function of ω.

- The function f(ω) is odd or even.

The readers can convince themselves that under these restrictions the poles of
|H(s)|2 defined by (9.18) will have the necessary symmetries with respect to the
real and imaginary axes.

Rational f(ω)

We could allow f(ω) to be not just a polynomial but a rational function. In this
case H(s) has not only poles, but also zeros at locations where f(ω) has poles
and respectively the denominator of |H(jω)|2 turns to ∞, which means that
both |H(jω)|2 and |H(jω)| turn to zero. In order to see that the multiplicities
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of the zeros of H(s) are equal to the multiplicities of the respective poles of of
f(ω) simply consider

|H(jω)|2 =
1

1 +
P 2

1 (ω)
P 2

2 (ω)

=
P 2

2 (ω)
P 2

1 (ω) + P 2
2 (ω)

Thus the set of zeros of |H(jω)|2 is the duplicated set of zeros of P2(ω), how-
ever after switching to H(jω) we should drop the duplicates, being left only
with a single set of zeros of P2(ω), which are the poles of f(ω). Note that
H(s) shouldn’t have more zeros than poles, which means that the order of the
denominator of f(ω) should not exceed the order of the numerator of f(ω).

In order for H(s) to be real, its zeros must be conjugate symmetric, which
will be ensured if f(ω) is real odd or even function. Indeed, in this case the
poles of f(ω) are both conjugate symmetric and symmetric with respect to the
origin, which implies that they are also symmetric with respect to the imaginary
ω axis, which is the same as the symmetry with respect to the real s axis.

Representations of linear scaling

We are now going to develop another way of looking at the Butterworth filter
generating function f(x) = xN . It will be highly useful with other functions
f(x) occurring in place of f(x) = xN in (9.18).

Let f(x) = xN . Since xN = exp(N lnx), we can write

f(x) = exp(N lnx) (9.19)

Introducing auxiliary variables u and v we can rewrite (9.19) as a set of equa-
tions:

x = expu
v = Nu

f(x) = exp v

which also allows to define f(x) implicitly as a function satisfying the equation

f(expu) = exp(Nu) (9.20)

We could consider x and f(x) as representations of u and v, where the connection
between the preimages u and v and their respective representations x and f(x) is
achieved via the exponential mapping x = expu (Fig. 9.9). In terms of preimage
domain the function f(x) = xN is simply a multiplication by N .

Now consider that the function expu is periodic in the imaginary direction:

expu = exp(u+ 2πj)

Therefore preimages are 2πj-periodic, that is if u is a representation of x, then
so is u+ 2πjn ∀n ∈ Z (Fig. 9.10).

A multiplication by an integer in the preimage domain v = Nu expands one
period Imu ∈ [0, 2π] to N periods Im v ∈ [0, 2πN ]. Respectively the function
f(x) takes each value N times as x goes across all possible values in C. Con-
versely, a division by an integer u = v/N shrinks N periods to one period and
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Representation
domain

Preimage
domain

x xN

u Nu

x
N

=
ex

p
N
u

x
=

ex
p
u

v = Nu

f(x) = xN

Figure 9.9: The preimage and representations domains.

Re u

Im u

0

2πj

4πj

6πj

−2πj

−4πj

−6πj

Figure 9.10: Periods of the preimage of the representation x =
expu. Each strip (where there is no difference between gray and
white strips) denotes a preimage of the entire complex plane with
the exception of zero. The preimages denoted by the dots are
preimages of one and the same value.

a previously single value of f(x) turns into N different values of x. This is an-
other possible way to explain the fact that the equation xN = a has N different
solutions. Fig. 9.11 demonstrates the result of transformation of all preimages
in Fig. 9.10 by a division by 2 corresponding to the equation u = v/2. Notice
that the preimages in Fig. 9.11 correspond to two different representation val-
ues, while the peimages in Fig. 9.10 were corresponding to one and the same
representation value.

The preimage of the real axis x ∈ R consists of two “horizontal” lines Imu =
0 and Imu = π, or, more precisely, of their periodic repetitions Imu = 2πn
and Imu = π + 2πn, where n ∈ Z. The line Imu = 0 (and its repetitions)
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Re u

Im u

0

2πj

4πj

6πj

−2πj

−4πj

−6πj

Figure 9.11: Transformation of the preimage points in Fig. 9.10 by
division by 2.

corresponds to the positive real numbers, the line Imu = π (and its repetitions)
corresponds to the negative real numbers. The preimage of the zero x = 0 exists
only in the limiting sense Reu → −∞. Thus the multiplication of u by N is
mapping the preimage of the real axis onto itself, therefore this multiplication’s
representation xN maps the real axis onto itself.

The “vertical” lines Reu = a are preimages of circles of radius ea, where
moving upwards along such lines corresponds to the counterclockwise movement
along the respective circle (Fig. 9.12), Particularly the imaginary axis is the
preimage of the unit circle (note that a section of such line extending over a
single imaginary period Imu ∈ [b, b + 2π) is sufficient to generate all possible
values on such circle). Multiplication by N maps the imaginary axis onto itself,
thereby its representation xN maps the unit circle onto itself. A single preimage
period [0j, 2πj] is thereby mapped to N periods [0, 2πjN ], which corresponds
to the unit circle being mapped to itself “N times”. We will shortly see that
the mapping of the unit circle onto itself is the reason for the Butterworth poles
being located on the unit circle.

Even/odd poles

The poles of (9.18) are given by 1 + f2 = 0, which can be rewritten as f = ±j.
In the Butterworth case the solutions of f = ±j were interleaved on the unit
circle and also corresponded to even and odd values of n in the solution formula
for 1+f2 = 0, where f = j was defining the even poles and f = −j was defining
the odd poles.

We will take effort to keep the same correspondence between the equations
f = ±j and the even/odd values of n for other functions f(ω). In that regard
it is instructive to first review the Butterworth case, but now using the just
introduced linear scaling representation form, as it will then nicely generalize to
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Re u

Im u

0

2πj

4πj

−2πj

−4πj

Re x

Im x

0

Figure 9.12: A circular trajectory and its preimage.

other f(ω) that we are going to use.

Let ω move along the unit circle in the counterclockwise direction. Its preim-
age u defined by ω = expu will respectively move upwards along the imaginary
axis and so will v = Nu. Respectively f(ω) = exp v moves along the unit circle
in the counterclockwise direction, just N times faster, so while f(ω) completes
one circle, ω will complete only 1/N -th of a circle. The value of f(ω) will be
passing through the points j and −j, since they are lying on the unit circle. At
these moments the value of ω will be the solution of the equations f(ω) = j
and f(ω) = −j respectively (Figs. 9.13 and 9.14). There will be no other solu-
tions since if ω moves in a circle of any other radius, this circle will map to a
circle of a non-unit radius and f(ω) will not go through the points ±j. Thus
Fig. 9.14 contains the full set of Butterworth poles, where the interleaving of
the white/black dots on the circle in Fig. 9.14 arises from the interleaving of the
white/black dots on the circular tajectory in Fig. 9.13.

Re v

Im v

0

2πj

−2πj

Re f(ω)

Im f(ω)

0

Figure 9.13: f(ω) moving in a unit-radius circular trajectory, the
points f(ω) = ±j and their preimages.
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Re u

Im u

0

2πj

−2πj

Re ω

Im ω

0

Figure 9.14: Transformation of Fig. 9.13 by u = v/N (for N = 2).
The white and black dots on the circle are even/odd Butterworth
poles in terms of ω.

Apparently, the passing of f(ω) through ±j corresponds to

v = jπ

(
1
2

+ n

)
where f(ω) = j occurs at even n and f(ω) = −j occurs at odd n. The value of
u at these moments is

u = jπ
1
2 + n

N

and the value of ω is

ω = exp
(
jπ

1
2 + n

N

)
which is pretty much the same as the expression (8.13) we have developed before.
The even/odd values of n still correspond to the solutions of f = j and f = −j
respectively and thus we have a constency in referring to the solutions of f = j
as even poles and to the solutions of f = −j as odd poles.

Lowpass, bandpass and highpass filters

If we want H(s) in (9.18) to be a (unit cutoff) lowpass filter, then we should
impose some additional requirements on f(ω):

f(ω) ≈ 0 for ω � 1
f(ω) ≈ ∞ for ω � 1

(9.21)

where around ω = 1 the absolute magnitude of f(ω) should smoothly grow from
0 to ∞. Apparently the Butterworth filter’s function f(ω) = ωN satisfies these
requirements.

Similarly to Butterworth filter, with other filter types arising from (9.18)
we will not be constructing f(x) which give a highpass or bandpass response.
Instead, highpass and bandpass filters can be simply obtained by LP to HP and
LP to BP substitutions respectively.
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9.5 Trigonometric functions on complex plane

The trigonometric functions, such as sinx, cosx, tanx and so on can be evalu-
ated for complex argument values. In that regard they occur to be closely related
to the hyperbolic functions sinhx, coshx, tanhx and so on. The extention to
x ∈ C can be obtained by simply evaluating the formulas

coshx =
ex + e−x

2
(9.22)

sinhx =
ex − e−x

2
(9.23)

tanhx =
sinhx
coshx

(9.24)

cosx =
ejx + e−jx

2
= cosh jx (9.25)

sinx =
ejx − e−jx

2j
= −j sinh jx (9.26)

tanx =
sinx
cosx

=
1
j
· e

jx − e−jx

ejx + e−jx
= −j tanh jx (9.27)

etc., where the function ex is allowed to take complex argument values. Notice
that thereby we immediately obtain the “imaginary argument properties”:

sin jx = j sinhx (9.28a)
cos jx = coshx (9.28b)

sinh jx = j sinx (9.28c)
cosh jx = cosx (9.28d)

etc., where intuitively we assume x ∈ R, but the formulas also work for x ∈ C.
By direct evaluation one could verify that all basic properties and fundamen-

tal trigonometric and hyperbolic identities continue to hold in complex domain.
Particularly

sin(−x) = − sinx
cos(−x) = cosx

cos(x+ 2π) = cosx
cos(x− π/2) = sinx

sin2 x+ cos2 x = 1
sinh(−x) = − sinhx
cosh(−x) = coshx

cosh2 x− sinh2 x = 1

etc. Also, apparently, conjugation commutes with the respective functions:

sinx∗ = (sinx)∗

cosx∗ = (cosx)∗

sinhx∗ = (sinhx)∗

coshx∗ = (coshx)∗
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etc.
A direct corollary of (9.28) and the trigonometric formulas for the sum

of arguments are the formulas allowing to express a trigonometric function a
complex argument via the real and imaginary parts of the argument. E.g.

cos(u+ jv) = cosu cos jv − sinu sin jv = cosh v cosu− j sinh v sinu (9.29a)
sin(u+ jv) = sinu cos jv + cosu sin jv = cosh v sinu+ j sinh v cosu (9.29b)

etc.

Periodicity

Since the periodicity property is retained in the complex domain, the former real
periods of the trigonometric functions turn into strips on the complex plane. E.g.
the 2π periods of cosx are shown in Fig. 9.15.

Re x

Im x

0 2π 4π−2π−4π

Figure 9.15: Periods of cosx in the complex plane. All dots are
preimages of one and the same value.

Due to the even symmetry of the cosine, almost every value occurs twice on
a period (as illustrated by the dots in Fig. 9.15). That is if the value y occurs
at x (that is y = cosx), then y also occurs at −x. The exceptions are being
cosx = 1 and cosx = −1, which are mapped to themselves by x ← −x if the
periodicity of cosx is taken into account.

Inverse functions

Inverting (9.22) and (9.23) we obtain

cosh−1 x = ln
(
x±

√
x2 − 1

)
sinh−1 x = ln

(
x±

√
x2 + 1

)
The principal value of the complex square root is defined as

√
x = exp

lnx
2

=
√
|x| · exp j

arg x
2

(9.30)
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where arg x ∈ [−π, π],4 in which case Re
√
x ≥ 0 ∀x ∈ C thereby (9.30) is a

generalization of arithmetric square root of real argument to complex domain.
Notice that (9.30) gives the values on the upper imaginary semiaxis for real
x < 0 (provided arg x = π for x < 0).

The principal value of lnx is defined in the usual way:

lnx = ln |x|+ j arg x

Respectively we can introduce the principal values of cosh−1 and sinh−1 as:

cosh−1 x = ln
(
x+

√
x2 − 1

)
(9.31a)

sinh−1 x = ln
(
x+

√
x2 + 1

)
(9.31b)

where we chose the signs in front of the square roots in such as way as to ensure
that cosh−1 x ≥ 0 ∀x ≥ 1 and sinh−1 x ∈ R ∀x ∈ R.

The formulas (9.31a), (9.31b) raise concerns of numerical robustness in cases
where the two terms under the logarithm sign are nearly opposite. By recipro-
cating the values under the logarithm signs we can rewrite them equivalently
as

cosh−1 x = − ln
(
x−

√
x2 − 1

)
(9.31c)

sinh−1 x = − ln
(√

x2 + 1− x
)

(9.31d)

where the choice between (9.31a), (9.31b) and (9.31c), (9.31d) should be made
based on comparing the complex arguments of the two terms under the loga-
rithm sign. We should choose the formulas where we are adding two numbers
whose complex arguments are not further than 90◦ apart. Particularly, for real
x we may write

sinh−1 x = sgnx · ln
(
|x|+

√
x2 + 1

)
(x ∈ R) (9.31e)

whereas the formula (9.31a) already works well for real x ≥ 1.
Using (9.28) we can construct the principal values:

arccosx = −j cosh−1 x =

= −j ln
(
x+

√
x2 − 1

)
= j ln

(
x−

√
x2 − 1

)
(9.32a)

arcsinx = −j sinh−1 jx =

= −j ln
(
jx+

√
1− x2

)
= j ln

(√
1− x2 − jx

)
(9.32b)

However besides the precision issues there are issues related to the principal
values of arg x switching leaf on the negative real axis. Technically this means
that there is a discontinuity in the principal values of √ and ln on the negative
real axis. With (9.31) this was generally tolerable, as the discontinuities weren’t

4We specifically leave it undefined, whether arg x = π or −π for negative real numbers,
as this is anyway a line on which the principal value of arg x has a discontinuity and thus,
considering the usual computation precision losses, one often can’t rely on the exact value of
arg x being returned for x < 0.
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arising for the “usual” values of the argument, which are x ≥ 1 for cosh−1 x
and x ∈ R for sinh−1 x, since neither the argument of the square root nor the
argument of the logarithm become real negative in such cases. With (9.32a), on
the other hand, we do have a negative expression under the square root for real
x ∈ (−1, 1), which is the most important argument range.

We could therefore adjust (9.32a) to

arccosx = −j ln
(
x+ j

√
1− x2

)
= j ln

(
x− j

√
1− x2

)
(9.32c)

The formulas (9.32b) and (9.32c) work well for x ∈ [−1, 1], particularly precision-
wise it doesn’t matter which of the two options in (9.32b) and (9.32c) are taken
for x ∈ [−1, 1], however they exibit a discontinuity for real x : |x| > 1. On the
other hand, for purely imaginary argument values the formula (9.32b) can be
rewritten essentially as (9.31e) to automatically choose the best option precision-
wise:

arcsin jx = j sinh−1 x = j sgnx · ln
(
|x|+

√
x2 + 1

)
(x ∈ R) (9.32d)

Preimages of the real line with respect to cosx

By (9.29a) cosx attains purely real values iff x ∈ R or Rex = πn where n ∈ Z.
However, due to periodicity and evenness properties, each value is attained
infinitely many times. We would like to choose a principal preimage of the real
line with respect to cosx. That is, we are interested in a (preferably continuous)
minimal set of points, whose image under transformation y = cosx is R.

Note, that we do not really have to choose this principal preimage, as the
discussions where we are going to refer to it should lead to exactly the same
results no matter which of the preimages of the real line is taken. However,
for the sake of clarity of discussion it is convenient to have an unambiguous
reference preimage.

Apparently there are infinitely many choice possibilities, among which there
are at least several “reasonable” ones. For the purposes of this text we will
choose the principal preimage as shown in Fig. 9.16. The same figure also
shows the periodic repetitions of the principal preimage.5

This principal preimage of the real axis thereby consists of three parts:

x ∈ [0, π] ⇐⇒ y ∈ [−1, 1]
x ∈ [0,+j∞) ⇐⇒ y ∈ [1,+∞)
x ∈ [π, π + j∞) ⇐⇒ y ∈ (−∞,−1]

Apparently the principal preimage alone doesn’t cover all preimage points of
the real line. Neither does it if we add its periodic repetitions in Fig. 9.16, since
the lower-semiplane points of lines Rex = πn are still not included. We can
include them by simply rotating all preimages in Fig. 9.16 around the origin,
which corresponds to multiplication of all points x by −1. Notice that by adding
periodic repetitions we addressed the periodicity of cosx, while by adding the
preimages multiplied by −1 we addressed the evenness property of cosx.

5Notice that the principal preimage in Fig. 9.16 doesn’t necessarily coincide with the set
of values returned by the formulas (9.32), particularly since the arccos formulas in (9.32)
exhibit discontinuities either for x ∈ [−1, 1] or for real x : |x| > 1. The main reason to choose
this specific preimage is that its generalization to the case of Jacobian elliptic cosine will be
convenient for our purposes.
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Re x

Im x

0 π 2π−π−2π

Figure 9.16: The principal preimage (solid line) of the real axis,
with respect to y = cosx, and its periodic repetitions (dashed
lines).

Representations of horizontal preimage lines by cosx

Equation (9.29a) implies that if the imaginary part v is fixed and the real part
u is varying, that is the argument of the cosine is moving in a line parallel to the
real axis, then the value of cos(u+ jv) is moving along an ellipse in the complex
plane, the real semiaxis of the ellipse being equal to cosh v and the imaginary
semiaxis being equal to sinh v. Fig. 9.17 illustrates. At v = 0 the real semiaxis
is 1 and the imaginary semiaxis is zero. As |v| grows both semiaxes grow, the
imaginary semiaxis staying smaller than the real one in absolute magnitude
(Fig. 9.18). Both semiaxes become equal in the limit v → ∞ where the ellipse
turns into a circle.

u

v

0 2π 4π−2π−4π

Re y

Im y

0

y = cos(u+ jv)

Figure 9.17: An elliptic trajectory and two its preimages. The
picture is qualitative. In reality, for this kind of ellipse proportions
the preimages would need to be located much closer to the real
line.

Given v > 0 and increasing u, the movement of the point cos(u+ jv) along
the ellipse will be in the negative (clockwise) direction, due to the − sign in front
of the imaginary part in (9.29a). Respectively the positive (counterclockwise)
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−1 1

−j

j

0 Re y

Im y

y = cos(u+ jv)

Figure 9.18: A family of elliptic trajectories generated from hori-
zontal preimages v = const < 0.

direction movement will occur either for a decreasing u or for a negative v,
where the latter is illustrated in Fig. 9.17.

The even symmetry of the cosine (cos(−x) = cosx) implies that for each
horizontal trajectory u + jv of the cosine’s argument, there is a symmetric
trajectory −(u + jv) which produces exactly the same cosine trajectory. This
other trajectory is shown in Fig. 9.17 by the dashed line. Notice how this is
related to the fact that flipping the sign of v flips the direction of the movement
along the ellipse: flipping the sign of v is the same as flipping the sign of the
entire cosine’s argument (that is flipping the signs of both u and v), which leaves
the elliptic trajectory unaffected, and then flipping the sign of u, which reverts
the direction of movement of both u+ jv and cos(u+ jv).

From the fact that the semiaxes of the ellipse are cosh v and sinh v and
therefore their absolute magnitudes are monotonically growing with |v| (as one
can see in Fig. 9.18) we can deduce that ellipses corresponding to different v
do not overlap, except for a switch from v to −v, which simply changes the
direction of the movement along the ellipse. That is for a given ellipse with
cosh v and sinh v semiaxes there are only two preimages, as shown in Fig. 9.17.
An exception occurs when the imaginary semiaxis of the ellipse is zero, in which
case there is only one preimage, which is the real line.

Representations of horizontal preimage lines by secx

The secant function secx = 1/ cosx is obviously 2π-periodic. In fact it bears
quite a few further similarities to cosx, which are easier to see if we write it in
the polar form:

|secx| = 1
|cosx|

(9.33a)

arg secx = − arg cosx (9.33b)
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Consider a horizontal line u + jv (where u is varying and v = const) and its
respective representation y = sec(u + jv). According to (9.33), y moves in an
ellipse-like curve around the origin, as shown in Fig. 9.19. At smaller magnitudes
of v the curve begins to look more like a figure of 8 (Fig. 9.20). The curve is not
an ellipse anymore due to the reciprocation in (9.33a). On the other hand, by
(9.33b) the “angular velocity” is the same as with y = cosx, except that is has
the opposite sign, therefore the rotation is happening in the opposite direction.
Therefore for an increasing u we get counterclockwise rotation iff v > 0 rather
than iff v < 0.

u

v

0 2π 4π−2π−4π

Re y

Im y

0

y = sec(u+ jv)

Figure 9.19: A quasielliptic trajectory and two its preimages (qual-
itatively).

−1 1

−j

j

0 Re y

Im y

y = sec(u+ jv)

Figure 9.20: A family of quasielliptic trajectories generated from
horizontal preimages v = const > 0.
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9.6 Chebyshev polynomials

An N -th order Chebyshev polynomial is defined as:

TN (x) = cos (N arccosx) (9.34)

Fig. 9.21 illustrates. Notice the bipolar oscillations of equal amplitude (referred
to as equiripples) on the range [−1, 1]. As one can see in Fig. 9.21, the equiripple
amplitude is unity.

Somewhat surprisingly, (9.34) can be equivalently written as an N -th order
real polynomial of x at any N ∈ N, e.g. for N = 4 we have T4(x) = 8x4−8x2+1,
which is why they are called polynomials.

x

TN (x)

1−1

1

-1

0

Figure 9.21: Chebyshev polynomials of even (solid) and odd
(dashed) orders.

Note that arccosx takes complex values for x > 1 and x < −1. We will
also often assume x taking complex values, therefore arccosx and TN (x) will be
complex as well. For |x| > 1 even though arccosx becomes complex, the value
cos(N arccosx) is still real, and so is the polynomial itself.

A proper discussion of Chebyshev polynomials falls outside the scope of the
book, as the respective information can be easily found elsewhere. Here we shall
concentrate on the details which will be important for our purposes.

Chebyshev polynomials as representations of linear scaling

Introducing auxiliary variables u and v we rewrite (9.34) as

x = cosu
v = Nu

TN (x) = cos v

or, in the implicit form:
TN (cosu) = cos(Nu) (9.35)

Thus the function TN (x) is a representation of the linear scaling v = Nu, the
mapping function being x = cosu. Note that by multiplying the whole preimage
domain by j we obtain a different (but equivalent) representation:

x = coshu
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v = Nu

TN (x) = cosh v

which gives us another equivalent expression for (9.34)

TN (x) = cosh
(
N cosh−1 x

)
(9.36)

and its respective implicit form

TN (coshu) = cosh(Nu)

In our discussion we will stick to using the cosine-based representation. The
readers may draw parallels to the hyperbolic cosine-based representation if they
wish.

In case of Butterworth filter-generating functions xN represented via expu
mapping, the preimages were 2πj-periodic. This time they are 2π-periodic.
Additionally there is an even symmetry: u and −u are preimages of the same
x.

Considering the effect the linear scaling v = Nu on the principal preimage
of the real line shown in Fig. 9.16, we obtain the following:

- The principal real half-period [0, π] is expanded to to [0, πN ], which is re-
sponsible for the occurrence of the equiripples on the segment x ∈ [−1, 1].
Since N is integer, other real half-periods expand similarly, without gener-
ating yet more representation values of f(x). Thus f(x) is a single-valued
function.

- The principal preimage [0,+j∞) of x ∈ [1,+∞) maps onto itself. The
non-principal preimages [2πn + 0j, 2πn + j∞) of x ∈ [1,+∞) map onto
some other preimages [2πNn + 0j, 2πNn + j∞) of x ∈ [1,+∞). Similar
mappings occur for the preimages of x ∈ [1,+∞) located in the lower
complex semiplane. Thus x ∈ [1,+∞) is mapped by TN (x) onto itself,
corresponding to the monotonically growing behavior of TN (x) for x ≥ 1.

- The principal preimage [π + 0j, π + j∞) of x ∈ (−∞,−1] is mapped
onto [πN + 0j, πN + j∞), which is a preimage of x ∈ [1,+∞) is N is
even and of x ∈ (−∞,−1] if N is odd. The non-principal preimages of
x ∈ (−∞,−1] (both those in the upper complex semiplane and in the
lower complex semiplane) are mapped similarly. Thus x ∈ (−∞,−1] is
mapped by TN (x) onto itself if N is odd, or onto x ∈ [1,+∞) if N is even,
corresponding to the monotonic behavior of TN (x) for x ≤ −1.

Notice that these results correspond to the graphs in Fig. 9.21.

Now consider a line Imu = β (where β is some real constant value) parallel
to the real axis in the preimage domain. Such lines are are, as we know from
the previous discussion of the cosine of complex argument, the preimages of
ellipses of various sizes, where the size grows with |β| (Fig. 9.18). These ellipses
are also not overlapping each other, except that the ellipses corresponding to β
and −β are identical (but have opposite orientations). Therefore TN (x) maps
any ellipse from this family onto another ellipse from this family and vice versa,
similarly to how xN mapped the unit circle onto itself and mapped circles onto
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other circles. This time, however, the ellipse which is mapped onto itself, is the
one with a zero imaginary semiaxis.

Notice that since the line Imu = β is mapped to Im v = Nβ, the line stays
in the same (upper or lower) semiplane after such mapping and goes in the same
(to the right or to the left) direction. Thus, if x is moving in an ellipse in a
counterclockwise or respectively clockwise direction, then TN (x) moves in the
same direction.

Even/odd property

Since cos(u±π) = − cosu, a negation of x corresponds to a shift of its preimage
u by π. Respectively v is shifted by Nπ, which will result in a negation of
TN (x) if N is odd and will not change TN (x) is N is even. Therefore TN (x) is
even/odd if N is even/odd:

TN (−x) = (−1)NTN (x) (9.37)

Values at special points

The principal preimage of x = 1 is u = 0. Therefore v = 0 and TN (x) = 1.
Therefore

TN (1) = 1

By (9.37)
TN (−1) = (−1)N

The principal preimage of x = 0 is u = π/2. Respectively v = Nπ/2 and

TN (0) = Re jN =

{
0 if N is odd
(−1)N/2 if N is even

where Re jN is a way of writing the sequence 1, 0,−1, 0, . . . in the same way how
(−1)N is a way of writing the sequence 1,−1, 1,−1, . . ..

Leading coefficient

Knowing that TN (x) is a real polynomial of order N , we can obtain its leading
coefficient aN by evaluating the limit

aN = lim
x→+∞

TN (x)
xN

= lim
x→+∞

cosh(N cosh−1 x)
xN

= lim
x→+∞

exp(N cosh−1 x)
2xN

=

= lim
x→+∞

exp(N ln 2x)
2xN

= lim
x→+∞

(2x)N

2xN
= lim
x→+∞

2NxN

2xN
= 2N−1

For the purposes of this book’s material, we won’t need to be able to explicitly
find the other coefficients and will therefore skip this topic.

Zeros

Rather than being interested in the values of the coefficients of Chebyshev poly-
nomials, for our purposes it will be more practical to know the locations of their
zeros. Letting TN (x) = 0 we have

v = π

(
1
2

+ n

)
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Respectively

u = π
1
2 + n

N

and

x = cos
(
π

1
2 + n

N

)
which means that the zeros are

zn = cos
(
π

1
2 + n

N

)
(9.38)

where there are N distinct values corresponding to 0 < u < π. Notice that the
zeros are all real and lie within (−1, 1). Also notice that zn = −zN−1−n, there-
fore the zeros are positioned symmetrically around the origin. Consequently, if
N is odd, one of zn will be at the origin.

Using (9.38) we can write TN (x) in the factored form:

TN (x) = xN∧1 ·
∏
zn>0

x2 − z2
n

1− z2
n

(9.39)

where we are taking the product only over the positive zeros using the symmetry
of the zeros relatively to the origin, and the odd factor xN∧1 (where N ∧ 1
denotes bitwise conjunction) appears only for odd N where one of the zeros is
at the origin. The normalizations by (1 − z2

n) are simply appearing from the
requirement that each factor must be equal to 1 at x = 1, so that TN (x) = 1.

Renormalized Chebyshev polynomials

The factored form (9.39) offers some nice insights into the comparison of the
behavior of TN (x) and xN . Writing xN is a comparable factored form we have

xN = xN∧1 ·
∏
zn>0

x2 (9.40)

where “taking the product over zn > 0” means that we are having as many
factors as there are positive zeros in the Chebyshev polynomial TN (x). Thus
the difference between xN and TN (x) is that the factors x2 are replaced by
(x2 − z2

n)/(1− z2
n).

Apparently, if zn → 0 ∀n then (x2−z2
n)/(1−z2

n)→ x2 and respectively (9.39)
is approaching xN . Unfortunately we cannot express this as simply TN (x) →
xN , since the zeros of TN (x) are fixed.

To mathematically express this variation of zeros, we can notice that the
value of (9.39) at x = 1 is always unity. Therefore we can introduce the poly-
nomials

ˆ
TN (x, λ) =

TN (x/λ)
TN (1/λ)

(9.41)

to which we refer as renormalized Chebyshev polynomials. By construction

ˆ
TN (1, λ) = 1 ∀λ, while the zeros of

ˆ
TN (x, λ) are

ˆ
zn = λzn. Therefore

ˆ
TN (x, λ) = xN∧1 ·

∏
zn>0

x2 − (λzn)2

1− (λzn)2
(9.42)
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and
lim
λ→0ˆ

TN (x, λ) = xN

The formula (9.41) cannot be evaluated for λ = 0, however we apparently can
take the limit at λ→ 0 as the value of TN (x, 0) and thus

ˆ
TN (x, 0) = xN

ˆ
TN (x, 1) = TN (x)

Notice that the formula (9.42) perfectly works at λ = 0.
Since the equiripple amplitude of TN (x) is unity, by (9.41) the equiripple

amplitude of
ˆ
TN (x) is 1/TN (1/λ). The equiripple range x ∈ [−1, 1] of TN (x)

is respectively transformed into the equiripple range x ∈ [−λ,−λ] of
ˆ
TN (x, λ).

Thus λ simultaneously controls the equiripple amplitude and the equiripple
range of

ˆ
TN (x, λ) (Fig. 9.22).

x

T7(x, λ)
ˆ

1−1

1

-1

0

Figure 9.22: Renormalized Chebyshev polynomial
ˆ
T 7(x, λ) for λ =

1 (solid), λ = 0.93 (dashed) and λ = 0 (thin dashed).

As we won’t need λ < 0, we won’t consider that option. As for the large
values of λ, it will be practical to restrict the value of λ so that |λzn| < 1 ∀n.
Apparently this means λmax = 1/max{zn} where 0 ≤ λ < λmax. Notice that
since |zn| < 1 ∀n, it follows that λmax > 1.

Often it will be even more practical to restrict λ to 0 ≤ λ ≤ 1. At λ = 1
the equiripple amplitude of

ˆ
TN (x, λ) is already unity. As λ grows further the

equiripple amplitude quickly grows, reaching∞ at λ = λmax. Also the equiripple
range exceeds [−1, 1], which could become inconvenient for our purposes.

In order to simplify the notation, often we will omit the λ parameter, un-
derstanding it implicitly, and simply write

ˆ
TN (x) instead of

ˆ
TN (x, λ).

Slope at |x| ≥ 1

Let’s compare the factors of (9.42) and (9.40). Computing the differences:

x2 − (λzn)2

1− (λzn)2
− x2 =

x2 − (λzn)2 − x2 + (λzn)2x2

1− (λzn)2
=

(λzn)2(x2 − 1)
1− (λzn)2

(9.43)

and taking into account that 0 < zn < 1, we notice that for |x| > 1 and
0 < λ ≤ λmax the differences (9.43) are strictly positive and respectively the
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factors of (9.42) are larger than those of (9.40). In the range x > 1, since all
factors are positive, we have

ˆ
TN (x) > xN (x > 1, N > 1)

By the even/odd symmetries of
ˆ
TN (x) and xN :

|
ˆ
TN (x)| > |xN | (|x| > 1, N > 1)

From (9.43) we can also notice that the difference grows with λ, thus at larger λ
the polynomial

ˆ
TN (x) exceeds xN (in absolute magnitude) by a larger amount.

At λ = 1 we have
ˆ
TN (x) = TN (x). For this specific case we would like

to get a more exact estimation of the steepness of the slope at x = 1, to get
an idea of how much steeper is the slope of TN (x) compared to xN . We have
already seen that the leading coefficient of TN (x) is 2N−1, which means that at
x → ∞ the polynomial TN (x) grows 2N−1 times faster than xN . It would be
also informative to compare their slope at x = 1.

An attempt to compute the derivative of TN (x) at x = 1 in a straightforward
manner results in an uncertainty, thus it’s easier to take a way around. At points
infinitely close to x = 1 we expand the cosine into Taylor series up to the second
order term:

x = cosu = 1− u2

2

TN (x) = cos v = 1− v2

2

This scaling by N times in the preimage domain (v = Nu) corresponds to
scaling by N2 times in the representation domain (v2 = N2u2) and we obtain

d
dx
TN (x)

∣∣∣
x=1

= N2

On the other hand
d

dx
xN
∣∣∣
x=1

= N

Thus at x = 1 Chebyshev polynomials grow N times faster than xN .

9.7 Chebyshev type I filters

Chebyshev (or, more precisely, Chebyshev type I) filters arise by using renormal-
ized Chebyshev polynomials

ˆ
TN (ω) as f(ω) in (9.18).6 The main motivation

to use renormalized Chebyshev polynomials instead of ωN (which is used in
Butterworth filters) is that, as we already know they grow faster than ωN for
|ω| > 1, which results in a steeper transition band compared to Butterworth
filters. The tradeoff is that in order to achieve a steeper transition band we need

6Classically, Chebyshev filters are obtained from Chebyshev polynomials TN (ω) by letting
f(ω) = εTN (ω) where ε > 0 is some small value. This way however usually requires some
cutoff correction afterwards. The way how we introduce Chebyshev filters is essentially the
same, but directly results in a better cutoff positioning. One way is related to the other via
(9.44) combined with a cutoff adjustment by the factor λ.
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to allow ripples in the passband. At the same time, the analytical expressions
(9.34) and (9.36) allow to easily obtain the function inversion of the polyno-
mial, allowing analytical computation of the filter’s internal variables (such as
pole positions) for arbitrarily high polynomial orders N , which would have been
impossible for polynomials of a fully general form.

Thus, in (9.18) we let
f(ω) =

ˆ
TN (ω)

that is
|H(jω)|2 =

1
1 +

ˆ
T 2
N (ω)

The λ parameter of
ˆ
TN (ω) is affecting the equiripple amplitude of

ˆ
TN and

thereby the equiripple amplitude in the passband of |H(jω)|. It is convenient
to introduce the additional variable

ε =
1

TN (1/λ)
(9.44)

which is simply equal to the equiripple amplitude of
ˆ
TN . Using (9.44) we

particularly may write

f(ω) =
ˆ
TN (ω) = εTN (ω/λ)

Notice that (9.44) allows to compute ε from λ and vice versa. Therefore, if
we are given a desired equiripple band [−λ, λ], we thereby have specified λ and
can use (9.44) to compute ε. Conversely, if we are given a desired equiripple
amplitude (which is a more common case), we thereby have specified ε and can
invert (9.44) to compute λ:

1
λ

= T−1
N (1/ε) = cosh

(
1
N

cosh−1 1
ε

)
(where T−1

N denotes the inverted function TN ).
The amplitude response |H(jω)| is thus varying within [1/

√
1 + ε2, 1] on

the equiripple range ω ∈ [−λ, λ]. On the other hand, λ (or, equivalently, ε)
affects the slope of

ˆ
TN (and respectively the slope of |H(jω)|) at ω = 1. The

slope steepness is thereby traded against the equiripple amplitude, where steeper
slopes are achieved at larger equiripple amplitudes. Fig. 9.23 illustrates.

Poles of Chebyshev type I filters

We have mentioned that the (9.34) is actually a polynomial of x. Therefore the
denominator of (9.18) is a polynomial of ω and we can find the roots of this
polynomial, which are simultaneously the poles of |H(s)|2 = H(s)H(−s). The
equation for these poles is thus

1 +
ˆ
T 2
N (ω) = 0

or

ˆ
TN (ω) = ±j

or
εTN (ω/λ) = ±j
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ω

|H(jω)|, dB
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-18

Figure 9.23: Chebyshev type I filter’s amplitude responses for N =
4 and ε = 1 (solid), ε = 0.6 (dashed) and ε = 0 (Butterworth, thin
dashed).

or, introducing ω̄ = ω/λ

TN (ω̄) = ±j
ε

(9.45)

It is quite helpful to use the interpretation of TN in terms of representation
preimage domain to solve (9.45). Recall that TN maps ellipses (of a special
ellipse family, where the real and imaginary semiaxes a and b are related as
a2 − b2 = 1, so that they can be represented as a = coshβ, b = sinhβ for
some β) to ellipses (of the same family). In the preimage domain these ellipses
correspond to lines Imu = β parallel to the real axis.

Suppose ω̄ is moving in such an ellipse. This corresponds to its preimages
moving along two lines Imu = ±β. Let u be one of the preimages in Imu = β,
to which we will refer as the principal preimage. Respectively the full family
of preimages is ±u + 2πn. The principal preimage v of TN (ω̄) is therefore
v = Nu, moving along the line Im v = Nβ. The full family of preimages of
TN (ω̄) is respectively ±Nu+ 2πNn and is moving along the lines Im v = ±Nβ.
Therefore TN (ω̄) is moving in an ellipse whose real and imaginary semiaxes are
coshNβ and sinhNβ respectively.

We wish TN (ω̄) to move in a counterclockwise direction along an ellipse which
goes through the ±j/ε points. Then at the moments when TN (ω̄) = ±j/ε
we will obtain solutions of (9.45). We additionally wish the real part of the
preimage v of TN (ω̄) to be increasing during such movement,7 therefore for a
counterclockwise movement of TN (ω̄) we need Im v = Nβ < 0. Therefore, in
order for the ellipse to go through ±j/ε, the imaginary semiaxis sinhNβ of this
ellipse must be equal to −1/ε and thus we obtain:

β = − 1
N

sinh−1 1
ε

7This choice is arbitrary, we simply better like the option of increasing real part of v.
Alternatively we could let the real part of v decrease, obtaining β > 0. However then we
would need to have a negative coefficient in front of n in (9.46).
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According to (9.29a), the purely imaginary values of a cosine are attained
when the real part of the cosine’s argument is equal to π( 1

2 + n), where n ∈ Z.
Thus, the values ±j/ε will be attained by TN (ω̄) at

v = jNβ + π

(
1
2

+ n

)
(9.46)

where, since β < 0, the value TN (ω̄) = j/ε is attained at n = 0 and other even
values of n. Thus, the solutions of the even pole equation f = j will occur at
even values of n. Fig. 9.24 illustrates.

Re v

Im v

0 2π

Re TN (ω̄)

Im TN (ω̄)

0

TN (ω̄) = cos v

Figure 9.24: Preimages of TN (ω̄) = ±j/ε (qualitatively, the scales
of the real and imaginary axes in the v plane are not equal).

From (9.46) we obtain

u = jβ + π
1
2 + n

N
where there are 2N essentially different preimages of ω̄ occuring at 2N consecu-
tive values of n all lying on the line Imu = β. Going back to the representation
domain we obtain ω̄ lying on the respective ellipse:

ω̄ = cos
(
jβ + π

1
2 + n

N

)
(9.47)

Fig. 9.25 illustrates.
Switching to ω = λω̄ we have:

ω = λ cos
(
jβ + π

1
2 + n

N

)
(9.48)

Note that formally allowing n to take real values and letting n = −1/2 we
obtain u = jβ and ω = λ cos(jβ) = λ coshβ which is a real positive value.
Since the imaginary part of the cosine’s argument is negative, the values of
ω are moving counterclockwise for increasing n, starting from the value on
the positive real semiaxis occuring at n = −1/2. That is, the values of ω
are moving counterclockwise starting from the positive real semiaxis. As we
already found out, the values occurring at even/odd n correspond to even/odd
poles respectively, and thus the even and odd poles are interleaved on the ellipse.

Switching from ω to s = jω we obtain the expression for the poles:

s = jλ cos
(
jβ + π

1
2 + n

N

)
=
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Re u

Im u

0 2π

Re ω̄

Im ω̄

0

ω̄ = cosu

Figure 9.25: Transformation of Fig. 9.24 by u = v/N (for N = 2).
The white and black dots on the ellipse are even/odd Chebyshev
poles in terms of ω̄. (The picture is qualitative, as the scales of the
real and imaginary axes in the u plane are not equal.)

= λ sinhβ sinπ
1
2 + n

N
+ jλ coshβ cosπ

1
2 + n

N
(9.49)

Since the values of ω are moving counterclockwise starting from the real positive
semiaxis, the values of s are moving counterclockwise starting from the imagi-
nary “positive” semiaxis, which means that starting at n = 0 we first obtain the
stable poles at n = 0, . . . , N − 1. The next N values of n will give the unstable
poles.

Note that since ( 1
2 + n)/N never takes integer values, the real part of s is

never zero and there are no poles on the imaginary axis. The poles are also
symmetric relatively to the real and imaginary axes and we can discard the half
of the poles located in the right complex semiplane in the same way how we did
it with the Butterworth filter. Figs. 9.26 and 9.27 illustrate.8

In Figs. 9.26 and 9.27 one could notice that the poles are condensed close
to the imaginary axis while the Butterworth poles were evenly spacing. This is
easily explained in terms of (9.29a), which gives

tan arg cos(u+ jv) = − sinh v sinu
cosh v cosu

= − tanu · tanh v

Now, if tanh v had been equal to 1, we would have had arg cos(u + jv) = −u,
which would have resulted in an even angular distribution of poles. However,
since | tanh v| < 1, the poles are located closer to the real axis in the ω plane or
closer to the imaginary axis in the s plane.

Gain adjustments

Having obtained the poles and keeping in mind that there are no zeros, we can
obtain the transfer function in the form

H(s) = g ·
∏ 1

s− pn
8It might seem that the imaginary semiaxes of the ellipses in Figs. 9.26 and 9.27 are of

unit length. This is not exactly so, although they are very close, being equal to approximately
1.00003 and 1.00004 respectively.
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−1 1

−j

j

0 Re s
(−Im ω)

Im s
(Re ω)

Figure 9.26: Chebyshev type I filter’s even (white) and odd (black)
poles for N = 6 (including the poles of H(−s)).

−1 1

−j

j

0 Re s
(−Im ω)

Im s
(Re ω)

Figure 9.27: Chebyshev type I filter’s even (white) and odd (black)
poles for N = 5 (including the poles of H(−s)).

where the gain g could be obtained by evaluating the above product at ω = 0
and comparing to H(0). It could be a bit more practical though, to write H(s)
as a product of 1-pole lowpasses with unity passband gains:

H(s) = g ·
∏ 1

s/(−pn) + 1
(9.50)
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where −pn are the (possibly complex) cutoffs and where the coefficient g is
different than in the previous formula. For (9.50) we are having H(0) = g and
thus, using (9.18), we can obtain g from

H(0) =
1√

1 +
ˆ
T 2
N (0)

=
1√

1 + ε2T 2
N (0)

=
1

1 + ε2 (Re jN )2
=

=


1

1 + ε2
for N even

1 for N odd
(9.51)

Another option is to obtain the leading gain g from the requirement |H(j)| =
1/
√

2 arising from

|H(j)|2 =
1

1 +
ˆ
T 2
N (1)

=
1
2

However this might accidentally result in a 180◦ phase response at ω = 0, (since
we used |H(j)| rather than H(j) as a reference) therefore one needs to be careful
in this regard.

Using the default normalization of the Chebyshev filter’s gain given by (9.51),
we obtain the amplitude response varying within [1/

√
1 + ε2, 1] on the range

ω ∈ [−λ, λ]. We could choose some other normalizations, though. E.g. we could
require |H(0)| = 1, which will be automatically achieved if we simply let g = 1
in (9.50). Or we could require the ripples to be symmetric relatively to the zero
decibel level, which is achieved by multiplying (9.51) by (1 + ε2)1/4:

H(0) =

√ √
1 + ε2

1 + ε2T 2
N (0)

so that |H(jω)| varies within [1/(1 + ε2)1/4, (1 + ε2)1/4] within the equiripple
band.

Butterworth limit

Since at λ → 0 we have
ˆ
TN (x) → xN , in the limit λ → 0 Chebyshev type I

filter turns into a Butterworth filter of the same order N .
Simultaneously the ellipse semiaxes λ sinhβ and λ coshβ in (9.49) are both

approaching the unity length. Indeed, letting ε → 0 (which is equivalent to
λ→ 0), we have

1
λ

= cosh
(

1
N

cosh−1 1
ε

)
∼ exp

(
1
N

cosh−1 1
ε

)
=

= exp
ln
(
ε−1 +

√
ε−2 − 1

)
N

=
(
ε−1 +

√
ε−2 − 1

)1/N

∼
(
2ε−1

)1/N
coshβ = cosh

(
− 1
N

sinh−1 1
ε

)
∼ exp

(
1
N

sinh−1 1
ε

)
=

= exp
ln
(
ε−1 +

√
ε−2 + 1

)
N

=
(
ε−1 +

√
ε−2 + 1

)1/N

∼
(
2ε−1

)1/N
Thus 1/λ and coshβ are asymptotically identical and therefore λ coshβ → 1.
In a similar way we can show that λ sinhβ → 1.



344 CHAPTER 9. CLASSICAL SIGNAL PROCESSING FILTERS

9.8 Chebyshev type II filters

Chebyshev polynomials TN (x) have equiripple behavior on [−1, 1] and grow to
infinity outside of that range. By reciprocating the argument: TN (1/x), we
obtain equiripple behavior on |x| ≥ 1 and infinite growth for x→ 0. By further
reciprocating the value of the polynomial: 1/TN (1/x), we have again small
values on the range [−1, 1], while for |x| ≥ 1 the polynomial’s value exhibits
equiripple oscillations around infinity. We therefore introduce the function

T

N (x) =
1

TN (1/x)

where Fig. 9.28 illustrates the behavior of

T

N . We will refer to

T

N (x) as a
double-reciprocated (once in argument and once in value) Chebyshev polynomial.

x

T

6(x)

1−1

1

-1

0

Figure 9.28: Double-reciprocated Chebyshev polynomial

T

N .

The equiripple oscillations around infinity are also better visible in the arc-
tangent scale (Fig. 9.29). More specifically, on [1,+∞) and (−∞,−1] the value
oscillates between ±1 and ∞, never becoming less than 1 in the absolute mag-
nitude. We could refer to that fact by saying that the amplitude of these os-
cillations around ∞ is unity, thereby taking the minimum absolute magnitude
of the oscillating value as the oscillation amplitude, even though that might
be considered some kind of a misnomer. We will be using this definition of
amplitude of oscillations around infinity further in the text.

We also introduce the renormalized version of the double-reciprocated Cheby-
shev polynomials by double-reciprocating

ˆ
TN :

ˆ

T

N (x, λ) =
1

ˆ
TN (1/x, λ)

=
TN (1/λ)
TN (1/λx)

=

T

N (λx)

T

N (λ)
(9.52)

where we have
ˆ

T

N (1, λ) = 1. Notice that we didn’t reciprocate the λ parameter.
The idea is that 0 ≤ λ ≤ 1 and that

ˆ

T

N (x, 0) =
1

ˆ
TN (1/x, 0)

=
1

1/xN
= xN
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x

T

N (x)

∞∞ 1−1

1

∞

−1

−1

0

Figure 9.29: Double-reciprocated Chebyshev polynomials of even
(solid) and odd (dashed) orders, using arctangent scale in both
axes.

ˆ

T

N (x, 1) =
1

ˆ
TN (1/x, 1)

=
1

1/TN (1/x)
=

T

N (x)

Fig. 9.30 illustrates. As usual, we will often omit the λ parameter, understanding
it implicitly.

x

T

6(x, λ)
ˆ

∞∞ 1−1

1

∞

−1

−1

0

Figure 9.30: Renormalized double-reciprocated Chebyshev poly-
nomial

ˆ

T

6(x, λ) for λ = 1 (solid), λ = 0.93 (dashed) and λ = 0
(thin dashed).

By (9.52) the amplitude of the equiripples of
ˆ

T

N (x) is TN (1/λ). By using
the same equation (9.44) as we have been using for Chebyshev type II filters we
have TN (1/λ) = 1/ε, that is the equiripple amplitude is 1/ε. This is actually
a convenient notation, since in this case we are having smaller (closer to ∞)
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equiripples at smaller ε. We also thereby have:

ˆ

T

N (x) =
1

εTN (1/λx)
=

T

N (λx)
ε

By writing the Chebyshev polynomial as a polynomial:

TN (x) =
N∑
n=0

anx
n

we find that the double-reciprocated Chebyshev polynomial is a rational func-
tion of x:

T

N (x) =
1

N∑
n=0

anx
−n

=
xN

N∑
n=0

anx
N−n

The same apparently is true for
ˆ

T

N (x) and therefore we could try using
ˆ

T

N (ω)
as f(ω) in (9.18).

Letting f(ω) =
ˆ

T

N (ω) in (9.18) we obtain a Chebyshev type II filter, this
time trading the ripples in the stopband against the transition band’s rolloff
(Fig. 9.31). The stopband peaks are achieved at

ˆ

T

N (ω) = 1/ε, thus the ripple
amplitude is 1/

√
1 + ε−2.

ω

|H(jω)|

11/8 8

1

0.5

0

Figure 9.31: Chebyshev type II filter’s amplitude responses forN =
6 and ε = 0.5 (solid), ε = 0.1 (dashed) and ε = 0 (Butterworth,
thin dashed). Notice the usage of the linear amplitude scale, which
is chosen in order to be able to show the amplitude response zeros.

T

N (x) as representations of linear scaling

In order to find the poles of a Chebyshev type II filter we are going, as usual, to
interpret the function

T

N (x) as a representation of the linear scaling v = Nu.
This time we need the following mapping:

x =
1

cosu
= secu
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v = Nu

T

N (x) =
1

cos v
= sec v

Same as with TN (x), the multiplication by N expands the principal real pe-
riod [0, 2π] to [0, 2πN ] and there are similar transformations of the preimages
of the real axis. The transformations of quasielliptic curves (shown in Fig. 9.20)
which are representations of horizontal lines Imu = const in the preimage do-
main are also occurring in a similar fashion, each such curve being transformed
into another such curve.

Poles of Chebyshev type II filters

The pole equation is
1 +

ˆ

T2
N (ω) = 0

The even/odd pole equations are respectively

ˆ

T

N (ω) = ±j

or T

N (λω)
ε

= ±j

or, introducing ω̄ = λω

T
N (ω̄) = ±jε

where the “+” sign corresponds to the even poles and the “−” sign to odd poles.
Suppose ω̄ is moving in a counterclockwise direction in a quasielliptic curve

which is a representation of Imu = β (where, according to our previous discus-
sion of the properties of the x = 1/ cosu mapping, β > 0). This results in a
similar counterclockwise motion of

T

N (ω̄). We wish

T

N (ω̄) to pass through the
points ±jε going counterclockwise.

At this point we could follow similar steps as we did for Chebyshev type I
filters, using the preimage linear scaling interpretation of

T

N to obtain the points
ω̄ where

T

N (ω̄) = ±jε. However we also could notice that

T

N (ω̄) = ±jε ⇐⇒
TN (ω̄−1) = ∓j/ε. Therefore we could reuse the results of our discussion of
Chebyshev type I filters, where we needed TN to go clockwise through ∓j/ε.
That is, we need the value of TN to move in the same trajectory going through
the same points as in the Chebyshev type I case, just in the opposite direction.
This can be achieved by flipping its preimage line Im v = Nβ from the lower
semiplane to the upper semiplane. Therefore the values of TN passing through
∓j/ε going clockwise should occur at sinhNβ = 1/ε and thus

β =
1
N

sinh−1 1
ε

The other difference to the case of Chebyshev type I filters is that the argument
of TN is ω̄−1 rather than ω̄. Therefore we need to replace ω̄ in (9.47) with ω̄−1

obtaining

ω̄−1 = cos
(
jβ + π

1
2 + n

N

)
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and

ω−1 = λ cos
(
jβ + π

1
2 + n

N

)
Since s = jω = j/ω−1, we have −1/s = −ω−1/j = jω−1 and thus

−s−1 = jλ cos
(
jβ + π

1
2 + n

N

)
=

= λ sinhβ sinπ
1
2 + n

N
+ jλ coshβ cosπ

1
2 + n

N
(9.53)

The poles of Chebyshev type II filters are therefore negated reciprocals of the
poles of Chebyshev type I filters.9 By the interpretation of

T

N as linear scaling
in the preimage domain, Chebyshev type II poles should lie on quasielliptic
trajectories, such as the ones shown in Fig. 9.19 and Fig. 9.20. Notice that,
despite the negated reciprocation, the formula (9.53) still first gives the stable
poles, due to the flipped sign of β compared to (9.49).

Zeros of Chebyshev type II filters

According to our discussion in Section 9.4 of using rational f(ω), Chebyshev
type II filters also should have zeros, which in terms of ω coincide with poles of
f(ω). The zero equation is thereby

ˆ

T

N (ω, λ) =∞

or
T

N (λω) =∞

or, equivalently,
TN (1/λω) = 0 (9.54)

The solutions of (9.54) thereby obtained from the zeros zn of TN (given by
(9.38)) by

1
λω

= zn = cos
(
π

1
2 + n

N

)
or

ω−1 = λ cos
(
π

1
2 + n

N

)
or, in terms of s

−s−1 = jλ cos
(
π

1
2 + n

N

)
An additional consideration arises at odd N where one of the values given by

(9.38) occurs at the origin, which after the reciprocation gives the infinity. This
9Alternatively one could notice that the poles of Chebyshev type II (lowpass) filters are

identical to the poles of Chebyshev type I hipass filters, since both can be obtained from the
poles of Chebyshev type I lowpass filters by the LP to HP transformation. If Chebyshev type
II lowpass poles are obtained this way, the order of their enumeration will be symmetrically
flipped relatively to the one of the prototype Chebyshev type I lowpass poles. That is, if
Chebyshev type I poles are going counterclockwise starting from the “positive” imaginary
axis, then Chebyshhev type II poles obtained by the LP to HP tranfromation will be going
clockwise from the “negative” imaginary axis (thereby stable poles will be converted to stable
poles, but the even/odd property of the poles will be switched if N is even).
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means that there is no corresponding finite zero of H(s) and no corresponding
factor in the numerator of H(s). Respectively the order of the numerator of
H(s) becomes 1 less than the order of the denominator. This automatically
results in H(∞) = 0, that is H(s) has a zero at the infinity, as required by the
reciprocation of the values given by (9.38). Fig. 9.32 provides an example.

−1 1

−j

j

0 Re s
(−Im ω)

Im s
(Re ω)

Figure 9.32: Poles (white and black dots) and zeros (white squares)
of a Chebyshev type II filter of order N = 5. Each of the zeros
is duplicated, but the duplicates are dropped together with the
unstable poles.

Filter gain

Since there are no ripples in the passband, there is little reason to attempt
any gain adjustments and the filter gain needs simply to be chosen from the
requirement H(0) = 1, thereby defining the leading gain coefficient g of the
cascade form (8.1).

Butterworth limit

Since
ˆ

T

N (x, 0) = xN in the limit λ → 0 Chebyshev type II filter turns into
Butterworth filter.

Notice that the pole formula (9.53) is essentially the negated reciprocal of
(9.49). On the other hand, negation and/or reciprocation turn Butteworth poles
into themselves (if nonstable poles are included), therefore, since in the limit
(9.49) gives Butterworth poles, (9.53) also does the same.

9.9 Jacobian elliptic functions

The next class of equiripple filters which we would like to introduce are elliptic
filters. Chebyshev filters were based on the cosine function and required a wider
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spectrum of trigonometric and hyperbolic functions for their analysis. Similarly,
elliptic filters are based on Jacobian elliptic cosine function and require other
Jacobian elliptic functions for their analysis. Since Jacobian elliptic functions
are not a part of widely spread common knowledge, on the contrary, the freely
available resources are rather scarce, we are going to introduce them and discuss
their properties relevant for this book’s material.

Additional information can be found in the reference texts listed at the end
of this chapter. The results presented here and in the rest of this chapter without
any kind of proof or justification are either taken directly or derived from these
texts.

Elliptic integrals of the first kind

One of the most common ways to introduce Jacobian elliptic functions is as
some kind of special inverses of the elliptic integral of the first kind, which we
therefore will briefly discuss first.

The elliptic integral of the first kind is the function notated F (ϕ, k) defined
by the formula:

F (ϕ, k) =
∫ ϕ

0

dθ√
1− k2 sin2 θ

(9.55)

The parameter k is referred to as elliptic modulus. Normally 0 ≤ k ≤ 1. At
k = 0 we simply have F (ϕ, 0) = ϕ.

The value of F (ϕ, k) at ϕ = π/2 is often of a particular interest, which
motivates the introduction of the complete elliptic integral of the first kind :

K(k) = F (π/2, k)

Respectively we are having

K(0) = F (π/2, 0) =
π

2
(9.56a)

K(1) = F (π/2, 1) =
∫ π/2

0

dθ√
1− sin2 θ

=
∫ π/2

0

dθ
cos θ

=∞ (9.56b)

The graph of K(k) is shown in Fig. 9.33. Notice that K(k) grows with k (which
is obvious from (9.55)).

The elliptic modulus is sometimes expressed as k = sinα where α is referred
to as the modular angle. Given a modular angle α, often one also needs the
complementary modular angle α′ which is simply defined as

α′ =
π

2
− α

Respectively there is the complementary elliptic modulus:

k′ =
√

1− k2

and the complementary complete elliptic integral of the first kind:

K ′(k) = K(k′) = F (π/2, k′)

Notice that k′ decreases as k increases and vice versa. On the other hand
K(k) is a monotonically increasing function. Therefore the ratio K ′(k)/K(k)
monotonically decreases with growing k. Fig. 9.34 illustrates, where we use the
modular angle in the abscissa scale in order to make the symmetry between K
and K ′ explicitly visible.
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k

K(k)

1

π/2

π

0

Figure 9.33: Complete elliptic integral of the first kind K(k).

α

K, K ′

π/2

π/2

π

3π/2

0

Figure 9.34: Complete elliptic integral of the first kind K (solid
line) and the complemetary complete elliptic integral of the first
kind K ′ (dashed line), plotted against the modular angle α.

Jacobian elliptic functions

There are 12 different Jacobian elliptic functions but we will concentrate only
on 6 of them. The ones we introduce will bear strong similarities to certain
trigonometric and/or hyperbolic functions, becoming equal to them in the limit.

We will define Jacobian elliptic functions in terms of the so called amplitude,
which is defined as a function ϕ = am(x, k), which is the inverse of the elliptic
integral of the first kind:

F (am(x, k), k) = x (9.57)

That is, for a given x the function ϕ = am(x, k) gives such ϕ that F (ϕ, k) = x.
Note that since in the limit k → 0 we have F (ϕ, 0) = ϕ, we are respectively
having am(x, 0) = x.

As with elliptic integral F (ϕ, k), the second argument k serves a role of the
function’s parameter, the “primary” argument of the function being x. Often
this parameter is simply omitted and understood implicitly: ϕ = amx. Even
more commonly, this is done for Jacobian elliptic functions (which are having
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exactly the same arguments as the amplitude).

Now, from the six Jacobian elliptic functions that we are going to introduce,
the four of our primary interest will be:

- Jacobian elliptic “sine” sn(x, k) is defined by the equation

sn(x, k) = sinϕ (9.58)

where ϕ = am(x, k). Or simply, sn(x, k) = sin am(x, k).

Fig. 9.35 provides example graphs of snx, where we could also notice
that snx is 4K-periodic. The value K is simply a short notation for the
complete elliptic integral K(k), evaluated for the same modulus k which is
used in sn(x, k). Please also note that the graphs in Fig. 9.35 are plotted
“in terms of K”, that is different abscissa scales are used for different
graphs in the same figure. This has been done in order to provide a better
visual comparison of different sn(x, k) with different periods.

Since the limit k → 0 we have ϕ = am(x, 0) = x, the elliptic sine turns
into into sn(ϕ, 0) = sinϕ.

- Jacobian elliptic “cosine”10 cd(x, k) is defined by the equation:

cd(x, k) =
cosϕ√

1− k2 sin2 ϕ
(9.59)

where ϕ = am(x, k). Fig. 9.36 illustrates, where one could observe that
cdx is 4K-periodic. Apparently cd(x, 0) = cosx.

- Jacobian elliptic “tangent”/elliptic “hyperbolic sine” sc(x, k) is defined by
the equation:

sc(x, k) = tanϕ (9.60)

where ϕ = am(x, k). Fig. 9.37 illustrates, where one could observe that
scx is 2K-periodic.

Apparently sc(x, 0) = tanx. However, the function scx also bears strong
similarities to the hyperbolic sine, becoming equal to it in the limit k → 1.
In this book we will be mostly using the similarity of sc to sinh, therefore
we will typically refer to sc as elliptic “hyperbolic sine”.

- Jacobian elliptic “hyperbolic cosine” nd(x, k) is defined by the equation:

nd(x, k) =
1√

1− k2 sin2 ϕ
(9.61)

where ϕ = am(x, k). Fig. 9.38 illustrates, where one could observe that
ndx is 2K-periodic. This function becomes equal to cosh in the limit
k → 1.

10There is yet another Jacobian elliptic function, which is simply equal to cosϕ rather than

(cosϕ)/
√

1− k2 sin2 ϕ. Depending on the purpose either of these functions may be referred
to as elliptic cosine. Each of these two functions inherits different properties of cosϕ. For the
purposes of this book we will need the one defined by (9.59) and this is the one to which we
will refer to as elliptic cosine.
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We will also introduce two “auxiliary” functions:

- Jacobian elliptic “cosecant” nsx = 1/ snx (Fig. 9.39)

- Jacobian elliptic “secant” dcx = 1/ cdx (Fig. 9.40).

Since these two are simply reciprocals of sn and cd, we won’t be discussing them
much, however they will be used occasionally.

From the previous discussion we could conclude that 4K is the common
period of all six introduced elliptic functions (where the elliptic “trigonomet-
ric” functions are 4K-periodic and the elliptic “hyperbolic” functions are 2K-
periodic). For that reason K = K(k) is referred to as the quarter-period.

x

sn x

K−K 2K−2K

3K−3K

1

-1

0

Figure 9.35: Jacobian elliptic sine for k = 0.8 (dashed) and k =
0.999 (solid).

x

cd x

K−K

2K−2K 3K−3K

1

-1

0

Figure 9.36: Jacobian elliptic cosine for k = 0.8 (dashed) and
k = 0.999 (solid).

x

sc x

K−K 2K−2K 3K−3K
1

2

0

Figure 9.37: Jacobian elliptic “hyperbolic sine” (or “trigonometric
tangent”) for k = 0.5 (dashed) and k = 0.94 (solid).
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x

nd x

K−K 2K−2K 3K−3K
1

2

0

Figure 9.38: Jacobian elliptic “hyperbolic cosine” k = 0.8 (dashed)
and k = 0.94 (solid). The maxima are at 1/k′.
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Figure 9.39: Jacobian elliptic cosecant k = 0.8 (dashed) and k =
0.999 (solid).
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Figure 9.40: Jacobian elliptic secant k = 0.8 (dashed) and k =
0.999 (solid).

Complex argument

Jacobian elliptic functions can be generalized to complex argument values. Re-
markably, all of the six introduced functions can be obtained from each other
by shifts and/or rotations of the argument in the complex plane (with some
possible scaling of the resulting function’s value).

Before discussing any Jacobian elliptic function on the complex plane we
need to introduce the imaginary quarter period K ′ which is simply equal to
the complementary complete elliptic integral: K ′ = K ′(k) = K(k′). Jacobian
elliptic functions are also periodic in the imaginary direction, where the elliptic
‘trigonometric” functions are 2jK ′-periodic and the elliptic ‘hyperbolic” func-
tions are 4jK ′-periodic, e.g. cd(x, k) = cd(x+ 2jK ′, k).

The real and imaginary quarter periods create a virtual grid on the complex
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plane (Fig. 9.41). We will be particularly interested in the values that Jacobian
elliptic functions are taking along the lines of this grid.

Re x

j Im x

−3K −2K −K 0 K 2K 3K

−jK ′

−2jK ′

jK ′

2jK ′

Figure 9.41: Quarter-period grid.

Let’s start with cdx. It turns out that the values of cdx on this grid are
always equal to the (possibly scaled by some real or imaginary coefficient) values
of one of the six introduced Jacobian functions evaluated for the real or the
imaginary part of cdx. Fig. 9.42 illustrates.
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Figure 9.42: Values of cdx = cd(u+jv) on the quarter-period grid.
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The expressions at the ends of the quarter-grid lines in Fig. 9.42 are what
cd(x, k) is equal to on each of these lines, where the notation is u = Rex, v =
Imx. E.g. for x = u+jK ′ the function’s value is cdx = cd(u+jK ′) = k−1 dcu.
For x = K the function’s value is cdx = cd(K + jv) = −j sc′ v = −j sc(v, k′),
that is the primed notation denotes the usage of the complementary elliptic
modulus. Apparently, the complementary modulus needs to be used for all grid
lines parallel to the imaginary axis, since the quarter period in that direction is
K ′.

The roman numerals in the middle of the grid cells denote the complex
quadrant to which the values of cdx belong for x inside the respective grid
cell. The quadrants are numbered starting from the positive real semiaxis in
the counterclockwise direction. Fig. 9.42 also shows the function values at the
intersections of the grid lines. Additionally the values exactly in the middle
between the horizontal grid lines are shown. E.g. cd(jK ′/2) = 1/

√
k. The

readers are encouraged to compare the values listed in Fig. 9.42 to the graphs
in Figs. 9.35 through 9.40.

Similarly to how the trigonometric sine is obtained from the trigonometric
cosine by a shift by the quarter-period π/2 (which also holds for complex ar-
guments), the Jacobian sine is obtained from the Jacobian cosine by a shift by
the quarter period K: snx = cd(x−K). Respectively, the content of Fig. 9.42
becomes shifted by K resulting in the picture in Fig. 9.43.
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Figure 9.43: Values of snx = sn(u+jv) on the quarter-period grid.

From Fig. 9.42 one could notice that cd(jv, k) = nd(v, k′). It turns out
that this equality holds not only for real v but for any complex v. That is,
Jacobian hyperbolic cosine can be obtained from Jacobian cosine by rotation of
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the complex plane by 90◦ and swapping of k and k′ (which effectively swaps K
and K ′).11 Fig. 9.44 illustrates.
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Figure 9.44: Values of ndx = nd(u + jv) on the quarter-period
grid.

In a similar fashion, in Fig. 9.43 one could notice that sn(jv, k) = j sc(v, k′).
This equality also holds not only for real v but for any complex v. That is,
Jacobian hyperbolic sine can be obtained from Jacobian sine by rotation of the
complex plane by 90◦ clockwise, swapping of k and k′ and dividing the result
by j (or, equivalently, multiplying by −j). Alternatively, recalling that sn is
obtained from cd by a shift by a real quarter period, we could have simply
shifted the content of Fig. 9.44 downwards by an imaginary quarter period and
divided it by j. Fig. 9.45 illustrates.

The functions dcx and nsx are easily obtainable from Figs. 9.42 and 9.43
by a shift by one imaginary period (and a multiplication by k).

Properties of Jacobian elliptic functions

There are lots of analogies between trigonometric/hyperbolic and Jacobian ellip-
tic functions including similarities between their shapes, which one can see from
Figs. 9.35 through 9.40. We are going to list some of the properties of Jacobian
elliptic functions comparing them against similar properties of their trigonomet-
ric/hyperbolic counterparts, where possible. The value of the argument x will
be assumed complex, unless otherwise noted. It is highly recommended to refer

11Both cd and nd are even functions. Therefore it doesn’t matter in which direction to
rotate by 90◦.
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Figure 9.45: Values of scx = sc(u+ jv) on the quarter-period grid.

to Figs. 9.35 through 9.40 and to Figs. 9.42 through 9.45 while studying the
properties below.

- Reduction to trigonometric/hyperbolic functions at k → 0 or k → 1:

sn(x, 0) = sinx (9.62a)
cd(x, 0) = cosx (9.62b)
sc(x, 0) = tanx (9.62c)
nd(x, 0) ≡ 1 (9.62d)
sc(x, 1) = sinhx (9.62e)
nd(x, 1) = coshx (9.62f)
ns(x, 0) = cscx (9.62g)
dc(x, 0) = secx (9.62h)

- The functions are analytic (except at their poles).

- Real function values for real argument x ∈ R:

snx ∈ R sinx ∈ R
etc.

- The functions commute with complex conjugation:

snx∗ = (snx)∗ sinx∗ = (sinx)∗
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etc.

- Odd/even symmetries

sn(−x) = − snx sin(−x) = − sinx
cd(−x) = cdx cos(−x) = cosx
sc(−x) = − scx sinh(−x) = − sinhx
nd(−x) = ndx cosh(−x) = coshx

- Imaginary argument

sn(jx, k) = j sc(x, k′) sin(jx) = j sinhx (9.63a)
cd(jx, k) = nd(x, k′) cos(jx) = coshx (9.63b)
sc(jx, k) = j sn(x, k′) sinh(jx) = j sinx (9.63c)
nd(jx, k) = cd(x, k′) cosh(jx) = cosx (9.63d)

where we intuitively assume x ∈ R, although the properties hold for any
x ∈ C.

- Periodicity along real axis:

sn(x+ 4K) = snx sin(x+ 2π) = sinx
cd(x+ 4K) = cdx cos(x+ 2π) = cosx
sc(x+ 2K) = scx n/a
nd(x+ 2K) = ndx n/a

and along imaginary axis:

sn(x+ 2jK ′) = snx n/a
cd(x+ 2jK ′) = cdx n/a
sc(x+ 4jK ′) = scx sinh(x+ 2jπ) = sinhx
nd(x+ 4jK ′) = ndx cosh(x+ 2jπ) = cosxh

Note that the periodicity property of snx and cdx along the imaginary
axis is the dual of the periodicity property of scx and ndx along the real
axis, the duality arising from the imaginary argument property.

- Shift by function’s half-period12 in the real direction

sn(x± 2K) = − snx sin(x± π) = − sinx (9.65a)
cd(x± 2K) = − cdx cos(x± π) = − cosx (9.65b)

sc(x±K) = −1/k′ scx n/a (9.65c)
nd(x±K) = 1/k′ ndx n/a (9.65d)

and in the imaginary direction

sn(x± jK ′) = 1/k snx n/a (9.65e)

12Note that here (and further where we specifically refer to function’s period, or half- or
quarter-period) we mean the period of the function itself, rather than one of the least common
periods 4K and 4K′ of all Jacobian elliptic functions.
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cd(x± jK ′) = 1/k cdx n/a (9.65f)
sc(x± 2jK ′) = − scx sinh(x± jπ) = − sinhx (9.65g)
nd(x± 2jK ′) = −ndx cosh(x± jπ) = − coshx (9.65h)

- Shift by function’s quarter-period

sn(x+K) = cdx sin(x+ π/2) = cosx (9.66a)
cd(x−K) = snx cos(x− π/2) = sinx (9.66b)

sc(x+ jK ′) = j ndx sinh(x+ jπ/2) = j coshx (9.66c)
nd(x+ jK ′) = j scx cosh(x+ jπ/2) = j sinhx (9.66d)

- Symmetry around function’s quarter-period point (this follows from the
odd/even symmetries and the shift by function’s half-period property) in
the real direction:

sn(2K − x) = sn(x) sin(π − x) = sinx (9.67a)
cd(2K − x) = − cd(x) cos(π − x) = − cosx (9.67b)

scx sc(K − x) = 1/k′ n/a (9.67c)
ndxnd(K − x) = 1/k′ n/a (9.67d)

and in the imaginary direction:

snx sn(jK ′ − x) = −1/k n/a (9.67e)
cdx cd(jK ′ − x) = 1/k n/a (9.67f)

sc(2jK ′ − x) = scx sinh(jπ − x) = sinhx (9.67g)
nd(2jK ′ − x) = −ndx cosh(jπ − x) = − coshx (9.67h)

- Pythagorean theorem

sn2 x+ cd2 x = 1 + k2 sn2 x cd2 x sin2 x+ cos2 x = 1 (9.68)

(we won’t need the respective properties for the “hyperbolic” functions).

There is another useful Pythagorean-like identity:

k2 cd2 x+ k′2 nd2 x = 1 (9.69)

- Sum of arguments

cd(x+ y, k) =
cdx cd y − snx sn y

1− k2 snx sn y cdx cd y
(9.70)

cos(x+ y) = cosx cos y − sinx sin y

(we won’t need the respective properties for the other functions).

- Complex argument

cd(u+ jv, k) =
cdund′ v − j snu sc′ v

1− jk2 snu sc′ v cdund′ v
(9.71)

cos(u+ jv) = cosu cosh v − j sinu sinh v

where nd′ v = nd(v, k′), sc′ v = sc(v, k′). This is a direct corollary of
(9.70). One can use (9.71) to show that the values of cd on a single grid
cell in Fig. 9.42 belong to one and the same complex quadrant.
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- Logarithmic derivative

d
dx

ln cdx = −k′2 scxndx
d

dx
ln cosx = − tanx (9.72a)

d2

dx2
ln cdx = k

(
k cd2 x− 1

k cd2 x

)
d2

dx2
ln cosx = − 1

cos2 x
(9.72b)

Periodicity

As we already mentioned, Jacobian elliptic functions are periodic in real and
imaginary direction. E.g. cdx is 4K- and 2jK ′-periodic. Thus the periods
of cdx are rectangles in the complex plane, the horizontal dimension of each
rectangle being equal to 4K and the vertical dimension being equal to 2K ′.
Fig. 9.46 illustrates.

Re x

Im x

0 4K 8K−4K−8K

K ′

2K ′

−K ′

−2K ′

Figure 9.46: Periods of cdx in the complex plane. All dots are
preimages of one and the same value.

Due to the even symmetry of the elliptic cosine, almost every value occurs
twice on a period (as illustrated by the dots in Fig. 9.46). That is if the value
y occurs at x (that is y = cdx), then y also occurs at −x. The exceptions
are being cdx = ±1 and cdx = ±1/

√
k, which are mapped to themselves by

x← −x if the periodicities of cdx are taken into account.
Similar considerations apply to snx, scx and ndx.

Preimages of the real line

By (9.71) cdx attains purely real values iff x ∈ R or Rex = 2Kn where n ∈ Z,
which is also illustrated by Fig. 9.42. Similarly to cosx, we would like to choose
a principal preimage of the real line with respect to the transformation y = cdx.
Since cdx→ cosx for k → 0, we would like the principal real line preimage for
cdx to approach to the respective principal preimage for cosx as k → 0. Under
this requirement there is only one choice, which is shown in Fig. 9.47.

This principal preimage of the real axis thereby consists of five parts:

x ∈ [0, 2K] ⇐⇒ y ∈ [−1, 1]
x ∈ [0, jK ′] ⇐⇒ y ∈ [1, 1/k]
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Im x

0 2K 4K−2K−4K
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−K ′

Figure 9.47: The principal preimage (solid line) of the real axis,
with respect to y = cdx, and its periodic repetitions (dashed lines).

x ∈ [2K, 2K + jK ′] ⇐⇒ y ∈ [−1/k, 1]
x ∈ [jK ′, jK ′ +K) ⇐⇒ y ∈ [1/k,+∞)
x ∈ (jK ′ +K, jK ′ + 2K] ⇐⇒ y ∈ (−∞,−1/k]

where Fig. 9.42 can serve as additional reference.
The punctured point at x = K + jK ′ in Fig. 9.47 corresponds to y = ∞.

In principle it can be included into the preimage if we consider the extended
complex plane C ∪ ∞ as the codomain of cdx, in which case the preimage
consists only of four parts:

x ∈ [0, 2K] ⇐⇒ y ∈ [−1, 1]
x ∈ [0, jK ′] ⇐⇒ y ∈ [1, 1/k]
x ∈ [2K, 2K + jK ′] ⇐⇒ y ∈ [−1/k, 1]
x ∈ [jK ′, jK ′ + 2K] ⇐⇒ y ∈ [1/k,−1/k]

where [1/k,−1/k] = [1/k,+∞) ∪∞ ∪ (−∞,−1/k] denotes a range on the real
Riemann circle containing the infinity in its middle.

As with cosx, the principal preimage alone doesn’t cover all preimage points
of the real line. Neither does it if we add its periodic repetitions in Fig. 9.47,
since we are convering only half of the entire length of each of the lines Rex =
πn. We can cover the remaining halves by rotating all preimages in Fig. 9.47
around the origin, which corresponds to multiplication of all points x by −1.
Notice that by adding periodic repetitions we addressed the periodicity of cdx,
while by adding the preimages multiplied by −1 we addressed the evenness
property of cdx.

9.10 Normalized Jacobian elliptic functions

In Fig. 9.42 we can observe that the “four building blocks” of the Jacobian
cosine’s values on the quarter-period grid lines are cd, k−1 dc, nd′, j sc′, −nd′

and −j sc′. Plotting these functions in the arctangent scale we obtain the picture
in Fig. 9.48.
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Figure 9.48: cd(x, k), nd(x, k′), k−1 dc(x, k) and sc(x, k′).

The collection of the function graphs in Fig. 9.48 has obvious symmetries
with respect to the horizontal lines y = 0 and y = ∞. It is also approximately
symmetric with respect to y = ±1/

√
k (where, since k < 1, it follows that

1/
√
k > 1, so the line y = 1/

√
k is located above y = 1). This approximate

symmetry obviously arises from the reciprocal symmetries due to (9.67):

nd(K ′ − x, k′) = 1/k nd(x, k′) (9.73a)
sc(K ′ − x, k′) = 1/k sc(x, k′) (9.73b)

k−1 dc(x, k) = 1/k cd(x, k) (9.73c)

(where (9.73c) is not due to (9.67) but simply follows from the definition of the
dc function: dc(x, k) = 1/ cd(x, k)).

Therefore the centers of this reciprocal symmetry are at ±1/
√
k. By multi-

plying all functions plotted in Fig. 9.48 by
√
k we will shift the centers of the

reciprocal symmetry to y = ±1. Thus consideration motivates the introduction
of normalized Jacobian elliptic functions

cd(x, k) =
√
k cd(x, k)

sn(x, k) =
√
k sn(x, k)

dc(x, k) = 1/
√
k · dc(x, k) = 1/ cd(x, k)

ns(x, k) = 1/
√
k · ns(x, k) = 1/ sn(x, k)

sc(x, k) =
√
k′ sc(x, k)

nd(x, k) =
√
k′ nd(x, k)

(note that for the “hyperbolic” functions we are using
√
k′ rather than

√
k for

the normalization!). Thereby (9.73) become:

nd(K ′ − x, k′) = 1/ nd(x, k′) (9.74a)
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sc(K ′ − x, k′) = 1/ sc(x, k′) (9.74b)

dc(x, k) = 1/ cd(x, k) (9.74c)

and Fig. 9.48 turns into Fig. 9.49.
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Figure 9.49: cd(x, k), nd(x, k′), dc(x, k) and sc(x, k′).

Apparently, cd, dc, nd
′
, j sc′, −nd

′
and −j sc′ are the building blocks of cdx

in the same way how cd, k−1 dc, nd′, j sc′, −nd′ and −j sc′ are the building
blocks of cdx. Fig. 9.50 illustrates. Notice that we don’t need non-unity scaling
by k−1 anymore, only shifts, rotations and scaling by ±j are required to convert
between the respective functions. Fig. 9.51 provides a similar illustration for nd.
The diagrams Fig. 9.43 and 9.45 are transformed in a similar way.

For normalized elliptic functions the reciprocal symmetries of (9.67) take
the form

scx sc(K − x) = 1 (9.75a)

ndx nd(K − x) = 1 (9.75b)
snx sn(jK ′ − x) = −1 (9.75c)

cdx cd(jK ′ − x) = 1 (9.75d)

with the analogous shift properties (9.65) taking the form

scx sc(x±K) = −1 (9.76a)

ndx nd(x±K) = 1 (9.76b)
snx sn(x± jK ′) = 1 (9.76c)

cdx cd(x± jK ′) = 1 (9.76d)
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Figure 9.50: Values of cdx = cd(u+jv) on the quarter-period grid
(compare to Fig. 9.42).
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Figure 9.51: Values of ndx = nd(u + jv) on the quarter-period
grid (compare to Fig. 9.44).
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Derivatives

In terms of normalized functions the logarithmic derivative formulas (9.72) take
the form

d
dx

ln cdx = −k′ scxndx (9.77a)

d2

dx2
ln cdx = k

(
cd

2
x− 1

cd
2
x

)
(9.77b)

By checking the complex quadrants of the values of sc and nd in Figs. 9.44
and 9.45, one could establish that the first logarithmic derivative is lying in the
lower complex semiplane on even imaginary periods and in the upper complex
semiplane on odd imaginary periods:

Im
d

dx
ln cdx < 0 for Imx ∈ (2n′K ′, (2n′ + 1)K ′)

Im
d

dx
ln cdx > 0 for Imx ∈ ((2n′ + 1)K ′, (2n′ + 2)K ′)

or simply

sgn Im
d

dx
ln cdx = (−1)n

′+1 for Imx ∈ (2n′K ′, (2n′ + 1)K ′) (9.78)

where n′ is the imaginary quarter period index.
The second logarithmic derivative is apparently lying in the upper complex

semiplane if cdx is in the I or III complex quadrant and in the lower complex
semiplane if cdx is in the II or IV complex quadrant:

Im
d

dx2
ln cdx > 0 if cdx ∈ I or III

Im
d

dx2
ln cdx < 0 if cdx ∈ II or IV

or, using Fig. 9.50,

sgn Im
d

dx2
ln cdx = (−1)n+n′+1 (9.79)

where n and n′ are respectively the real and imaginary quarter period indices.

Horizontal and vertical preimage lines of cdx

The formulas (9.77) can be used to obtain more information about the behavior
of cdx (and respectively cdx) on its quarter periods. For cosx this kind of in-
formation can be directly obtained from the complex argument formula (9.29a).
For cdx the same formula (9.71) is a bit more complicated and cannot be as
easily used for analysis.

Given u = Rex, v = Imx we obtain:

d
du

arg cd(u+ jv) =
d

du
Im ln cd(u+ jv) = Im

d
du

ln cd(u+ jv) =

= Im
d

dx
ln cdx (9.80a)
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d
dv

ln | cd(u+ jv)| = d
dv

Re ln cd(u+ jv) = Re
d
dv

ln cd(u+ jv) =

= Re j
d
jdv

ln cd(u+ jv) = Re j
d

dx
ln cd(u+ jv) =

= − Im
d

dx
ln cdx (9.80b)

d2

du2
arg cd(u+ jv) =

d2

du2
Im ln cd(u+ jv) = Im

d2

du2
ln cd(u+ jv) =

= Im
d2

dx2
ln cdx (9.80c)

d2

dv2
arg cd(u+ jv) =

d2

dv2
Im ln cd(u+ jv) = Im

d2

dv2
ln cd(u+ jv) =

= − Im
d2

dx2
ln cdx (9.80d)

Suppose the point x = u+jv is moving horizontally to the right within the n′-th
imaginary quarter period, that is u̇ > 0 and v = const ∈ (2n′K ′, (2n′ + 1)K ′).
Then we have the following.

- By (9.80a) and (9.78)

sgn
d

du
arg cd(u+ jv) = sgn Im

d
dx

ln cdx = (−1)n
′+1 (9.81a)

therefore the value of cdx is moving clockwise on even imaginary quarter
periods and counterclockwise on odd imaginary quarter periods. By (9.71)
and using the complex quadrants in Fig. 9.42 or 9.50 as a reference, we
additionally find that

arg cd(Kn+ jv) = (−1)n
′+1 · π

2
n (9.81b)

that is at integer multiples of K (u = Kn) the value of cdx is crossing the
real and imaginary axes, starting with the real axis at u = 0. Fig. 9.52
illustrates. The family of curves generated by such horizontal preimage
lines in shown in Fig. 9.53.

- By (9.80c) and (9.79)

sgn
d

du2
arg cd(u+ jv) = sgn Im

d
dx2

ln cdx = (−1)n+n′+1 (9.81c)

Comparing (9.81c) to (9.81a) and (9.81b) we find that, given u̇ = const,
the trajectories in Fig. 9.53 are speeding up when going away from the
real axis and slowing down when going towards the real axis.

Now suppose the point x = u + jv is moving in a vertical line towards the
top: v̇ > 0, u = const ∈ (2nK, (2n+ 1)K).

- By (9.80b) and taking into account (9.78)

sgn
d
dv
| cd(u+ jv)| = − sgn Im

d
dx

ln cdx = (−1)n
′

(9.82a)
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u

v

0 4K 8K−4K−8K

K ′

2K ′

−K ′

−2K ′

Re y

Im y

0

y = cd(u+ jv)

Figure 9.52: A quasielliptic trajectory and its preimages. The
picture is qualitative. Particularly, the principal preimage line,
shown by the solid arrow line, is actually closer to the real axis (it
must be closer that K ′/2).

−1 1

−j

j

0 Re y

Im y

y = cd(u+ jv)

Figure 9.53: A family of quasielliptic trajectories generated from
horizontal preimages v = const ∈ [−K ′, 0]. The unit circle trajec-
tory occurs at v = −K ′/2.

where n′ is the imaginary quarter period index corresponding to the cur-
rent value of v. That is | cdx| will be increasing on even imaginary quarter
periods and decreasing on odd imaginary quarter periods.

In fact, the movement trajectories will be as shown in Fig. 9.54, where the
movement around y = 1 will be occurring on even real quarter-periods
and the movement around y = −1 will be occurring on odd real quarter-
periods. At the even boundaries u = 2nK the movement will be oscillating
along the real line between (−1)n

√
k and (−1)n/

√
k. At the odd bound-
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aries u = (2n + 1)K the movement will be occurring along the entire
imaginary axis looping through the ∞, going downwards all the time if n
is even and going upwards all the time if n is odd (referring to Fig. 9.50 is
recommended for understanding these boundary cases). The trajectories
in Fig. 9.54 complete a full cycle over one imaginary period 2K ′ of cdx.

- By (9.80d) and (9.79)

sgn
d

dv2
arg cd(u+ jv) = − sgn Im

d
dx2

ln cdx = (−1)n+n′ (9.82b)

Equation (9.82b) means that the second derivative of arg cdx doesn’t
change sign during vertical motion within a single imaginary quarter pe-
riod. This doesn’t seem much, but it will be a quite useful property.

0 Re y

Im y
y = cd(u+ jv)

Figure 9.54: A family of trajectories generated from vertical preim-
ages u = const. Notice that the trajectories intersect the unit circle
(shown by the dashed line) at right angles.

Since | cdx| monotonic in the vertical direction on a single quarter period
and arg cdx is monotonic in the horizontal direction, it follows that within a
single quarter-period grid cell the function cdx is taking each value no more than
once. Respectively, the quasielliptic curves in Fig. 9.53 are all distinct (that is
they don’t intersect or overlap) within a single imaginary quarter-period of the
domain of cdx. Conversely, each imaginary quarter period of the domain of cdx
contains exactly one preimage of any given such curve, as shown in Fig. 9.52.

In a similar way one can argue the distinctness of the curves in Fig. 9.54.

Unit circle symmetries

In Figs. 9.53 and 9.54 we have specifically highlighted the unit circle, which is
related some of the properties of cdx. It turns out that cdx has some symmetries
in respect to the unit circle and its preimage.

Let’s take two points jK ′/2 + x and jK ′/2 + x∗, which are located sym-
metrically to the line Imx = jK ′/2 on the complex plane, and consider the
product

cd(jK ′/2 + x)
(

cd(jK ′/2 + x∗)
)∗

= cd(jK ′/2 + x)
(

cd(x− jK ′/2)∗
)∗

=

= cd(x+ jK ′/2) cd(x− jK ′/2) =
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= cd(x+ jK ′/2) cd
(
(x+ jK ′2)− jK ′

)
= 1

where the latest is by (9.76d). That is the corresponding values of the Jacobian
elliptic cosine are conjugate-reciprocal:

cd(jK ′/2 + x)
(

cd(jK ′/2 + x∗)
)∗

= 1 (9.83)

and the line Imx = jK ′/2 is the axis of the conjugate-reciprocal symmetry of
cdx. From the evenness property of the elliptic cosine (and the fact that x in
(9.83) is arbitrary) it follows that

cd(−jK ′/2 + x)
(

cd(−jK ′/2 + x∗)
)∗

= 1

that is the line Imx = −jK ′/2 is also the axis of the conjugate-reciprocal
symmetry of cdx. Since cdx is 2K ′-periodic along the imaginary axis, any
other lines of the form Imx = jK ′/2 +K ′n′ are also the axes of the conjugate-
reciprocal symmetry of cdx:

cd(jK ′/2 + jK ′n′ + x)
(

cd(jK ′/2 + jK ′n′ + x∗)
)∗

= 1 (9.84)

Taking the absolute value of both sides of (9.84) we obtain

| cd(jK ′/2 + jK ′n′ + x)| · | cd(jK ′/2 + jK ′n′ + x∗)| = 1

Further, assuming a purely real x (so that x = x∗) the above turns into∣∣ cd(jK ′/2 + jK ′n′ + x)
∣∣2 = 1

or simply ∣∣ cd(jK ′/2 + jK ′n′ + x)
∣∣ = 1 (9.85)

that is the absolute magnitude of cdx is unity on the line Imx = jK ′/2+jK ′n′,
exactly corresponding to the unit circle trajectory in Fig. 9.53. As another
illustration, in Fig. 9.50 one could notice that cdx is taking the values ±1 and
±j at the intesections of vertical grid lines with the line Imx = jK ′/2 + jK ′n′.
Since we showed that the quasielliptic trajectories in Fig. 9.53 are all distinct,
there are no other points within the imaginary quarter period where | cdx| = 1,
and respectively the lines Imx = jK ′/2 + jK ′n are the only preimages of the
unit circle.

Taking the complex argument of both parts of (9.84) we have

arg cd(jK ′/2 + jK ′n′ + x)− arg cd(jK ′/2 + jK ′n′ + x∗) = 0

or
arg cd(jK ′/2 + jK ′n′ + x) = arg cd(jK ′/2 + jK ′n′ + x∗) (9.86)

That is the complex arguments of cdx taken at the points symmetric relatively
to the line Imx = jK ′/2 + jK ′n′ are equal.

Fig. 9.55 provides an illustration for the range 0 ≤ Imx ≤ K ′. Apparently
on the ends of that range the elliptic cosine has purely real values (which can
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be seen from the properties of cdx and from Fig. 9.50), corresponding to the
complex argument being equal to 0 or π. Inside that range the value is becoming
complex, where it is “maximally complex” (in the sense of arg cdx having the
maximal deviation from 0 or π) exactly in the middle, that is at Imx = K ′/2.
This corresponds to the trajectories in Fig. 9.54 crossing the unit circle at right
angles, so that the tangent lines of the trajectories taken at the intersection
points are going through the origin, and therefore the angular deviation from
the real line is attaining a maximum at these intersection points.

v

arg cd(u+ jv)

K ′

π/2

−π/2

π

−π

0

Figure 9.55: Deviation of Jacobian cosine’s value from the real axis
as a function of the imaginary part v of its argument, plotted for
various real parts u and various elliptic moduli k.

In order to explain this maximum angular deviation at Imx = K ′/2 consider
the following. The symmetry of the graphs in Fig. 9.55 is directly following from
(9.86). Therefore there must be an extremum at the point in the middle of the
range Imx ∈ [0,K ′]. By (9.82b) this is the only extremum on that range and
therefore this is the point of the maximum deviation.

Since the functions sn, sc and nd can be obtained from cd by shifts and/or
rotations of the complex plane (and a multiplication by j or by −j for sc), they
also exhibit similar symmetries. We won’t go into detail of these. The functions
dc and ns being the reciprocals of cd and sn are having similar symmetries as
well.

Normalized argument

It will be also often convenient to use the following notation:

cdK x = cdKx
scK′ x = scK ′x

cdK x = cdKx
etc.

that is we write the quarter-period multiplier of the argument as a subscript of
the function’s name. In this notation e.g. the real quarter-period of cdK x be-
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comes equal to 1, therefore we will refer to this notation as normalized-argument
Jacobian elliptic functions.

Note that we can’t normalize the argument simultaneously for real and imag-
inary quarter periods, that is we need to choose between e.g. cdK x and cdK′ x,
depending on our needs. Noticing that

cd(Ku+ jK ′v) = cdK
(
u+ j

K ′

K
v

)
= cdK

(
u+ j

K ′

K
v

)
cd(Ku+ jK ′v) = cdK ′

(
K

K ′
u+ jv

)
= cdK′

(
K

K ′
u+ jv

)
we can see that the imaginary quarter period of cdK x is K ′/K and the real
quarter period of cdK′ x is K/K ′. The same obviously holds for other Jacobian
elliptic functions.

Notice that Figs. 9.35 through 9.38 are effectively plotting snK , cdK , scK
and ndK , since the argument scale is scaled by K.

In Figs. 9.35 through 9.38 one could notice that the values of snK , cdK , scK
and ndK seem to be growing (in absolute magnitude) with k. Let’s see if this
is always the case.

In the beginning we are going to establish the fact that the argument-
normalized amplitude ϕ(x, k) = amK(x, k) = am(K(k)x, k) grows with k on
x ∈ (0, 1), that is

∂ϕ

∂k
=

∂

∂k
amK(x, k) > 0 (0 < x < 1, 0 < k < 1) (9.87)

Before analysing the partial derivative of amK(x, k) with respect to k, we need
to note the range in which amK(x, k) is varying for x ∈ (0, 1):

amK(x, k) ∈ (0, π/2) ∀x ∈ (0, 1) (0 ≤ k < 1) (9.88)

Indeed, by (9.55) F (ϕ, k) is strictly increasing for 0 ≤ k < 1, therefore, since
F (0, k) = 0 and F (π/2, k) = K(k), the range ϕ ∈ (0, π/2) is mapped to
F (ϕ, k) ∈ (0,K) and vice versa. Therefore am(x, k) is monotonically chang-
ing from 0 to π/2 for x changing from 0 to K, and respectively amK(x, k) is
monotonically changing from 0 to π/2 for x changing from 0 to 1.

Now, given ϕ(x, k) = amK(x, k), by (9.57)

F (ϕ, k) = K(k)x

Since we are interested in the partial derivative of ϕ with respect to k, we will
consider x to be fixed and ϕ and k varying in the above equation. Then, taking
the logarithm, we have

lnF (ϕ, k) = lnK(k)x

or
lnF (ϕ, k) = lnK(k) + lnx

Let’s take a full derivative in respect to k of both sides, where, since x = const,
the respective term fully disappears:

d
dk

lnF (ϕ, k) =
d
dk

lnK(k)
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∂ lnF
∂ϕ

dϕ
dk

+
∂ lnF
∂k

=
d lnK

dk

Since x = const, we have ∂ϕ/∂k = dϕ/dk and thus

∂ lnF
∂ϕ

∂ϕ

∂k
+
∂ lnF
∂k

=
d lnK

dk

Since by (9.55)
∂ lnF
∂ϕ

=
1
F

∂F

∂ϕ
=

1

F
√

1− k2 sin2 ϕ
> 0

it is suffcient to show that
d lnK

dk
>
∂ lnF
∂k

and then ∂ϕ/∂k > 0 will automatically follow.
The previous inequality can be equivalently rewritten as

dK
dk

>
∂F

∂k

or, noticing that K(k) = F (π/2, k) and reintroducing the explicit argument
notation F = F (ϕ, k),

∂

∂k
F (π/2, k) >

∂

∂k
F (ϕ, k)

∂

∂k

(
F (π/2, k)− F (ϕ, k)

)
> 0

∂

∂k

∫ π/2

ϕ

dθ√
1− k2 sin2 θ

> 0

∫ π/2

ϕ

(
d
dk

1√
1− k2 sin2 θ

)
dθ > 0

∫ π/2

ϕ

k sin2 θ(
1− k2 sin2 θ

)3/2 dθ > 0 (9.89)

Obviously the integral in (9.89) is positive for any 0 < k < 1 and 0 < ϕ < π/2
and therefore (9.87) holds. It follows that

amK(x, k1) < amK(x, k2) ∀x ∈ (0, 1) (0 ≤ k1 < k2 < 1) (9.90)

Notice that we have allowed k1 = 0 in (9.90). Strictly speaking, at k = 0
the integral in (9.89) turns to zero, respectively ∂ϕ/∂k = 0. However it
doesn’t matter much: since ∂ϕ/∂k > 0 starting with arbirarily small k, we
have amK(x, k) > amK(x, 0) ∀x ∈ (0, 1) and respectively (9.90) also holds for
k1 = 0.

Using (9.90), (9.88) and (9.58) we obtain

snK(x, k1) < snK(x, k2) ∀x ∈ (0, 1) (0 ≤ k1 < k2 < 1)
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Using shift and symmetry properties of sn we can extend the above to the entire
real axis (with the exception of purely integer points where snK x has the same
values independently of k):

| snK(x, k1)| < | snK(x, k2)| ∀x 6∈ Z (0 ≤ k1 < k2 < 1, x ∈ R)

The same property for cdK follows from the fact that cdK can be obtained
from snK by a quarter-period shift, and we have

| cdK(x, k1)| < | cdK(x, k2)| ∀x 6∈ Z (0 ≤ k1 < k2 < 1, x ∈ R) (9.91)

The same property for scK follows from (9.90), (9.88) and (9.60). The same
property for ndK follows from (9.90), (9.88) and (9.61).

Notably, the same property doesn’t hold if the argument is not normalized
by the real period K. Indeed, it is easily noticed that F (ϕ, k) grows with both
ϕ and k, therefore, given F (ϕ, k) = const, the value of ϕ will be decreasing for
growing k, which means that

∂

∂k
am(x, k) < 0

9.11 Landen transformations

Given an elliptic modulus k and the associated quarter periods K and K ′ we
could desire to find another elliptic modulus, such that the period ratio13 K ′/K
is increased or decreased by an integer factor (compared to the original ratio
K ′/K). We will specifically focus on the transformation which changes the
period ratio by a factor of 2. It will be particularly (but not only) useful as a
means of evaluation of Jacobian elliptic functions and their inverses.

Given an elliptic modulus k0 and the corresponding period ratio K ′0/K0,
let k1 denote the elliptic modulus such that the corresponding period ratio is
halved: K ′1/K1 = K ′0/2K0. It turns out that k1 can be found by a simple
formula: k1 = 2

√
k0/(1 + k0). We define the ascending Landen transformation:

L(k) =
2
√
k

1 + k
(9.92a)

It is easily verified that L(k) > k ∀k ∈ (0, 1), which explains the name “ascend-
ing”. Intuitively, an increase of the elliptic module k increases the real period K
and reduces the imaginary period K ′, therefore the ratio K ′/K is also reduced.

Inverting the ascending Landen transformation we obtain the descending
Landen transformation:

L−1(k) =
1− k′

1 + k′
=
(

k

1 + k′

)2

(9.92b)

where k′ =
√

1− k2 is the corresponding complementary modulus.14 The read-
ers are encouraged to check that L−1(L(k)) = L(L−1(k)) = k. Obviously, the
descending Landen transformation doubles the period ratio K ′/K.

13The ratio of the periods is of course formally speaking not K′/K but 4K′/4K. However,
obviously these values are equal.

14The second expression in (9.92b), in comparison to the first one, reduces the computation
precision losses at small k.
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It is easily found that the ascending and descending transformations are dual
with respect to swapping k and k′ (or, which is the same, K and K ′):

L′(k) = L−1(k′) (9.93)

where L′(k) =
√

1− (L(k))2 denotes the elliptic modulus complementary to
L(k). Another property which follows from (9.92) is

(1 + k)(1 + L′(k)) = 2 (9.94a)

which also can be equivalently written as

(1 + k′)(1 + L−1(k)) = 2 (9.94b)

Landen sequences of elliptic moduli

Given some elliptic modulus k0, Landen transformation establishes a bilateral
sequence of elliptic moduli:

. . . < k−2 < k−1 < k0 < k1 < k2 < . . . (9.95a)

where kn+1 = L(kn). Due to (9.93) this also automatically establishes a se-
quence of complementary moduli

. . . > k′−2 > k′−1 > k′0 > k′1 > k′2 > . . . (9.95b)

where k′n+1 = L−1(k′n). Note that by (9.94) we have

(1 + kn)(1 + k′n+1) = 2 (9.96a)
(1 + k′n)(1 + kn−1) = 2 (9.96b)

At small k (9.92b) turns to

L−1(k) ≈ k2

4
(for k ≈ 0) (9.97)

Thus, as n grows, the moduli k−n quickly decrease to zero. Conversely, kn
quickly grows to 1. E.g. starting at k = 0.999 we have a sequence

k0 = 0.999
k−1 ≈ 0.914
k−2 ≈ 0.424
k−3 ≈ 0.0494

k−4 ≈ 6 · 10−4

k−5 ≈ 1 · 10−7

At this point the “trigonometric” elliptic functions become practically equal
to their trigonometric counterparts (recall the property (9.62)), while the real
quarter period becomes practically equal to π/2. Thus we almost exactly know
the value of the real quarter period and we also can evaluate the respective
trigonometric functions instead of an elliptic ones. Using the relationships that
we are about to establish below, one can relate the elliptic function values at
k ≈ 0 to the values at larger k, which then provides a way to evaluate the elliptic
functions for arbitrary k. Obviously, the same applies to the “hyperbolic” elliptic
functions at k → 1.
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Ascending recursion for quarter period K

Landen transformation changes the real quarter period as

K(L(k)) = (1 + k)K(k) (9.98)

(where K(k) is the complete elliptic integral of the first kind).
Considering the sequence (9.95), let Kn = K(kn), K ′n = K(k′n) denote the

real and imaginary quarter periods corresponding to moduli kn. By (9.98)

Kn+1 = (1 + kn)Kn (9.99a)
K ′n−1 = (1 + k′n)K ′n (9.99b)

One can verify that (9.99) are in agreement with the fact that the period ratio
is changed by a factor of 2:

K ′n+1

Kn+1
=

K ′n
(1 + k′n+1) · (1 + kn)Kn

=
K ′n
2Kn

where we have used (9.99) and (9.96).
The formula (9.99a) can be used as a means to computeK(k) (for 0 < k < 1).

Notice that as kn is getting small, the factors (1 + kn) are becoming very close
to one. Therefore

K−n =
K0

n∏
ν=1

(1 + k−ν)

by (9.56) should converge to K−∞ = K(0) = π/2. In practical computations,
starting from some n the factor (1 + k−n) will be indistinguishable from one
within the available computation precision, and so (by (9.97)) will be the sub-
sequent factors. At this point the computations may be stopped and we can
assume that K−n = π/2 within the computation precision. Respectively

K0 = K−n ·
n∏
ν=1

(1 + k−ν) =
π

2
·
n∏
ν=1

(1 + k−ν) (9.100)

Thus we arrive at the following algorithm.
Given k0 we wish to evaluate K(k0). Use descending Landen transformation

to build a sequence of decreasing moduli k0, k−1, k−2, . . ., until at some step
n the values k−n becomes sufficiently small so that 1 + k−n = 1 within the
available computation precision. Then ascend back to k0 using (9.99a), thereby
computing K−n+1, K−n+2, . . . , K−1, K0.

Using (9.100) the same algorithm can be expressed iteratively rather than
recursively:

// compute K from k
K := pi/2;
for i:=1 to 5 do

k’ := sqrt(1-k^2);
k := (k/(1+k’))^2; // descending Landen transformation
K := K*(1+k);

endfor;
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Ascending recursion15 for snx and cdx

Let’s introduce the notation snn x = snKn(x, kn) = sn(Knx, kn), snn x =
snKn(x, kn) = sn(Knx, kn) etc. Note that thereby the imaginary period of
snn+1 is halved compared to snn. Let’s also introduce the notation for the
arithmetic average of x and its reciprocal 1/x:

A(x) =
x+ 1

x

2

Then
snn+1 x =

1√
kn+1A(snn x)

(9.101a)

For the purposes of numeric evaluation it is usually more practical to rewrite
(9.101a) in the form:

snn+1 x =
(1 + kn) snn x
1 + kn sn2

n x
(9.101b)

which particularly avoids the division by zero if snn x = 0.
Substituting x + 1 for x in (9.101) and using the shift property (9.66) we

obtain
cdn+1 x =

1√
kn+1A

(
cdn x

) (9.102a)

or the version for numeric evaluation:

cdn+1 x =
(1 + kn) cdn x
1 + kn cd2

n x
(9.102b)

The formulas (9.101), (9.102) can be used to compute the elliptic sine and
cosine for k ∈ (0, 1) by using a similar approach to how we used (9.99) to
evaluate K(k). Let’s start with the elliptic cosine. The idea is that by (9.62)

lim
n→+∞

cd−n x = lim
n→+∞

cd(K−nx, k−n) = cos
π

2
x

Now notice that in (9.102b) we have cdn+1 x = cdn x within the available com-
putation precision, provided

1 + kn = 1 (9.103a)

1 + kn cd2
n x = 1 (9.103b)

within the same computation precision. Apparently, at this moment the se-
quence cdn x (where n→ −∞) converges to cos(πx/2).

The condition (9.103a) is the same that we had in the evaluation of K(k).
However additionally we have the requirement (9.103b) which is redundant if x
is real (since then 0 ≤ cd2

n x ≤ 1), but becomes essential if Imx 6= 0.

15This technique is commonly referred to as descending Landen transformation, since it
expresses elliptic functions with higher values of the modulus k via elliptic functions with
lower values of the modulus. However the recursion formula itself is applied to compute
elliptic functions with higher k from elliptic functions with lower k, thus the recursion itself
is ascending.
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Since we don’t know the value of cdn x in advance, we can’t directly estimate
at which n (9.103b) begins to hold. Simply assuming that (9.103a) will suffice is
not the best idea, since cdn x can easily have values comparable to or exceeding
1/
√
kn in absolute magnitude. Suppose however that

| Imx| ≤ K ′n
2Kn

(9.104)

that is the imaginary part of the argument of cdn doesn’t exceed half of the
imaginary quarter period.16 From our previous discussion of the behavior of
cd and cd we should remember that cd attains unit values in the middle of the
imaginary quarter period and that its absolute magnitude grows away from the
real axis (within the first imaginary quarter period). That is

| cdx| ≤ 1 for | Imx| ≤ K ′/2

Respectively

| cdx| ≤ 1√
k

for | Imx| ≤ K ′/2

and

| cdn x| ≤
1√
kn

for | Imx| ≤ K ′n
2Kn

(9.105)

Thus we have established that under the condition (9.104) the values of cdn x
do not exceed 1/

√
kn in absolute magnitude. Apparently this is by far not

good enough for (9.103b) to hold, since we only guarantee that |kn cd2
n x| ≤ 1,

however the situation will improve if we decrease n by one or more steps.
First notice that if (9.104) holds at some n0, then it will hold ∀n ≤ n0 and

so will (9.105), therefore |kn cd2
n x| ≤ 1 and |1 + kn cd2

n x| ≤ 2. Under further
assumption of (9.103a), from (9.102b) we have

| cdn x| ≤ 2 · | cdn+1 x|

However by (9.97) we have kn = k2
n+1/4 and therefore

|kn cd2
n x| ≤

k2
n+1

4
· 4 · | cd2

n+1 x| = kn+1 · |kn+1 cd2
n+1 x|

That is kn cd2
n x will turn essentially to zero after just decreasing n by one step

and respectively the sequence cdn x (for n→ −∞) will immediately converge.
In principle, we could now allow | Imx| to be arbitrarily large. As we decrease

n step by step, the imaginary period K ′n/Kn of the function cdn is doubling each
time, thus sooner or later (9.104) will hold. However we don’t want to do un-
necessarily many iterations, not only for performance reasons, but also because
the precision losses will accumulate. Therefore it might be more straightforward
to simply wrap the argument of cd using the imaginary periodicity property.

Thus we arrive at the following algorithm. Suppose we want to evaluate
cd(x, k). If | Imx| > K ′, we should use the periodicity property to get x into
the range | Imx| ≤ K ′. Then introduce u = x/K and k0 = k, so that we

16Notice that we needed to divide by Kn in (9.104) because the notation cdn includes the
automatic multiplication of the argument by Kn.
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have cd(x, k) = cd0 u. Then we use the descending Landen transformation to
decrease k−n to almost zero,17 where

cd−n u = cdK−nu ≈ cd
π

2
u ≈ cos

π

2
u

At this point we compute cos(πu/2) instead of cd−n u and ascend back using
(9.102b). In pseudocode this could be expressed as:

// compute cd(x/K,k), assuming |Im x|<=K’
function cdK(u,k,steps=5)

if steps=0 then return cos(pi/2*u) endif;
k’ := sqrt(1-k^2);
k := (k/(1+k’))^2; // descending Landen transformation
y := cdK(u,k,steps-1);
return ((1+k)*y)/(1+k*y^2);

endfunction;

Notice that u may be complex in the above, where we would need a cosine
routine supporting a complex argument, which, if missing, could be implemented
by (9.29a).

Evaluation of snx is done in the same way, except that we have to compute
sin(πu/2) as the approximation of sn−n u. The evaluation routines for sn and
cd can be also reused for evaluation of sc and nd using (9.63).

Descending recursion for snx and cdx

We could invert the formulas (9.101) and (9.102) to express snn−1 and cdn−1 in
terms of respectively snn or cdn:

snn−1 x = A−1

(
1√

kn snn x

)
(9.106a)

or its “numerical” version, avoiding the divisions by zero for snn x = 0

snn−1 x =
1

1 + kn−1
· 2 snn x

1±
√

1− k2
n sn2

n x
(9.106b)

and

cdn−1 x = A−1

(
1

√
kn cdn x

)
(9.107a)

cdn−1 x =
1

1 + kn−1
· 2 cdn x

1±
√

1− k2
n cd2

n x
(9.107b)

The ambiguity in formulas (9.106) and (9.107)18 is apparently due to the fact
that the imaginary periods of snn−1 and cdn−1 are doubled compared to snn
and snn, therefore the formulas “do not know which of the two imaginary half-
periods to choose”.

17Note that thereby after one iteration we are guaratneed that | Imu| ≤ K′n/2Kn.
18Note that the inverse of A gives two different values.
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The descending recursion can be used to evaluate the inverses of sn and
cd. Given an equation of the form cd(x, k) = y (where we want to find x =
cd−1(y, k)), we introduce u = x/K, k0 = k and y0 = y, so that y0 = cd0 u.
Then we use (9.107) to descend to k−n ≈ 0, where we have

y−n = cd−n u ≈ cos
π

2
u

with high precision and therefore we can simply find u by u = (2/π) cos−1 y−n,
thereby obtaining cd−1(y, k) = x = K0u.

Note that, even though (9.107) gives ambiguous results, any of those results
will give a correct answer in the sense that we will get one of the possible
solutions of cd(x, k) = y at the end of the recursion procedure. However, in order
to avoid getting too far away from the origin (and in order to keep u within
the real numbers range if x is a real number not exceeding 1 in magnitude),
it is recommended to choose the value with the smaller absolute magnitude
from the two values of A−1 in (9.107a), or, equivalently choose the “+” sign in
the denominator of (9.107b). In case of complex values “choosing the + sign”
also means that the complex square root operation should yield a value with a
nonnegative real part, that is we should use the principal value (9.30).

Computing the inverse of sn is done in the same way using (9.106) (where
it is preferable to choose the smaller-magnitude one from the two values of A−1

in (9.106a) and to use the “+” sign in the denominator of (9.106b)), finally
computing u by u = (2/π) sin−1 y−n, thereby obtaining sn−1(y, k) = x = K0u.
The respective pseudocode routine could be e.g.:

// compute x=sn^-1(y,k)
Kbypi2:=1; // accumulate ratio K/(pi/2)
for i:=1 to 5 do

k’ := sqrt(1-k^2);
k_1 := (k/(1+k’))^2; // descending Landen transformation
y := 2/(1+k_1) * y/(1+sqrt(1-k^2*y^2));
k := k_1; Kbypi2 := Kbypi2*(1+k);

endfor;
x := Kbypi2*arcsin(y);

The routine for cd−1 is identical, except that it should use arccos instead of
arcsin. Alternatively notice that cd−1 and sn−1 are related via shift and sym-
metry properties of cd and sn,, e.g. cd−1 x = K − sn−1 x, so that one function
can be expressed in terms of the other. The functions sc−1 and nd−1 can be
expressed via sn−1 and cd−1 using (9.63).

If the argument of sn−1 and cd−1 is restricted to real values, all respective
computations will be real. Otherwise we need sqrt, arcsin and arccos functions
to support complex argument, where sqrt must return the principal value (with
nonnegative real part). These functions, if missing, can be implemented using
(9.30) and (9.32).

We mentioned that the ambiguity of (9.106) and (9.107) is due to the dou-
bling of the imaginary period of sn and cd on each step. Instead of that, we
could have had the imaginary period fixed and the real period halved on each
step, resulting in the same change of the period ratio. E.g. for the elliptic cosine,
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introducing cdn′ = cd(K ′nx, kn), we have another relationship:

cdn−1′ x =
(1 + k′n) cd2

n′ x− 1
1− (1− k′n) cd2

n′ x
(9.108)

(where cdn−1′ x = cd(K ′n−1x, kn−1)).
Unfortunately, while (9.108) avoids the ambiguity of (9.106) and (9.107),

it is not useful for evaluation of the inverses of sn and cd, as there is another
ambiguity popping up. Due to periodicity and symmetries of cosx along the
real axis, we won’t know which of the possible values of the inverse of cosx to
take. When using (9.106) and (9.107) the real period of sn and cd was always
exactly preserved by the transformation, therefore this ambiguity didn’t matter
as any of the values of cos−1 and sin−1 would do. If however the real period is
not kept intact, the value returned by cos−1 might result in a wrong value after
rescaling back to the original periods K0 and K ′0.

One further issue is related to the preservation of the imaginary period. Par-
ticularly the range y−n ∈ [1, 1/k−n] is mapped to the range y−n−1 ∈ [1, 1/k−n−1],
respectively for a real y−n above that range (that is y−n > 1/k−n) we obtain a
real y−n−1 > 1/k−n−1. Respectively cos−1 will return a purely imaginary result
(while what we expect from cd−1 is clearly not purely imaginary, as one can see
e.g. from Fig. 9.42) no matter how many times we apply the recursion (9.108)
before evaluating the inverse cosine.

Ascending recursion for ndx

Using the imaginary argument property (9.63) of the elliptic cosine and the
Landen transformation’s duality (9.93) we can convert the descending recursion
formula (9.108) for cdx into an ascending recursion for ndx, which takes the
form

ndn+1 x =
(1 + kn) nd2

n x− 1
1− (1− kn) nd2

n x
(9.109)

The main value of this recursion formula for us will be that we’ll use it to derive
another transformation.

Double Landen transformation

Consider two subsequent Landen transformation steps occurring from kn−1 to
kn+1. Inverting (9.108) we obtain

cd2
n′ x =

cdn−1′ x+ 1
(1 + k′n) + (1− k′n) cdn−1′ x

=
1

1 + k′n
· cdn−1′ x+ 1

1 + kn−1 cdn−1′ x

Now we switch to the real period-based notation by substituting K ′nx← Knx.
This is also equivalent to K ′n−1x← 2Kn−1x since K ′n−1/Kn−1 = 2K ′n/Kn and
thus K ′n−1/K

′
n = 2Kn−1/Kn. Therefore the substitution replaces cdn′ x with

cdn x and cdn−1′ x with cdn−1 2x, resulting in

cd2
n x =

cdn−1 2x+ 1
(1 + k′n) + (1− k′n) cdn−1 2x

=
1

1 + k′n
· cdn−1 2x+ 1

1 + kn−1 cdn−1 2x

Inverting (9.109) we obtain

nd2
n x =

ndn+1 x+ 1
(1 + kn) + (1− kn) ndn+1 x

=
1

1 + kn
· ndn+1 x+ 1

1 + k′n+1 ndn+1 x
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By (9.69)

k2
n cd2

n′ x+ k′2n nd2
n x =

=
k2
n

1 + k′n
· cdn−1 2x+ 1

1 + kn−1 cdn−1 2x
+

k′2n
1 + kn

· ndn+1 x+ 1
1 + k′n+1 ndn+1 x

=

= (1 + k′n)kn−1 ·
cdn−1 2x+ 1

1 + kn−1 cdn−1 2x
+ (1 + kn)k′n+1 ·

ndn+1 x+ 1
1 + k′n+1 ndn+1 x

=

= (1 + k′n)
(

1− 1− kn−1

1 + kn−1 cdn−1 2x

)
+

+ (1 + kn)
(

1−
1− k′n+1

1 + k′n+1 ndn+1 x

)
=

= (1 + k′n)
(

1− 2k′n/(1 + k′n)
1 + kn−1 cdn−1 2x

)
+

+ (1 + kn)
(

1− 2kn/(1 + kn)
1 + k′n+1 ndn+1 x

)
=

= (1 + k′n)− 2k′n
1 + kn−1 cdn−1 2x

+ (1 + kn)− 2kn
1 + k′n+1 ndn+1 x

= 1

Solving for k′n+1 ndn+1 x:

2kn
1 + k′n+1 ndn+1 x

= 1 + kn + k′n −
2k′n

1 + kn−1 cdn−1 2x
=

=
(1 + kn + k′n)(1 + kn−1 cdn−1 2x)− 2k′n

1 + kn−1 cdn−1 2x

1 + k′n+1 ndn+1 x =
2kn(1 + kn−1 cdn−1 2x)

(1 + kn + k′n)(1 + kn−1 cdn−1 2x)− 2k′n

k′n+1 ndn+1 x =

=
2kn(1 + kn−1 cdn−1 2x) + 2k′n − (1 + kn + k′n)(1 + kn−1 cdn−1 2x)

(1 + kn + k′n)(1 + kn−1 cdn−1 2x)− 2k′n
=

=
(kn + k′n − 1)− (1 + kn + k′n)kn−1 cdn−1 2x
(1 + kn − k′n) + (1 + kn + k′n)kn−1 cdn−1 2x

By (9.92) and (9.93)

kn =
2
√
kn−1

1 + kn−1

k′n =
1− kn−1

1 + kn−1

k′n+1 =
1− kn
1 + kn

=
1 + kn−1 − 2

√
kn−1

1 + kn−1 + 2
√
kn−1

=

(
1−

√
kn−1

1 +
√
kn−1

)2

=

=
(
−ρ−1

(√
kn−1

))2
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where we have noticed that the obtained expression can be conveniently written
in terms of the Riemann sphere rotation ρ−1. Therefore√

k′n+1 = −ρ−1

(√
kn−1

)
=

1−
√
kn−1

1 +
√
kn−1

(9.110)

Continuing the transformation of k′n+1 ndn+1 x we obtain

k′n+1 ndn+1 x =
(2
√
kn−1 − 2kn−1)− (2− 2

√
kn−1)kn−1 cdn−1 2x

(2kn−1 + 2
√
kn−1) + (2 + 2

√
kn−1)kn−1 cdn−1 2x

=

=
1−

√
kn−1

1 +
√
kn−1

·
1−

√
kn−1 cdn−1 2x

1 +
√
kn−1 cdn−1 2x

=
√
k′n+1 ·

1− cdn−1 2x
1 + cdn−1 2x

and thus

ndn+1 x =
1− cdn−1 2x
1 + cdn−1 2x

= −ρ−1

(
cdn−1 2x

)
or

ndn+1
x

2
=

1− cdn−1 x

1 + cdn−1 x
= −ρ−1

(
cdn−1 x

)
(9.111)

where the respective elliptic modulus is found from (9.110).
Notice that the halving of the argument in (9.111) is matched by the fact

that the period ratio K ′/K is changed by a factor of 4, That is K ′n−1/Kn−1 =
4K ′n+1/Kn+1. At the same time the real and imaginary periods of cdn−1 x are
4 and 2K ′n−1/Kn−1, while the real and imaginary periods of ndn+1(x/2) are 4
and 8K ′n+1/Kn+1 = 2K ′n−1/Kn−1. Thus we have identically periodic functions
in the left- and right-hand sides of (9.111).

9.12 Elliptic rational functions

Landen transformation was changing the period ratio by a factor of 2, which
resulted in various elliptic functions after the transformation being expressed
as a rational function of the same elliptic function prior to the transformation.
There is a generalization of Landen transformation where the period ratio is
changed by an arbitrary positive integer factor N . Such transformation is re-
ferred to as N -th degree transformation and the factor N is referred to as the
degree of the transformation.

Suppose we are having an elliptic modulus k with respective quarter periods
K ′ and K. Let k̃ be another elliptic modulus with respective quarter periods
K̃ ′ and K̃, such that the quarter period ratio is increased N times:

K̃ ′

K̃
= N

K ′

K
(9.112)

(the equation (9.112) is referred to as degree equation). Notice that since the
period ratio is increased, the modulus is decreased: k̃ < k.

Apparently k and k̃ are interdependent, where from (9.112) we obtain that
increasing k decreases the ratios K ′/K and K̃ ′/K̃, and thus increases k̃ as well.
Thus k̃ = k̃(k) is an increasing function, where at N equal to a power of 2 we



384 CHAPTER 9. CLASSICAL SIGNAL PROCESSING FILTERS

obtain a log2N times repeated Landen transformation. The way to compute k̃
from a given k (and back) for arbitrary N will be discussed later.

In the transformation from k to k̃ we wish to obtain the relationship for cd,
such that the imaginary period (in terms of normalized argument) is fixed. It
turns out that such relationship always has the form:

cdK̃′ u = RN
(
cdK′ u

)
(9.113)

where cdK′ u = cd(K ′u, k), cdK̃′ u = cd(K̃ ′u, k̃) and RN (x) is some real rational
function of order N . We already had a particular case of this formula for N = 2
in (9.108) where

R2(x) =
(1 + k′n)x2 − 1
1− (1− k′n)x2

(9.114)

The function RN (x) is referred to as elliptic rational function of order N .
Notice that RN (x) depends on the elliptic modulus k, even though we don’t
explicitly notate it as function’s parameter. Example graphs of RN (x) are given
in Fig. 9.56.

x

RN (x)

∞∞ 1−1

1

∞

−1

−1

0

Figure 9.56: Elliptic rational functions of even (solid) and odd
(dashed) orders for k = 0.99. The graphs do not cross the horizon-
tal axis at x = 1, rather RN (1) = 1 ∀N , however the resolution of
the figure is insufficient to see that. The poles of RN are occurring
at the intersections of the respective graph with the thin horizontal
dashed line at ∞.

By using (9.112) we could rewrite (9.113) in terms of the real periods:

cdK̃ Nu = RN
(
cdK u

)
(9.115)

where cdK u = cd(Ku, k), cdK̃ u = cd(K̃u, k̃). We could also rewrite (9.113)
and (9.115) in a form without argument normalization, giving:

cd(NK̃u, k̃) = RN
(
cd(Ku, k)

)
(9.116)
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Notice that any of the formulas (9.113), (9.115), (9.116) implies that

RN ·M (x) = RN (RM (x)) = RM (RN (x)) (9.117)

(with the properly chosen elliptic moduli for each of RN ·M , RN and RM ), as
we are effectively simply chaining an N-th and an M-th degree transformation.

RN (x) as representation of linear scaling

In an obvious way, equation (9.113) can be expressed in terms of the preimage
domain:

x = cdK′ u (9.118a)
RN (x) = cdK̃′ u (9.118b)

Alternatively, (9.115) can be expressed as

x = cdK u (9.119a)
v = Nu (9.119b)

RN (x) = cdK̃ v (9.119c)

Differently from xN , TN (x) and T−1
N (x−1), this time there are two different

mappings from the preimage to the representation domain in each case, corre-
sponding to the two different moduli k and k̃. The linear scaling is explicitly
present only in (9.119), however this is purely due to the implicit scaling con-
tained in the period-normalized notation. The explicit notation form is the same
for both (9.118) and (9.119) and contains the linear scaling:

x = cd(u, k) (9.120a)

v = N
K̃

K
u =

K̃ ′

K ′
u (9.120b)

RN (x) = cd(v, k̃) (9.120c)

The mappings are however still different, since k 6= k̃.
By (9.112) the scaling (9.120b) exactly matches the imaginary periods and

expands a single real period to exactly N real periods. For that reason the
shifts of u by an integer number of real and/or imaginary periods do not affect
the values of x and RN (x). By the even symmetry of cd a change of sign of
u doesn’t affect the values of x and RN (x) either. This however exhausts the
set of possible preimages of a given x, since, as we know, cdx takes each value
only once per quater-period grid cell (where the complex quadrants in Fig. 9.42
provide additional reference). Thus we can pick any preimage of x as the value
of u and therefore can rewrite (9.118), (9.119) and (9.120) in their respective
explicit forms:

RN (x) = cdK̃′
(
cd−1
K′ x

)
(9.121a)

RN (x) = cdK̃
(
N cd−1

K x
)

(9.121b)

RN (x) = cd

(
N
K̃

K
cd−1(x, k), k̃

)
(9.121c)
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where cd−1 denote the inverse functions of the respective cd functions. Equa-
tion (9.121c) is the commonly known explicit expression for elliptic rational
functions.

As with TN (x) and

T

N (x), an important class of preimages will be the
horizontal lines in the complex planes u and v. From our discussion of cd and
cd we should recall that these lines produce distinct quasielliptic curves as their
respective images, the full cycle of these curves corresponding to a single real
period of u or v respectively (Figs. 9.52 and 9.53 serve as reference). Therefore x
moving in such quasielliptic curve will be mapped to RN (x) moving in a similar
curve, each cycle of x producing N cycles of RN (x).

Recall that with cosine-based preimages we were preferring the preimages
in the lower complex semiplane, so that preimage movement towards the right
was corresponding to counterclockwise rotation in the representation domain.
Similarly, we are going to choose the elliptic cosine-based preimages within the
imaginary quarter period strip located immediately below the real axis, as shown
in Fig. 9.52, therefore preimage movement towards the right will correspond to
counterclockwise rotation in the representation domain.

Given a preimage u located in the imaginary quarter period immediately
below the real axis, the preimage v will also be located in the imaginary quarter
period immediately below the real axis, since the imaginary quarter periods of
u are mapped exactly onto the respective imaginary quarter periods of v. Also,
apparently, u and v either both move simultaneously to the right or both to the
left. Thus x and RN (x) move either both counterclockwise or both clockwise.19

Bands of RN (x)

The four different parts of the principal preimage of the real line in Fig. 9.47 will
correspond to the bands of elliptic filters which we are going to construct later.
It is convenient to introduce the respective terminology at this point already.

In terms of (9.120) the principal preimage of the real axis x ∈ R is

u ∈ [0, 2K] ⇐⇒ x ∈ [−1, 1] (a)
u ∈ [0, jK ′] ⇐⇒ x ∈ [1, 1/k] (b)
u ∈ [jK ′, jK ′ + 2K] ⇐⇒ x ∈ [1/k,−1/k] (c)
u ∈ [2K, 2K + jK ′] ⇐⇒ x ∈ [−1/k, 1] (d)

Respectively the principal preimage of the real axis RN (x) ∈ R is:

v ∈ [0, 2K̃] ⇐⇒ RN (x) ∈ [−1, 1] (ã)

v ∈ [0, jK̃ ′] ⇐⇒ RN (x) ∈ [1, 1/k̃] (b̃)

v ∈ [jK̃ ′, jK̃ ′ + 2K̃] ⇐⇒ RN (x) ∈ [1/k̃,−1/k̃] (c̃)

v ∈ [2K̃, 2K̃ + jK̃ ′] ⇐⇒ RN (x) ∈ [−1/k̃, 1] (d̃)

The linear scaling (9.120b) maps (b) to (b̃) one-to-one (imaginary period is pre-
served). The mapping from (a) to (ã) and from (c) to (c̃) is one-to-N (real period

19Obviously, we could have chosen any other imaginary quarter period preimage strip. We
have chosen the one right below the real axis simply to have a better defined reference in the
preimage domain.
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is multiplied by N). This is responsible for the appearance of the equiripples
for x ∈ [−1, 1] and x ∈ [1/k,−1/k] in Fig. 9.56. The mapping from (c) re-
sults either in some (non necessarily principal) preimage (d̃) if N is odd or in a
non-principal preimage (b̃) if N is even.

Naming these four bands of RN (x) after the respective bands of the elliptic
filters, we have:

Passband: x ∈ [−1, 1] |RN (x)| ≤ 1

Two transition bands: x ∈ [−1/k,−1] ∪ [1, 1/k] 1 ≤|RN (x)| ≤ 1/k̃

Stopband: x ∈ [1/k,−1/k] |RN (x)| ≥ 1/k̃

The readers are advised to compare the above results to Fig. 9.56, identifying
the equiripples of amplitudes 1 and 1/k̃ in the pass- and stop-bands respectively.
Since k is very close to 1, the transition bands are very narrow and aren’t visible
in Fig. 9.56, however at smaller k the stopband equiripples would become too
small to be visible in the same figure.

The value 1/k is determining the width of the transition band(s) and is
therefore referred to as the selectivity factor. The value 1/k̃ determines the
ratio of the equiripple amplitudes in the pass- and stop-bands and is referred to
as the discrimination factor. Since k and k̃ increase or decrease simultaneously,
so do 1/k and 1/k̃. Therefore decreasing the transition band width (which is
the same as decreasing the selectivity factor 1/k) decreases the discrimination
factor of 1/k̃, thereby making the stop-band equiripples larger. Thus there is a
tradeoff between the transition band width (which we, generally speaking, want
to be small) and the discrimination factor (which we, generally speaking, want
to be large). Fig. 9.57 illustrates.

x

R4(x)

1 1.1 1.2 1.3

1

∞

−1

−1

0

Figure 9.57: Transition region of R4(x) for k = 0.998 (solid) and
k = 0.99 (dashed). The horizontal axis is linear, the vertical axis
is using the arctangent scale.
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Even/odd property

Since cd(u±2K) = − cdu, a negation of x corresponds to a shift of its preimage
u by 2K. Respectively v is shifted by 2NK̃, which will result in a negation of
RN (x) if N is odd and will not change RN (x) is N is even. Therefore RN (x) is
even/odd if N is even/odd:

RN (−x) = (−1)NRN (x) (9.122)

Values at special points

The principal preimage of x = 1 is u = 0. Therefore v = 0 and RN (x) = 1.
Therefore

RN (1) = 1

By (9.122)
RN (−1) = (−1)N

The principal preimage of x = 1/k is u = jK ′. By (9.112) v = jK̃ ′ and
RN (x) = 1/k̃. Therefore

RN (1/k) = 1/k̃

By (9.122)
RN (−1/k) = (−1)N/k̃

Since equiripples begin exactly at the boundaries of the respective bands of
RN (x), the values at x = ±1 and x = ±1/k also give the amplitudes of the
equiripples of RN (x), which are thereby 1 in the passband and 1/k̃ in the stop-
band.

The principal preimage of x = 0 is u = K. By (9.112) v = NK̃ and

RN (0) =

{
0 if N is odd
(−1)N/2 if N is even

The principal preimage of x = ∞ is u = K + jK ′. By (9.112) v = NK̃ + jK ′.
With the help of (9.65) we reuse the result for RN (0), obtaining

RN (∞) =

{
∞ if N is odd
(−1)N/2/k̃ if N is even

Two other interesting points are logarithmic midpoints of the transition band
occurring at x = ±1/

√
k. The princial preimage of x = 1/

√
k is the transition

band’s preimage midpoint u = jK ′/2 and respectively v = jK̃ ′/2. Thus

RN (1/
√
k) = 1/

√
k̃

That is the logarithmic midpoint of the transition band [1, 1/k] is mapped to
the logarithmic midpoint of the respective value range [1, 1/k̃]. By (9.122)

RN (−1/
√
k) = (−1)N/

√
k̃
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Normalized elliptic rational functions

The graphs of RN (x) in Fig. 9.56 look somewhat asymmetric regarding the
boundaries of the bands, which are at ±1 and ±1/k and the amplitudes of the
ripples which are 1 and 1/k̃ respectively. This can be addressed by switching to
normalized elliptic cosine. The equations (9.113), (9.115) and (9.116) thereby
respectively turn into

cdK̃′ u = R̄N
(

cdK′ u
)

(9.123a)

cdK̃ Nu = R̄N
(

cdK u
)

(9.123b)

cd(NK̃u, k̃) = R̄N
(

cd(Ku, k)
)

(9.123c)

while (9.120) turn into

x = cd(u, k) (9.124a)

v = N
K̃

K
u =

K̃ ′

K ′
u (9.124b)

R̄N (x) = cd(v, k̃) (9.124c)

and (9.121) turn into

R̄N (x) = cdK̃′
(

cd
−1

K′ x
)

(9.125a)

R̄N (x) = cdK̃
(
N cd

−1

K x
)

(9.125b)

R̄N (x) = cd

(
N
K̃

K
cd
−1

(x, k), k̃

)
(9.125c)

where

R̄N (x) =
√
k̃RN

(
x√
k

)
(9.126)

is the normalized elliptic rational function. Note that R̄N (x) is essentially simply
a notational shortcut for the right-hand side of (9.126), however due to the more
pure symmetries, it is often more convenient to work in terms of R̄N (x) than
RN (x).

The bands of R̄N (x) are therefore

Passband: |x| ≤
√
k |RN (x)| ≤

√
k̃

Transition bands:
√
k ≤|x| ≤ 1/

√
k

√
k̃ ≤|RN (x)| ≤ 1/

√
k̃

Stopband: |x| ≥ 1/
√
k |RN (x)| ≥ 1/

√
k̃

while the special points of R̄N (x) respectively are:

R̄N (
√
k) =

√
k̃

R̄N (−
√
k) = (−1)N

√
k̃

R̄N (1/
√
k) = 1/

√
k̃

R̄N (−1/
√
k) = (−1)N/

√
k̃
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R̄N (0) =

{
0 if N is odd

(−1)N
√
k̃ if N is even

R̄N (∞) =

{
∞ if N is odd

(−1)N/
√
k̃ if N is even

R̄N (1) = 1

R̄N (−1) = (−1)N

The graphs of R̄N (x) are plotted in Fig. 9.58.

x

R̄N (x)

∞∞ 1−1

1

∞

−1

−1

0

Figure 9.58: Normalized elliptic rational functions of even (solid)
and odd (dashed) orders for k = 0.9.

The interpretation of R̄N (x) as a linear scaling representation is essentially
the same as in (9.118), (9.119) and (9.120) respectively, except that cd must be
replaced with cd. E.g. (9.120) becomes

x = cd(u, k) (9.127a)

v = N
K̃

K
u =

K̃ ′

K ′
u (9.127b)

R̄N (x) = cd(v, k̃) (9.127c)

Notice that the chain rule (9.117) works in the same form for normalized
elliptic rational functions:

R̄N ·M (x) = R̄N (R̄M (x)) = R̄M (R̄N (x)) (9.128)

since the elliptic modulus k̃ for one stage is equal to the elliptic modulus k for
the next stage, thus the coefficients

√
k̃ and 1/

√
k cancel between each pair of

stages.
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Symmetries of R̄N (x)

In Fig. 9.58 one can notice that the graphs of R̄N (x) have certain symmetries.
One symmetry is relatively to the origin:

R̄N (−x) = (−1)N R̄N (x) (9.129)

(which is simultaneously the symmetry relative to x = ∞). Apparently this is
simply the even/odd property of RN (x) which is preserved in the R̄N (x) form.

The other symmetry is relatively to the point R̄N (1) = 1:

R̄N (1/x) = 1/R̄N (x) (9.130)

with a similar symmetry around the point at x = −1 which follows from the
first two symmetries. The proof of (9.130) follows from (9.75d). Given x and its
preimage u, the preimage of 1/x is jK ′−u. Similarly, the preimage of 1/R̄N (x)
is jK̃ ′ − v, however simultaneously

jK̃ ′ − v =
K̃ ′

K ′
(jK ′ − u)

therefore jK̃ ′ − v is also the preimage of R̄N (1/x) and R̄N (1/x) = 1/R̄N (x).
In terms of RN (x) the symmetry (9.130) takes the form

RN (1/kx) = 1
/
k̃RN (x) (9.131)

Similarly to RN (x), the normalized elliptic rational function R̄N (x) maps
the quasielliptic curves Fig. 9.53 to other quasielliptic curves from the same
family. By Fig. 9.53 and (9.85) the unit circle will be mapped to the unit circle,
since the preimage line Imu = jK ′/2 + jK ′n′ will be mapped to the preimage
line Im v = jK̃ ′/2 + jK̃ ′n′. There won’t be other preimages of the unit circle,
since all trajectories in Fig. 9.53 are distinct and occur for different imaginary
parts of the preimage. Thus

|x| = 1 ⇐⇒ |R̄N (x)| = 1 (9.132)

Poles and zeros of RN (x)

Letting RN (x) = 0 and using the representation form (9.119) we obtain

v = 2n+ 1 = 2
(

1
2

+ n

)
(where the second form is given for comparison with the respective derivations
of the zeros of xN and TN (x)). Respectively

u =
2n+ 1
N

= 2
1
2 + n

N

and

x = cdK
2n+ 1
N

= cdK

(
2

1
2 + n

N

)
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which means that the zeros of RN (x) are

zn = cdK
2n+ 1
N

= cdK

(
2

1
2 + n

N

)
(9.133)

where there are N distinct values corresponding to 0 < u < 2. Notice that the
zeros are all real and lie within (−1, 1). Also notice that zn = −zN−1−n, there-
fore the zeros are positioned symmetrically around the origin. Consequently, if
N is odd, one of zn will be at the origin.

By (9.131) the poles can be obtained from zeros as

pn = 1/kzn

Note that if N is odd, then so is RN (x) and one of the zeros will be at x = 0.
In this case one of the poles will be at the infinity and there will be only N − 1
finite poles.

Given zn and taking into account that pn = 1/kzn, we can write RN (x) in
the form

RN (x) = g ·

∏
(x− zn)∏

zn 6=0

(x− 1/zn)

which we could also write as

RN (x) = g · xN∧1 ·
∏
zn 6=0

x− zn
x− 1/kzn

= g · xN∧1 ·
∏
zn>0

x2 − z2
n

x2 − 1/k2z2
n

The value of the gain coefficient g can be obtained from the fact that RN (x)
must satisfy RN (1) = 1. Alternatively we can satisfy RN (1) = 1 by simply
forcing each of the factors of RN (x) to be equal to unity at x = 1 (where prior
to the factor normalization we also have multiplied each of the factors by −k2z2

n)

RN (x) = xN∧1 ·
∏
zn>0

(
1− k2z2

n

1− z2
n

· x2 − z2
n

1− k2z2
nx

2

)
(9.134)

Poles and zeros of R̄N (x)

By (9.126) the zeros of R̄N (x) can be obtained from the zeros of RN (x) as

z̄n =
√
kzn = cdK

2n+ 1
N

= cdK

(
2

1
2 + n

N

)
(9.135)

Notice that thereby z̄n ∈ (−
√
k,
√
k). By (9.130) the poles are related to the

zeros as
p̄nz̄n = 1

The factored form (9.134) respectively becomes

R̄N (x) = xN∧1 ·
∏
z̄n>0

x2 − z̄2
n

1− z̄2
nx

2
(9.136)

where we don’t have explicit normalization factors anymore, since the factors
under the product sign are already all equal to unity at x = 1, thereby giving
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R̄N (1) = 1 as the transition band’s midpoint (which is exactly what it should
be according to the previously discussed special point values of R̄N (x)).

By obtaining equations (9.134) and (9.136) we have constructed RN (x) and
R̄N in the explicit rational function form.

Relationship between k and k̃

Note that the explicit rational function forms (9.134) and (9.136) were obtained
without using the yet unknown to us k̃ (or K̃ or K̃ ′). On the other hand,
having constructed RN (x) and/or R̄N (x), we can obtain k̃ from the condition
RN (1/k) = 1/k̃ or R̄N (

√
k) =

√
k̃.

We can also obtain an explicit expression for k̃ in terms of k. Substituting
(9.134) into RN (1/k) = 1/k̃ we obtain

1/k̃ = k−(N∧1) ·
∏
zn>0

(
1− k2z2

n

1− z2
n

· 1/k2 − z2
n

1− z2
n

)
=

= k−N ·
∏
zn>0

(
1− k2z2

n

1− z2
n

· 1− k2z2
n

1− z2
n

)
= k−N ·

∏
zn>0

(
1− k2z2

n

1− z2
n

)2

By (9.133) zn = cdK un where

un =
2n+ 1
N

Therefore
1− k2z2

n

1− z2
n

=
1− k2 cd2

K un

1− cd2
K un

=
1

sn2
K un

where the latter transformation is by (9.68). Noticing that

zn > 0 ⇐⇒ 0 < un < 1

we obtain
k̃ = kN ·

∏
0<un<1

sn4
K un (9.137)

(where the number of factors under the product sign is equal to the integer part
of N/2) which formally gives an explicit expression for k̃. However practically
this expression is exactly the same as k̃ = 1/RN (1/k) and thus we can simply
find k̃ (and respectively K̃) from the latter condition.

Finding k from k̃ can be done by using the duality of the N -th degree
transformation in respect to k and k′ (which is pretty much the same as the
respective duality of the Landen transformation). Let k̃ = N (k) denote the
N -th degree transformation of k defined by (9.137) (or by explicit usage of
RN (1/k) = 1/k̃ or R̄N (

√
k) =

√
k̃). If the ratio K ′/K is decreased N times by

the N -th degree transformation from k to k̃, then the ratio K/K ′ is increased N
times, which means we are performing an N−1-th degree transformation from
k′ to k̃′, that is k̃′ = N−1(k′). Conversely, k̃′ and k′ are related via an N -th
degree transformation: k′ = N (k̃′), which by (9.137) means

k′ = k̃′N ·
∏

0<un<1

sn4
K̃′
un (9.138)
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Renormalized elliptic rational functions

Similarly to renormalized Chebyshev polynomials we introduce renormalized
elliptic rational functions where we will renormalize only R̄N (x) (although we
could take similar steps to renormalize RN (x) as well):

ˆ
R̄N (x, λ) =

R̄N (x/λ)
R̄N (1/λ)

(9.139)

As with renormalized Chebyshev polynomials, the parameter λ affects the bands
of the elliptic rational functions and the equiripple amplitudes. Apparently the
passband of

ˆ
R̄N (x) is |x| ≤ λ

√
k, while the stopband is |x| ≥ λ/

√
k. Thus

if λ becomes smaller, the passband shrinks while the stopband simultaneously
expands and vice versa. The equiripple amplitudes in the pass and stop-bands
are becoming equal to

√
k̃/R̄N (1/λ) and 1/

√
k̃R̄N (1/λ) respectively. Therefore

both values increase if λ grows and decrease if λ becomes smaller, which means
that the equiripple sizes in the pass- and stop-bands are traded against each
other20 (Fig. 9.59). Notice that thereby a smaller bandiwith of the pass- or
stop-band corresponds to a smaller equiripple amplitude in the same band and
vice versa.

x
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1
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Figure 9.59: Renormalized elliptic rational function for λ = 1
(solid), λ = k1/4 (small dashes) and λ = k−1/4 (large dashes).
As the used elliptic modulus k = 0.9 is pretty close to 1, the cor-
responding variations of the transition band width are not well
visible.

The reasonable range of λ is equal to the transition band [
√
k, 1/
√
k]. For λ

within this range the equiripples (both in the pass- and stopbands) do not grow
further than to unit amplitude. As a somewhat excessive range of λ we could
take (max{z̄n}, 1/max{z̄n}), limiting λ between the zeros and poles of R̄N (x).
In this case the equiripples may become arbitrarily large.

As with renormalized Chebyshev polynomials, we may omit the parameter
λ, understanding it implicitly, and simply write

ˆ
R̄N (x).

20By the earlier given definition of the amplitude of oscillations around infinity, the size of
the stop-band equiripples is smaller if the formal amplitude of the equiripples is larger.
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Relation to xN , TN (x) and

T

N (x)

In (9.136) it is easily noticed that at z̄n → 0 the right-hand side turns into xN .
On the other hand |z̄n| ≤

√
k, therefore, if k → 0, then z̄n → 0 and respectively

by (9.136)
lim
k→0

R̄N (x) = xN (9.140)

or simply R̄N (x) = xN for k = 0 (Fig. 9.60).
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Figure 9.60: Normalized elliptic rational function for k = 0.9
(solid), k = 0.7 (dashed) and k = 0 (thin dashed).

At k → 0 we have cdx → cosx and cdK x → cosπx/2, therefore (9.115)
turns into

cos
π

2
Nu = RN

(
cos

π

2
u
)

By replacing πu/2 with u it can be equivalently written as

cosNu = RN
(
cosu

)
which is identical to (9.35). Therefore RN (x) becomes identical to TN and thus
we have

lim
k→0

RN (x) = TN (x) (9.141)

or simply RN (x) = TN (x) for k = 0. Notice that as K ′ → ∞ and 1/k → ∞,
the transition band of RN (x) becomes infinitely large in both preimage and
representation domains, while the stopband |x| ≥ 1/k disappears into infinity.

Using (9.126) and (9.139) we can express the approaching to TN (x) in terms
of R̄N (x) and

ˆ
R̄N (x):

lim
k→0

R̄N

(
x
√
k
)

√
k̃

= lim
k→0 ˆ

R̄N

(
x, 1/

√
k
)

= TN (x) (9.142)

where we had to take the limit to avoid divisions and multiplications by zero.
By the definition of

T

N (x) equation (9.142) can be rewritten as

lim
k→0

R̄N

(
x
√
k
)

√
k̃

=
1

T

N (1/x)
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Substituting 1/x for x and reciprocating both sides

lim
k→0

√
k̃

R̄N

(√
k/x

) =

T

N (1/x)

By (9.130) and (9.139)

lim
k→0

√
k̃R̄N

(
x/
√
k
)

= lim
k→0 ˆ

R̄N

(
x,
√
k
)

=

T

N (1/x) (9.143)

Transition band slope of R̄N (x)

By (9.140) R̄N (x) turns into xN at k = 0. On the other hand at the transition
band’s midpoint x = 1 we have R̄N (x) = xN = 1 ∀k. It would be therefore
interesting to compare the slopes of R̄N (x) and xN within the transition band.
In order to do that we are going to take similar steps to what we did in the
comparison of TN (x) and xN . Comparing (9.136) to (9.40) we compare their
individual factors by computing their respective differences:

x2 − z̄2
n

1− z̄2
nx

2
− x2 =

x2 − z̄2
n − x2 + z̄2

nx
4

1− z̄2
nx

2
=
z̄2
n(x4 − 1)
1− z̄2

nx
2

(9.144)

Assuming k > 0, we have 0 < z̄n <
√
k < 1 in the above. Thus in the range

1 < |x| < 1/max{z̄n} the differences (9.144) are strictly positive and the factors
of (9.136) are larger than those of (9.40). Since for 1 < x < 1/max{z̄n} all
factors of (9.136) and (9.40) are positive, we have

R̄N (x) > xN (1 < x < 1/max{z̄n}, N > 1)

By the even/odd symmetries of R̄N (x) and xN :

|R̄N (x)| > |xN | (1 < |x| < 1/max{z̄n}, N > 1)

By the symmetry (9.130) and by the same symmetry of xN

|R̄N (x)| < |xN | (max{z̄n} < |x| < 1, N > 1)

Note that thereby our discussion has completely covered the band |x| ∈
(max{z̄n}, 1/max{z̄n}) which also includes the entire transition band |x| ∈
[
√
k, 1/
√
k]. From (9.144) we can also notice that the difference grows in mag-

nitude as z̄n grow in magnitude. However by (9.135) and (9.91) the absolute
magnitudes of z̄n should simply grow with k. Thus the differences (9.144) grow
with k and respectively R̄N (x) deviates stronger for xN within the transition
band as k grows (which can be seen in Fig. 9.59).

In order to explicitly compute the derivative of R̄N (x) at the transition
midpoint x = 1, we will evaluate the derivative of cdu at u = jK ′/2 (which is
the point where cdu = 1). By (9.72)

d
du

cdu =
d

du

√
k cdu =

√
k cdu · d

du
ln cdu = −

√
k · k′2 cdu scundu
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We already know that cd(jK ′/2) = 1/
√
k. The value of nd(jK ′/2) can be

obtained by (9.69) giving

nd2 jK
′

2
=

1
k′2

(
1− k2 cd2 jK

′

2

)
=

1
k′2

(
1− k2 cd2 jK

′

2

)
=

1
k′2

(1− k) =

=
1− k
1− k2

=
1

1 + k

By Fig. 9.44, (9.63) and Fig. 9.36 we choose the positive result of taking the
square root

nd
jK ′

2
=

1√
1 + k

By (9.66)

sc
jK ′

2
= j nd

−jK ′

2
= j nd

jK ′

2
=

j√
1 + k

Thus (
d

du
cd
)(

jK ′

2

)
= −
√
k · k′2 · 1√

k
· j√

1 + k
· 1√

1 + k
=

= −j k′2

1 + k
= −j 1− k2

1 + k
= −j(1− k)

Now by (9.127) the function R̄N (x) is obtained as a sequence of three transfor-
mations. Differentiating each of these transformations at the point correspond-
ing to x = 1 we obtain

du
dx

=
(

dx
du

)−1

=
1

−j(1− k)

dv
du

= N
K̃

K
=
K̃ ′

K ′

dR̄N
dv

= −j(1− k̃)

and thus

dR̄N
dx

=
dR̄N
dv
· dv

du
· du

dx
=

1− k̃
1− k

N
K̃

K
=

1− k̃
1− k

· K̃
′

K ′
(at x = 1) (9.145)

At k = 0 we have k̃ = 0, K = K̃ = π/2 and therefore R̄′N (1) = N corresponding
to the fact that R̄N (x) = xN . At higher k the derivative grows (Fig. 9.61).

In order to convince ourselves that R̄′N (1)→ +∞ for k → 1 we could notice
that K̃ ′ → π/2, and K ′ → π/2, therefore K̃ ′/K ′ → 1. Now, for a given k, the
value k̃ will obviously decrease with growing N (as we are using a higher degree
transformation of the period ratio). Therefore (1− k̃)/(1− k) can be bounded
from below by its own value at N = 2. A bit later in the text we will obtain
an explicit expression for R̄′2(1) where it will be obvious that R̄′2(1) → +∞ as
k → 1. Therefore (1− k̃)/(1− k)→ +∞ at N = 2, and so it does for all other
N > 2.
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k

R̄′4(1)

1

4

0

Figure 9.61: Transition midslope derivative of R̄4(x) for various k.

Transition band slope of RN (x)

By (9.141) the elliptic rational function RN (x) turns into a Chebyshev polyno-
mial of the same order N . We would be now in the position to compare their
slopes within the transition band of RN (x).

Comparing the factors of (9.134) and (9.42) (where in (9.42) we let λ = 1
to turn

ˆ
TN (x) into TN (x)) we first pretend that the zeros of RN (x) and TN (x)

are identical. In that case the difference of the respective factors is

1− k2z2
n

1− z2
n

· x2 − z2
n

1− k2z2
nx

2
− x2 − z2

n

1− z2
n

=
x2 − z2

n

1− z2
n

·
(

1− k2z2
n

1− k2z2
nx

2
− 1
)

=

=
x2 − z2

n

1− z2
n

· 1− k2z2
n − 1 + k2z2

nx
2

1− k2z2
nx

2
=
x2 − z2

n

1− z2
n

· k
2z2
n(x2 − 1)

1− k2z2
nx

2
(9.146)

Since within the transition band [1, 1/k] of RN (x) we have 1− k2z2
nx

2 > 0 and
x2 − z2

n > 0, the difference (9.146) is positive for x ∈ (1, 1/k] (for 0 < k < 1).21

By (9.133) and (9.91) the zeros zn grow with k. On the other hand, the
zeros zn of RN (x) become equal to Chebyshev polynomial’s zeros at k = 0.
Thus the zeros of TN (x) are smaller in absolute magnitude than those of RN .
Temporarily notating Chebyshev polynomial’s zeros as λnzn where 0 < λn < 1
(assuming k > 0), we notice that

x2 − z2
n

1− z2
n

− x2 − (λnzn)2

1− (λnzn)2
=
(
x2 − z2

n

1− z2
n

− x2

)
−
(
x2 − (λnzn)2

1− (λnzn)2
− x2

)
=

=
z2
n(x2 − 1)
1− z2

n

− (λnzn)2(x2 − 1)
1− (λnzn)2

(9.147)

where we have used (9.43). That is the difference (9.147) is again positive for
x > 1 and it is growing with λn → 0 (which corresponds to the growing k).
Adding (9.147) and (9.146) we obtain

1− k2z2
n

1− z2
n

· x2 − z2
n

1− k2z2
nx

2
− x2 − λnz2

n

1− λnz2
n

=

21Actually the same holds a bit further than within the tranistion band, namely within
[1, 1/kmax{zn}] but for simplicity we’ll talk of transition band.
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=
x2 − z2

n

1− z2
n

· k
2z2
n(x2 − 1)

1− k2z2
nx

2
+
(
z2
n(x2 − 1)
1− z2

n

− (λnzn)2(x2 − 1)
1− (λnzn)2

)
> 0

(9.148)

where x ∈ (1, 1/k]. By our preceding discussion (9.148) becomes larger at larger
k.

Since all involved factors are greater than unity in the transition band of
RN (x), it follows that RN (x) > TN (x) in that range and the difference grows
with k. By even/odd symmetries of the respective functions we have

|RN (x)| > |TN (x)| (|x| ∈ (1, 1/k], k > 0, N > 1)

and the difference becomes larger with k.

Elliptic rational functions of order 2N

Constructing an elliptic rational function of a power-of-2 order is especially easy,
since we can combine the explicit expression (9.114) for R2(x) with the chain
rule (9.117) to build functions of other power-of-2 orders.

It is therefore also helpful to have a ready explicit expression for R̄2(x). By
(9.114) and (9.126)

R̄2(x) =
√
k̃ ·

(1 + k′)
x2

k
− 1

1− (1− k′)x
2

k

=
√
k̃ ·

1 + k′√
1− k′2

x2 − 1

1− 1− k′√
1− k′2

x2

=
√
k̃ ·

√
1 + k′

1− k′
x2 − 1

1−
√

1− k′

1 + k′
x2

Recalling that for R2(x)

k̃ = L−1(k) =
1− k′

1 + k′

we further obtain

R̄2(x) =
√
k̃ ·

x2√
k̃
− 1

1− x2
√
k̃

=
x2 −

√
k̃

1− x2
√
k̃

(9.149)

Multiple expressions of the form (9.149) (with different k̃ related through Landen
transformation) can be chained to obtain R̄N (x) for other power-of-2 orders.

The derivative at x = 1 is

R̄′2(1) =
2x
(

1− x2
√
k̃
)

+ 2x
√
k̃
(
x2 −

√
k̃
)

(
1− x2

√
k̃
)2

∣∣∣∣∣
x=1

=

=
2
(

1−
√
k̃
)

+ 2
√
k̃
(

1−
√
k̃
)

(
1−

√
k̃
)2 = 2

1 +
√
k̃

1−
√
k̃

(9.150)

It is left as an excercise for the reader to verify that (9.150) is a particular case
of (9.145).

Notably, by (9.110), the formula (9.150) can be rewritten as R̄′2(1) = 2/
√
k′1

where k′1 is a complementary modulus to k1 where k1 = L(k).
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9.13 Elliptic filters

Elliptic filters are obtained by using renormalized elliptic rational functions

ˆ
R̄N (ω) as f(ω) in (9.18).22 The main motivation to use renormalized elliptic
rational functions instead of ωN and

ˆ
TN (ω) is that, as we already know they

grow faster than ωN and
ˆ
TN (ω) within their transition bands, which results

in a steeper transition band’s slope. The tradeoff is that in order to achieve a
steeper transition band we need to allow ripples in the pass- and stop-bands.

Thus, in (9.18) we let
f(ω) =

ˆ
R̄N (ω)

that is
|H(jω)|2 =

1
1 +

ˆ
R̄2
N (ω)

The λ parameter of
ˆ
R̄N (ω) is affecting the equiripple amplitudes of

ˆ
R̄N and

thereby the equiripple amplitude in the pass- and stop-bands of |H(jω)|. It is
convenient to introduce the additional variable

ε =
1

R̄N (1/λ)
(9.151)

Using (9.151) we particularly may write

f(ω) =
ˆ
R̄N (ω) = εR̄N (ω/λ)

Given a desired filter order N , we still have two further freedom degrees to
play with, corresponding to the parameters k and λ, where, as we should recall
from the discussion of elliptic rational functions, k defines the tradeoff between
the transition bandwidth and the ripple amplitudes, and λ defines the tradeoff
between the ripple amplitudes in the pass- and stop-bands. One of the possible
scenarios to compute the elliptic filter parameters can be therefore the following.
Suppose we are given the desired filter order N and the desired pass- and stop-
band boundaries (where the passband boundary must be to the left of ω = 1
and the stopband boundary must be to the right of ω = 1). Recalling that the
pass- and stop-bands of

ˆ
R̄N are (in the positive frequency range) [0, λ

√
k] and

[λ/
√
k,+∞) respectively, we can find λ and k.

Another scenario occurs if we are given the discrimination factor 1/k̃. By
(9.137) this defines selectivity factor 1/k and respectively the transition band
width, but we can still play with λ to control the tradeoff between the pass- and
stop-band ripples.

Since the passband amplitude of R̄N is
√
k, the amplitude response |H(jω)| is

varying within [1/
√

1 + kε2, 1] in the passband. Since the stopband amplitude of
R̄N is 1/

√
k, the amplitude response |H(jω)| is varying within [0, 1/

√
1 + ε2/k]

in the stopband. The value of ε therefore affects the tradeoff between the equirip-
ple amplitudes of |H(jω)| in the pass- and stop-bands. Since ε depends on λ,

22Classically, elliptic filters are obtained from elliptic rational functions RN (ω) by letting
f(ω) = εRN (ω) where ε > 0 is some small value. This way however usually requires some
cutoff correction afterwards. The way how we introduce Chebyshev filters is essentially the
same, but directly results in a better cutoff positioning and better symmetries. Particularly
EMQF filters directly arise at λ = 1. One way is related to the other via ε = 1/RN (1/

√
kλ)

combined with a cutoff adjustment by the factor
√
kλ.
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this is consistent with our previous conclusion that λ affects the tradeoff be-
tween the equiripple amplitudes of

ˆ
R̄N , where a smaller bandwidth of the pass-

or stop-band corresponds to smaller equiripples within the respective band. Re-
member that the range of λ is generally restricted to [

√
k, 1/
√
k] (or just a little

bit wider). Fig. 9.62 illustrates.

ω

|H(jω)|

11/8 8

1

0.5

0

Figure 9.62: Elliptic filter’s amplitude responses for N = 5, k =
0.98 and λ = 1 (solid) and λ = k−1/4 (dashed). Notice the usage
of the linear amplitude scale, which is chosen in order to be able
to show the amplitude response zeros.

Poles of elliptic filters

Since
ˆ
R̄N (ω) is a rational function, the transfer function defined by (9.18) will

have poles and zeros. The equation for the poles of |H(s)|2 = H(s)H(−s) is

1 +
ˆ
R̄2
N (ω) = 0

or

ˆ
R̄N (ω) = ±j

or
εR̄N (ω/λ) = ±j (9.152)

or, introducing ω̄ = ω/λ

R̄N (ω̄) = ±j
ε

(9.153)

where the “+” sign corresponds to the even poles and the “−” sign to odd poles.
Recall the interpretation of R̄N as a representation of linear scaling of the

preimage, which is given by (9.127). Suppose ω̄ is moving in a counterclockwise
direction in a quasielliptic curve which is a representation of some preimage line
Imu = β (Figs. 9.52, 9.53). Earlier we have agreed to chose the preimages within
the imaginary quarter period right below the real axis, that is β ∈ (−jK ′, 0). In
this case the counterclockwise movement in the representation domain assumes
that u is moving towards the right.
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Since v = uK̃ ′/K ′, the corresponding line in the preimage of R̄N (ω̄) is Im v =
β̃, where β̃ = βK̃ ′/K ′. Therefore Im v ∈ (−jK̃ ′, 0), that is the line also goes
within the imaginary quarter period right below the real axis. Obviously, since
u moves towards the right, so does v, and R̄N (ω̄) moves in a counterclockwise
direction.

We wish R̄N (ω̄) to pass through the points ±j/ε going counterclockwise.
By (9.71) the intersections of the quasielliptic curve R̄N (ω̄) with the imaginary
axis are occuring at ±j sc(β̃, k̃′), therefore we choose

β̃ = − sc −1(1/ε, k̃′)

(which thereby belongs to (−K̃ ′, 0))23 and

β =
K ′

K̃ ′
β̃ = −K

′

K̃ ′
sc −1(1/ε, k̃′) = − K

NK̃
sc −1(1/ε, k̃′)

According to (9.71) the purely imaginary values of cd(v, k̃) are attained when
the real part of the elliptic cosine’s argument is equal to (2n+1)K̃, where n ∈ Z.
Thus, the values ±j/ε will be attained by R̄N (ω̄) at

v = jβ̃ + (2n+ 1)K̃ (9.154)

where, since β̃ < 0, the value R̄N (ω̄) = j/ε is attained at n = 0 and other even
values of n. Thus, the solutions of the even pole equation f = j will occur at
even values of n. Fig. 9.63 illustrates.

Re v

Im v

0
4K̃

K̃ ′

2K̃ ′

−K̃ ′

−2K̃ ′

Re R̄N (ω̄)

Im R̄N (ω̄)

0

R̄N (ω̄) = cd(v, k̃)

Figure 9.63: Preimages of R̄N (ω̄) = ±j/ε (qualitatively).

From (9.154) we obtain

u = jβ +
K

NK̃
(2n+ 1)K̃ = jβ +K

2n+ 1
N

= jβ + 2K
1
2 + n

N

23Instead of − sc −1(1/ε, k̃′), which can be expected to have an unambiguous principal

value, one can equivalently compute − cd
−1

(j/ε, k̃′), however, as there are multiple solutions

to the equation cd(x, k̃′) = j/ε, one needs to be careful to be sure that the cd
−1

routine
returns the same value as would have been obtained by using sc −1. In principle any solution
of cd(x, k̃′) = j/ε would do, but may result in a different order of iteration of elliptic filter’s
poles, so that the unstable poles will be obtained first.
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where there are 2N essentially different preimages of ω̄ occuring at 2N consecu-
tive values of n all lying on the line Imu = β. Going back to the representation
domain we obtain ω̄ lying on the respective quasiellipse:

ω̄ = cd
(
jβ +K

2n+ 1
N

, k

)
Fig. 9.64 illustrates.

Re u

Im u

0 4K

K ′

2K ′

−K ′

−2K ′

Re ω̄

Im ω̄

0

ω̄ = cd(u, k)

Figure 9.64: Transformation of Fig. 9.63 by u = Kv/NK̃ (for
N = 2). The white and black dots on the quasielliptic curve are
even/odd elliptic poles in terms of ω̄. (The picture is qualitative.)

Switching to ω = λω̄:

ω = λ cd
(
jβ +K

2n+ 1
N

, k

)
It is easily checked that the values of ω are moving counterclockwise starting
from the positive real semiaxis, where the values occurring at even/odd n cor-
respond to even/odd poles respectively.

Switching from ω to s = jω we obtain the expression for the poles:

s = jλ cd
(
jβ +K

2n+ 1
N

, k

)
(9.155)

Since the values of ω are moving counterclockwise starting from the real positive
semiaxis, the values of s are moving counterclockwise starting from the imagi-
nary “positive” semiaxis, which means that starting at n = 0 we first obtain the
stable poles at n = 0, . . . , N − 1. The next N values of n will give the unstable
poles.

For filter orders which are powers of 2 one can solve the equation (9.153) in
an easier way using (9.149) and (9.128).

Zeros of elliptic filters

The zeros of H(s), if expressed in terms of ω coincide with the poles of f(ω) =

ˆ
R̄N (ω, λ), which can be found from the poles p̄n = 1/z̄n of R̄N (ω) as

ˆ
p̄n = λp̄n =
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λ/z̄n, where z̄n are given by (9.135). By s = jω the zeros can be reexpressed in
terms of s. For filter orders which are powers of 2 there is a simpler way using
(9.149) and (9.128).

One should remember that for oddN the function R̄N has a zero at the origin
which doesn’t have a corresponding finite pole of R̄N , respectively there is no
corresponding finite zero of H(s) and no corresponding factor in the numerator
of H(s). Respectively the order of the numerator of H(s) is N − 1 rather than
N , and the zero at the inifinity occurs automatically due to the order of the
numerator being less than the order of the denominator. Fig. 9.65 provides an
example.

−1 1

−j

j

0 Re s
(−Im ω)

Im s
(Re ω)

Figure 9.65: Poles (white and black dots) and zeros (white squares)
of an elliptic filter of order N = 5. Each of the zeros is duplicated,
but the duplicates are dropped together with the unstable poles.

In Fig. 9.65 one can notice that the poles are more condensed closer to the
imaginary axis. Apparently, this is due to (9.81c) and the related explanation.

Gain adjustments

The default normalization of the elliptic filter’s gain is according to (9.18):

H(0) =
1√

1 +
ˆ
R̄2
N (0)

=
1√

1 + ε2R̄2
N (0)

=
1√

1 + ε2 (Re jN )2 k̃
(9.156)

which thereby defines the leading gain coefficient of the cascade form imple-
mentation (8.1). We could also find the leading gain from the requirement
|H(j)|2 = 1/2, but we should mind the possibility of accidentally obtaining a
180◦ phase response at ω = 0.

With the leading gain defined this way the amplitude response varies within
[1/
√

1 + k̃ε2, 1] in the passband. We could choose some other normalizations,
though. E.g. we could require H(0) = 1. Or we could require the passband
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ripples to be symmetric relatively to the zero decibel level, which is achieved by
multiplying (9.156) by (1 + k̃ε2)1/4:

H(0) =

√ √
1 + k̃ε2

1 + ε2R̄2
N (0)

so that |H(jω)| varies within [1/(1 + k̃ε2)1/4, (1 + k̃ε2)1/4] within the passband.

Elliptic minimum Q filters

At λ = 1 we have
ˆ
R̄N (ω) = R̄N (ω), thus f(ω) attains the reciprocal symmetry

(9.130). Simultaneously, by (9.151) ε = 1, respectively

β̃ = − sc −1(1, k̃′) = −K̃ ′/2

β =
K ′

K̃ ′
β̃ = −K/2

while (9.155) turns into

s = j cd
(
j
K

2
+K

2n+ 1
N

, k

)
(9.157)

By Fig. 9.53 and (9.85) the poles of H(s) are all lying on the unit circle.24

Further, by Figs. 9.54, 9.55 and the associated discussion, the values of cd in
(9.157) are having the maximum possible angular deviation (among the ones
arising from different values for k) from the real axis. Respectively, the poles
given by (9.157) are having the maximum possible angular deviation from the
imaginary axis, which means that the corresponding cascade 2-pole sections will
have the minimum possible resonances. Therefore elliptic filters arising at λ = 1
are referred to as elliptic minimum Q filters, or shortly EMQF.

Butterworth and Chebyshev limits

By (9.140) at k = 0 EMQF filters turn into Butterworth filters. By (9.142)
at k → 0 and λ = 1/

√
k elliptic filters turn into Chebyshev type I filters. By

(9.143) at k → 0 and λ =
√
k elliptic filters turn into Chebyshev type II filters.

SUMMARY

Classical signal processing filters are defined in terms of the squared amplitude
response equation (9.18). By choosing different function types as f(ω) in (9.18)
one obtains the respective filter types:

Butterworth f(x) = xN

Chebyshev type I f(x) =
ˆ
TN (x)

Chebyshev type II f(x) =
ˆ

T

N (x)
Elliptic f(x) =

ˆ
R̄N (x)

24From a slightly different angle, since λ = 1 and ε = 1, the pole equation turns into
R̄N (ω) = ±j. By (9.132) the solutions are lying on the unit circle.
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Chapter 10

Special filter types

Butterworth filters of the 1st and 2nd kind as well as elliptic filters can serve
as a basis to contruct other filter types of a more specialzed nature, which are
going to be the subject of this chapter.

10.1 Reciprocally symmetric functions

The reciprocal symmetry (9.130) seems to be responsible for the special proper-
ties of EMQF filters. There is indeed a strong relationship between those, which
is worth a dedicated discussion, because we will have more uses of such functions
throughout this text. Let’s therefore suppose that f(x) (used in (9.18)) satisfies

f(1/x) = 1/f(x) (10.1)

Reciprocal symmetry of the poles

An obvious conjecture which might appear from the discussion of EMQF filters
is that (10.1) implies the poles on the unit circle. This, however, is not exactly
true, although there is some relation.

The symmetry (10.1) actually implies the reciprocal symmetry of the filter’s
poles. That is, if s is a pole of H(s), then so is 1/s. Indeed, suppose f2(−js) =
−1, which means s is a pole of H(s). Then f2(−j/s) = f2(1/js) = 1/f2(js) =
1/f2(−js) = −1 (where the latter transformation is by the fact that f is required
to be odd or even) and thus 1/s is also a pole of H(s).

The reciprocal symmetry of the filter’s poles manifests itself nicely for the
poles on the unit circle, where the reciprocation turns into simply conjugation,
and as poles of the real filters must be conjugate symmetric, they are also
reciprocally symmetric. But the poles do not really have to lie on the unit
circle.

407
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Image of the unit circle

f(x) maps unit circle to the unit circle.1 Indeed, first notice that |x| = 1 ⇐⇒
1/x = x∗. Suppose |x| = 1. Then, recalling that f is real,

f(1/x) = f(x∗) = f∗(x) = 1/f(x) ⇐⇒ |f(x)| = 1

Therefore
|x| = 1 =⇒ |f(x)| = 1

The converse is however not necessarily true: it’s possible that ∃x : |x| 6=
1, |f(x)| = 1. In other words, there may be other preimages of the unit circle
points.

E.g. consider the function

f(x) = ρ+1

(
(ρ+1(x))3

)
= x

x2 + 3
3x2 + 1

Apparently f(x) satisfies (10.1). However, it has three different preimages of
the unit circle:

x(t) = ρ+1(ejαt)

where t ∈ R and α is one of the values π/6, 3π/6, 5π/6. At α = 3π/6 = π/2 we
obtain |x| = 1, however for other α this is not so.

Poles on the unit circle

Under the additional restriction that the zeros of f(x) (including a possible zero
at x = ∞) must be either all inside or all outside of the unit circle, the unit
circle will be the only preimage of the unit circle, that is

|x| = 1 ⇐⇒ |f(x)| = 1 (10.2)

We have already shown that |x| = 1 =⇒ |f(x)| = 1, therefore it remains
for us to show that |x| = 1 ⇐= |f(x)| = 1. First notice that (10.1) implies
that the poles of f(x) are reciprocals of the zeros. From (10.1) we also have
f(1) = ±1. Then f(x) can be written as

f(x) =
∏
n

x− zn
1− znx

where zn are the zeros of f(x). Furthermore, since f is real, complex zeros must
come in conjugate pairs and so must complex poles, and we can write

f(x) =
∏
n

x− zn
1− z∗nx

(10.3)

Suppose all zeros of f(x) lie inside the unit circle. Let’s show that in this case
|x| > 1 =⇒ |f(x)| > 1. Suppose |x| > 1. In order to show that |f(x)| > 1 we
are going to show that each of each of the factors of f(x) has absolute magnitude
greater that unity: ∣∣∣∣ x− zn1− z∗nx

∣∣∣∣ > 1

1Notice that incidentally this implies that f(x) is a discrete-time allpass transfer function,
although not necessarily describing a stable allpass.
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By equivalent transformations we are having

|x− zn| > |1− z∗nx|

(x− zn)(x∗ − z∗n) > (1− z∗nx)(1− znx∗)

|x|2 − znx∗ − z∗nx− |zn|2 > 1− znx∗ − z∗nx− |zn|2 · |x|2

(|x|2 − 1)(1− |zn|2) > 0

which is obviously true, therefore each of the factors of f(x) is larger than
1 in absolute magnitude and so is f(x). In a similar way we can show that
|x| < 1 =⇒ |f(x)| < 1. Therefore there are no other images of unit circle points
and we have shown that |x| = 1 ⇐= |f(x)| = 1. The case of all zeros lying
outside the unit circle is treated similarly, where we have |x| > 1 =⇒ |f(x)| < 1
and |x| < 1 =⇒ |f(x)| > 1.

From (10.2) it follows that the solutions of the pole equation f2(x) = −1
are lying on the unit circle, and so do the poles of H(s) obtained from f(x).

Complementary symmetry of lowpass and highpass filters

The reciprocal symmetry of the poles implies that filters H(s) and H(1/s) (re-
lated by the LP to HP transformation) share the same poles. Furthermore,
it turns out that there is a complementary symmetry of squared amplitude
responses of these filters:

|H(jω)|2 + |H(1/jω)|2 = 1 ⇐⇒ f(1/x) = 1/f(x) (10.4)

Indeed, by the Hermitian property of H(1/jω), the left-hand side of (10.4) can
be equivalently written as

|H(jω)|2 + |H(j/ω)|2 = 1

Using (9.18) we further rewrite it as

1
1 + f2(ω)

+
1

1 + f2(1/ω)
= 1

Transforming the equation further, we obtain

1
1 + f2(1/ω)

= 1− 1
1 + f2(ω)

=
f2(ω)

1 + f2(ω)
=

1

1 +
1

f2(ω)

or equivalently
f2(1/ω) = 1/f2(ω)

or
f(1/ω) = ±1/f(ω)

Noticing that f(1/ω) = −1/f(ω) implies f2(1) = −1, which is impossible for a
real f(ω), we conclude that f(1/ω) = −1/f(ω) is not an option. Thus we simply
have f(1/ω) = 1/f(ω), which was obtained by an equivalent transformation
from |H(jω)|2 + |H(1/jω)|2 = 1 and thus both conditions are equivalent.
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10.2 Shelving and tilting filters

We have made some attempts to construct shelving filters in the discussions of 1-
and 2-poles, but the results were lacking intuitively desired amplitude response
symmetries shown in Fig. 10.1. The kind of symmetry shown in Fig. 10.1 is
better expressed if we symmetrize the amplitude response further, obtaining
the one in Fig. 10.2.

0 dB

ω

|H(jω)|

11/8 8

0 dB

ω

|H(jω)|

11/8 8

Figure 10.1: Shelving amplitude responses, ideally symmetric in
fully logarithmic scale.

0 dB

ω

|H(jω)|

11/8 8

Figure 10.2: Tilting amplitude response, ideally symmetric in fully
logarithmic scale.

Fig. 10.1 apparently shows low-shelving (left) and high-shelving (right) am-
plitude responses. The amplitude response in Fig. 10.2 can be referred to as
tilting amplitude response. It is easy to notice that the low- and high-shelving
responses can be obtained from the tilting one by vertical shifts. Vertical shifts
in decibel scale are corresponding to multiplication of the signal by a constant.
That is tilting and low- and high-shelving filters can be obtained from each other
by a multiplication by a constant. We will therefore not make much distinction
between these types, arbitrarily jumping from one type to the other, whenever
the discussion requires so.

Reciprocal symmetry of poles and zeros

Treating |H(1)| = 1 as the logarithmic origin of an amplitude response graph we
can express the desired symmetry of the tilting amplitude response in Fig. 10.2
as an odd logarithmic symmetry:

log |H(j exp(−x))| = − log |H(j expx)|



10.2. SHELVING AND TILTING FILTERS 411

which in linear scale becomes

|H(j/ω)| = 1
|H(jω)|

or
|H(j/ω)|2 =

1
|H(jω)|2

(10.5)

Writing |H(jω)|2 as H(jω)H(−jω) we introduce G(s) = H(s)H(−s). Then
(10.5) becomes

G(j/ω) =
1

G(jω)
Taking into account that G(s) is even, we have

G(jω)G(1/jω) = 1

Apparently, the latter equality must be true not only for ω ∈ R but also for any
ω ∈ C, thus

G(s)G(1/s) = 1 (s ∈ C)
Therefore, G(s) = 0 ⇐⇒ G(1/s) =∞ and G(s) =∞ ⇐⇒ G(1/s) = 0. That
is the poles of G(s) are reciprocals of the zeros of G(s) and vice versa.

Conversely, given G(s) = H(s)H(−s) such that its poles are reciprocals of
its zeros and additionally requiring that |G(j)| = 1 we will have G(s)G(1/s) = 1
and (10.5) follows. Indeed, writing G(s) in the factored form we have

G(s) = g ·
∏
n

s− zn
1− zns

where zn are the zeros of G(s). Then

G(1/s) = g ·
∏
n

1/s− zn
1− zn/s

= g ·
∏
n

1− zns
s− zn

Therefore G(s)G(1/s) = g2. Letting s = j we have

g2 = G(j)G(1/j) = G(j)G(−j) = G(j)G∗(j) = |G(j)|2 = 1

and thus G(s)G(1/s) = 1.

Now the poles and zeros of G(s) consist of those of H(s) and their symmetric
counterparts (with respect to the complex plane’s origin). Under the assumption
that H(s) must be stable, all poles of H(s) will be in the left complex semiplane.
Under the additional assumption that H(s) is minimum phase, so will be zeros
of H(s). Respectively H(−s) will contain poles and zeros in the right semiplane.
However, the reciprocation turns left-semiplane values into left-semiplane values
and right-semiplane values into right-semiplane values. Therefore the poles of a
minimum-phase stable H(s) will be mutually reciprocal with the zeros of H(s).

Thus, in order for a minimum phase H(s) to have the tilting amplitude
response symmetry of Fig. 10.2 its poles and zeros must be mutually recipro-
cal. Conversely, given H(s) with mutually reciprocal poles and zeros (which is
thereby minimum phase, assuming H(s) is stable), (10.5) will hold under the
additional requirement |H(j)| = 1. Relaxing the minimum phase requirement
effectivlely means that some zeros will be flipped from the left semiplane into
the right semiplane, which is pretty trivial and doesn’t change the amplitude
response, therefore we will concentrate on minimum phase tilting and shelving
filters.
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Construction as a lowpass ratio2

Let G(s) be a filter (now this is a different G(s) than G(s) = H(s)H(−s) we
have been using above) having the following properties: G(s) doesn’t have zeros,
all its poles are lying on the unit circle, and G(0) = 1.

Apparently, G(s) is a lowpass filter, which should be obvious by considering
the factoring of G(s) into a cascade of 1- and 2-poles. Such G(s) also can be
factored as

G(s) =
N∏
n=1

1
s− pn

(where the leading coefficient is 1 due to G(s) being real stable, G(0) = 1,
|pn| = 1 and Re pn < 0). The poles of G(s) lying on the unit circle and being
conjugate symmetric imply the reciprocal symmetry of the poles: if pn is a pole
of G(s) then so is 1/pn.

Let’s apply the cutoff substitution s ← s/M (M ∈ R, M > 0) to G(s). We
obtain

G(s/M) =
N∏
n=1

1
s/M − pn

= MN ·
N∏
n=1

1
s−Mpn

That is we obtain the filter with the poles Mpn. Respectively, shifting the cutoff
in the opposite direction by the same logarithmic amount, we have

G(Ms) =
N∏
n=1

1
Ms− pn

= M−N ·
N∏
n=1

1
s−M−1pn

That is we obtain the filter with the poles M−1pn.
Since for each pn there is pn′ = 1/pn, for each Mpn there is M−1pn′ =

1/Mpn. That is, the poles of G(s/M) are mutually reciprocal with the poles of
G(Ms) and we can construct

H(s) =
G(s/M)
G(Ms)

(10.6)

By construction the poles of G(Ms) are the zeros of H(s) and the poles of
G(s/M) are the poles of H(s). Thus the poles of H(s) are reciprocal to its
zeros and vice versa. However generally |H(j)| 6= 1 (a little bit later we’ll show
that |H(j)| = MN ). This means that H(s) is not a tilting filter, but is related
to the tilting filter by some factor. Noticing that H(0) = G(0)/G(0) = 1, we
conclude that H(s) must be a kind of high-shelving filter. The conversion to
the tilting filter is trivial: we can simply divide the result by |H(j)|.

The conversion to the low-shelving filter looks more complicated, since ap-
parently G(∞) = 0 and we have a 0/0 uncertainty evaluating H(∞). However
we can notice that at s → ∞ we have G(s) ∼ s−N , G(s/M) ∼ MNs−N and
G(Ms) ∼ M−Ns−N , thus H(s) ∼ M2N , that is simply H(∞) = M2N . We
therefore obtain the low-shelving filter from the high-shelving one by dividing
by M2N .

We can also obtain the explicit expression for the value of |H(j)|, where we
can simply use the symmetries of the amplitude response. Since H(s)/|H(j)| is

2The author has learned the approach of constructing a shelving filter as a ratio of two
lowpasses from Teemu Voipio.



10.2. SHELVING AND TILTING FILTERS 413

a tilting filter, it must have mutually reciprocal amplitude responses at ω = 0
and ω =∞, that is ∣∣∣∣ H(0)

|H(j)|

∣∣∣∣ =
∣∣∣∣ |H(j)|
H(∞)

∣∣∣∣
from where |H(j)|2 = |H(0)| · |H(∞)| = M2N and |H(j)| = MN . Thus the
tilting filter is obtained from the high-shelving one by dividing by MN .

Therefore we have

HHS(s) =
G(s/M)
G(Ms)

(10.7a)

Htilt(s) = M−N · G(s/M)
G(Ms)

(10.7b)

HLS(s) = M−2N · G(s/M)
G(Ms)

(10.7c)

for the high-shelving, tilting and low-shelving filter respectively. From the values
H(0), |H(j)|, H(∞) obtained earlier for the high-shelving filter we thus obtain:

HHS(0) = 1 |HHS(j)| = MN HHS(∞) = M2N

Htilt(0) = M−N |Htilt(j)| = 1 Htilt(∞) = MN

HLS(0) = M−2N |HLS(j)| = M−N HLS(∞) = 1

(10.8)

Apparently M can be greater or smaller than 1, corresponding to increasing or
decreasing of the signal level in the respective range. Since M and 1/M are
filter cutoff factors, M must be positive.

The filters constructed by the lowpass ratio approach satisfy the symmetry
(10.5), however we know little about the shapes of their amplitude responses.
These shapes can be arbitrary odd functions (if seen in the logarithmic scale),
whereas we would like to obtain the shapes at least resembling those in Figs. 10.1
and 10.2.

Also, apparently the lowpass ratio approach can be easily applied to a But-
terworth G(s), since Butterworth (unit-cutoff) filters have poles on the unit
circle. On the other hand, while EMQF filters also have poles on the unit circle,
they don’t have only poles, but also zeros, therefore this method is not directly
applicable to EMQF filters.3 In order to have a better control of the amplitude
responses and to be able to build tilting and shelving filters based on EMQF
filter, we will need to address the problem from a different angle.

Construction by mixing

We have already made some attempts of constructing a low-shelving filters by
mixing the lowpass signal with the input signal, which weren’t too successful.
Instead we could attempt the same mixing in terms of squared amplitude re-
sponse, in which case we at least would not have the effects of the phase response

3It would have been okay, if all zeros of G(s) were at the origin, since in this case the zeros
of G(s/M) and G(Ms) would be also at the origin and therefore would cancel each other.
Particularly, we could have used Butterworth highpass filters in (10.6), but this wouldn’t have
produced any new results compared to Butterworth lowpasses.
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interfering. Also, rather that constructing a low-shelving filter, we shall attempt
to construct a tilting filter, in which case it is easier to express the symmetry
requirement (10.5).

Suppose G(s) is defined by

|G(jω)|2 =
1

1 + f2(ω)

We construct the tilting squared amplitude response by mixing |G(jω)|2 with
the squared “amplitude response of the input signal”, which is simply 1:

|H(jω)|2 = a2 +
b2

1 + f2(ω)
=
α2 + β2f2(ω)

1 + f2(ω)

where a2 and b2 (or, equivalently, α2 and β2) denote the unknown positive
mixing coefficients. We wish |H(jω)|2 to satisfy (10.5).

Assuming a lowpass f(x), that is f(x) → 0 for x → 0 and f(x) → ∞ for
x → ∞, we notice that |H(0)|2 = α2 and |H(∞)|2 = β2, therefore (10.5) can
be attained only at α2β2 = 1 and we can drop one of these variables obtaining:

|H(jω)|2 =
β−2 + β2f2(ω)

1 + f2(ω)
(10.9)

However there apparently are additional restrictions on f(x) which ensure that
(10.5) holds for any ω and not just for ω = 0 and ω = ∞. To find these
restrictions let’s substitute (10.9) into (10.5):

β−2 + β2f2(1/ω)
1 + f2(1/ω)

=
1 + f2(ω)

β−2 + β2f2(ω)

β−4 + f2(1/ω) + f2(ω) + β4f2(1/ω)f(ω) =

= 1 + f2(1/ω) + f2(ω) + f2(1/ω)f(ω)

1− β−4 = (β4 − 1)f2(1/ω)f2(ω)

(β4 − 1)f2(1/ω)f2(ω) =
β4 − 1
β4

and
f2(1/ω)f2(ω) = β−4 (10.10)

The equation (10.10) thereby ensures that (10.5) will hold.
Let f̄(ω) = βf(ω), or f(ω) = β−1f̄(ω). Then (10.10) becomes4

f̄(1/ω)f̄(ω) = 1 (10.11)

while (10.9) becomes

|H(jω)|2 =
β−2 + f̄2(ω)
1 + β−2f̄2(ω)

= β−2 · 1 + β2f̄2(ω)
1 + β−2f̄2(ω)

(10.12)

4The other option f̄(1/ω)f̄(ω) = −1 implied by (10.10) implies f̄2(1) = −1, therefore we
ignore it.
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That is, we simply want f̄(ω) satisfying (10.11). Then f(ω) = β−1f̄(ω) (for
any arbitrarily picked β) will satisfy (10.10) and respectively H(s) will satisfy
(10.5).

Comparing the above to the lowpass-ratio approach to the construction of
the tilting filters, that is comparing (10.12) to (10.6) we notice obvious similar-
ities. Essentially (10.12) is a ratio of two lowpasses β−2H1/H2:

|H1(jω)|2 =
1

1 + β−2f̄2(ω)
|H2(jω)|2 =

1
1 + β2f̄2(ω)

with an additional gain of β−2, which occurs since this is a tilting rather than
high-shelving filter.

Given a Butterworth f(ω) = ωN , we have f(ω/M) = M−Nf(ω), that is
the cutoff substitution ω ← ω/M is equivalent to choosing β = MN , in which
case (10.12) means essentially the same as (10.6). The difference appears in the
EMQF case where f(ω/M) 6= M−Nf(ω).

The zeros of the EMQF filter would have been exactly the problem in the
case of (10.6), since the cutoff substitution also shifts the zeros, and the zeros
of G(s/M) do not match the zeros of G(Ms), respectively they cannot cancel
each other in H(s) and would have resulted in zero amplitude response at the
zeros of the numerator and in infinite amplitude response at the zeros of the
denominator. On the other hand, in (10.12), where the EMQF zeros correspond
to the poles of f̄ , the poles of f̄ will result in identical zeros of the numerator
and of the denominator of |H(jω)|2, thus they will cancel each other. In that
sense, the approach of (10.12) is more general than the one of (10.6).

We can also notice that the right-hand side of (10.12) monotonically maps
the range [0,+∞] of f̃2 onto [β−2, β2] if |β| > 1 and onto [β2, β−2] if 0 < |β| < 1.
Since negating β doesn’t have any effect on (10.12), therefore we can restrict β
to β > 0, in which case we can say |Htilt(jω)| is varying between β−1 and β.

Obviously, (10.12) results in

|HHS(jω)|2 =
1 + β2f̄2(ω)

1 + β−2f̄2(ω)
(10.13a)

|Htilt(jω)|2 = β−2 · 1 + β2f̄2(ω)
1 + β−2f̄2(ω)

(10.13b)

|HLS(jω)|2 = β−4 · 1 + β2f̄2(ω)
1 + β−2f̄2(ω)

(10.13c)

The values at the key points respectively are (under the restriction β > 0)

|HHS(0)| = 1 |HHS(j)| = β |HHS|(∞) = β2

|Htilt(0)| = β−1 |Htilt(j)| = 1 |Htilt|(∞) = β

|HLS(0)| = β−2 |HLS(j)| = β−1 |HLS|(∞) = 1

(10.14)

where we also assume that f̄(0) = 0 and f̄(∞) =∞. In the EMQF case, where
f̄ = R̄N this is not true for even N , and we need to understand (10.14) as
referring to the points where f̄(ω) = 0 and f̄(ω) =∞ instead (which we didn’t
explicitly write in (10.14) for the sake of keeping the notation short).

As with M in the lowpass ratio approach, β can be greater than 1 or smaller
than 1.
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10.3 Fixed-slope shelving

Using Butterworth filters as a basis for a shelving/tilting filter is compatible with
both lowpass ratio (10.6) and mixing (10.12) approaches, where both options
are giving equivalent results. For now we will continue the discussion in terms
of the lowpass ratio option (10.6).

We will be interested in shelving filters obtained from the Butterworth filters
of the 1st kind by (10.6). Noticing that (10.6) commutes with the Butterworth
transformation:

BN
[
G(s/M)
G(Ms)

]
=
BN [G(s/M)]
BN [G(Ms)]

(10.15)

we can restrict our discussion to the shelving filters obtained by the application
of (10.6) to the 1st-order Butterworth lowpass. By (10.15) higher order shelving
filters will be simply Butterworth transformations of the 1st-order Butterworth
shelving filters, which is going to be covered in Section 10.5.

Since the 1st-order Butterworth lowpass coincides with the ordinary 1-pole
lowpass, we simply have

G(s) =
1

1 + s

and respectively by (10.7)

HHS(s) =
G(s/M)
G(Ms)

=
1 +Ms

1 + s/M
= M2 · s+ 1/M

s+M

Htilt(s) = M−1HHS(s) = M−1 · 1 +Ms

1 + s/M
=
Ms+ 1
s+M

= M
s+ 1/M
s+M

HLS(s) = M−1Htilt(s) = M−2 · 1 +Ms

1 + s/M
=
s+ 1/M
s+M

By (10.8)

HHS(0) = 1 |HHS(j)| = M HHS(∞) = M2

Htilt(0) = M−1 |Htilt(j)| = 1 Htilt(∞) = M

HLS(0) = M−2 |HLS(j)| = M−1 HLS(∞) = 1

Implementation

The 1st-order tilting filter can be implemented as a linear combination of the
lowpass and highpass signals:

Htilt(s) =
Ms+ 1
s+M

=
s+ 1/M
s/M + 1

= M
s/M

s/M + 1
+M−1 1

s/M + 1
=

= M−1 ·HLP(s) +M ·HHP(s)

where the cutoff of the 1-pole multimode is at ω = M . The low- and high-
shelving filters can be obtained from the above mixture by a division a or mul-
tiplication by M :

HHS(s) = M ·Htilt(s) = HLP(s) +M2 ·HHP(s)

HLS(s) = M−1 ·Htilt(s) = M−2 ·HLP(s) +HHP(s)k
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Amplitude response

The example amplitude responses of the 1-pole tilting filter are presented in
Fig. 10.3, where the formal “cutoff” frequency is denoted as ωmid, being the
middle frequency of the tilting.

ω

|H(jω)|, dB

ωmidωmid/8 8ωmid

0

-6

-12

12
Shelving

band
Shelving

band

Transition
band

+6

Figure 10.3: Amplitude responses of a 1-pole tilting filter forM > 1
(solid) and M < 1 (dashed).

Since the amplitude response of the tilting filter neither decreases to zero
anywhere, nor does it have a range where it is approximately unity, we can’t
define pass- and stop-bands. Instead we can refer to the bands on the left and
on the right, where the amplitude response is almost constant, as shelving bands.
The band in the middle where the amplitude response is varying can be referred
to as transition band, as usual.

On the other hand, for low- and high-shelving filters we can define one of the
bands, where the amplitude response is approximately unity, as the passband
(Figs. 10.4, 10.5).

Phase response

The representation of the shelving filter as a ratio of two lowpasses with cutoffs
M and M−1 allows an intuitive derivation of the tilting filter’s phase response,
the latter being equal to the difference of the lowpass phase responses:

argHHS(s) = arg
1 +Ms

1 + s/M
= arg

1 + s/M−1

1 + s/M
=

= arg
1

1 + s/M
− arg

1
1 + s/M−1

(s = jω)

(since both shelving filters and the tilting filter all have identical phase responses,
we picked the one with the most convenient transfer function).

Recalling how the phase response of a 1-pole lowpass looks (Fig. 2.5) we can
conclude that the biggest deviation of the tilting filter’s phase response from 0◦
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Figure 10.4: Amplitude responses of a 1-pole low-shelving filter.
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Figure 10.5: Amplitude responses of a 1-pole high-shelving filter.

(potentially reaching almost ±90◦) should occur in the frequency band between
M and M−1, the deviation being positive if M > 1 > M−1 and negative if
M < 1 < M−1. Outside of this band the phase response cannot exceed ±45◦.
Fig. 10.6 illustrates. Notice that therefore the phase response is close to zero
outside of the transition region.

Transition band width

In order to roughly estimate the width of the transition band of the tilting filter’s
amplitude response we could divide the decibel difference in amplitude response
levels at ω → 0 and ω →∞ by the derivative of the amplitude response at the



10.3. FIXED-SLOPE SHELVING 419

ω
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Figure 10.6: Phase response of the 1-pole shelving/tilting filters
for M = 4 (positive) and for M = 1/4 (negative). Dashed curves
represent phase responses of the underlying 1-pole lowpasses at
cutoffs M and M−1.

middle of the transition band (Fig. 10.7).
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Figure 10.7: Estimation of the transition bandwidth of the 1-pole
tilting filter by approximating the amplitude response by a broken
line tangential to the amplitude response at the middle frequency.

Writing out the derivative of the amplitude response in the logarithmic fre-
quency and amplitude scales (where we use natural logarithms to simplify the
math), we obtain

d
dx

ln |Htilt(jex)|
∣∣∣∣
x=0

= |Htilt(jex)|−1

∣∣∣∣
x=0

· d
dx
|Htilt(jex)|

∣∣∣∣
x=0

=
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=
d

dx
|Htilt(jex)| = d

2dx
|Htilt(jex)|2 =

d
2dx

∣∣∣∣jMex + 1
jex +M

∣∣∣∣2 =

=
d

2dx

(
M2e2x + 1
e2x +M2

)
=

2M2e2x(e2x +M2)− 2e2x(M2e2x + 1)
2(e2x +M2)2

∣∣∣∣
x=0

=

=
2M2(1 +M2)− 2(M2 + 1)

2(1 +M2)2
=
M2 − 1
M2 + 1

=
M −M−1

M +M−1

(where we have assumed x = 0 throughout the entire transformation chain).
The logarithmic amplitude difference is lnM − lnM−1 = 2 lnM and thus the
bandwidth in terms of natural logarithmic scale is the ratio of that difference
and the derivative at x = 0:

∆ln = 2 lnM · M +M−1

M −M−1

Introducing the natural-logarithmic amplitude boost m = lnM , we rewrite the
above as

∆ln = 2m · e
m + e−m

em − e−m
= 2 · m

tanhm
=

2
tanhcm

where
tanhcm =

tanhm
m

is the “cardinal hyperbolic tangent” function, introduced similarly to the more
commonly known cardinal sine function sincx = sin x

x .
Introducing the decibel difference betwen the right and left “shelves”

GdB = 20 log10M
2

we can switch the amplitude scale from natural logarithmic to decibel:

M = em M2 = 10GdB/20

2m = ln 10GdB/20 = GdB/20 · ln 10

m = GdB/40 · ln 10 ≈ 0.0576 ·GdB

Then
∆ln ≈

2
tanhc (0.0576 ·GdB)

Switching from the natural logarithmic bandwidth to the octave bandwidth we
have

eΔln = 2Δoct

∆ln = ∆oct · ln 2

and we have obtained the octave bandwidth formula:

∆oct ≈
2

ln 2 · tanhc (0.0576 ·GdB)
≈ 2.89

tanhc (0.0576 ·GdB)

The graph of the dependency is plotted in Fig. 10.8. At GdB = 0 we have
∆oct ≈ 2.89. At |GdB| → ∞ we have ∆oct ∼ GdB/6, that is the bandwidth
is growing proportionally to the decibel boost.5 Since the shelving boosts are
typically within the range of ±12dB, or maybe ±18dB, we could say that the
typical transition band width of the titling filter is roughly 3 octaves.

5It’s not difficult to realize that the 6 in the denominator is 1-pole lowpass filter’s rolloff
of 6dB/oct.
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Figure 10.8: Transition bandwidth (estimated) as a function of the
total decibel boost.

10.4 Variable-slope shelving

With shelving filters based on Butterworth filters of the 1st kind we didn’t have
any control over the steepness of the transition slope, or, respectively over the
transition band width. In order to introduce that kind of control we can use
Butterworth filters of the 2nd kind.

The commutativity relation (10.15) still applies, since it’s independent of
whether the involved filters are 1st or 2nd kind Butterworth, and we can restrict
our discussion to the 2-pole shelving filters. Shelving filters of higher (even)
orders can be obtained from those by Butterworth transformation, which is
going to be covered in Section 10.5.

A generic unit-cutoff 2-pole lowpass filter

G(s) =
1

s2 + 2Rs+ 1
(10.16)

has its poles on the unit circle, no zeros and unity gain at ω = 0, thus the
requirements of the lowpass ratio approach are fulfilled and we can obtain the
respective shelving filters by (10.7):

HHS(s) =
G(s/M)
G(Ms)

=
M2s2 + 2RMs+ 1
s2/M2 + 2Rs/M + 1

= M2 · M
2s2 + 2RMs+ 1

s2 + 2RMs+M2

Htilt(s) = M−2HHS(s) =
M2s2 + 2RMs+ 1
s2 + 2RMs+M2

HLS(s) = M−2Htilt(s) = M−2 · M
2s2 + 2RMs+ 1

s2 + 2RMs+M2
=
s2 + 2Rs/M + 1/M2

s2 + 2RMs+M2

where by (10.8)

HHS(0) = 1 |HHS(j)| = M2 HHS(∞) = M4

Htilt(0) = M−2 |Htilt(j)| = 1 Htilt(∞) = M2

HLS(0) = M−4 |HLS(j)| = M−2 HLS(∞) = 1
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Implementation

In order to construct an implementation of the tilting filter, we simply express
its transfer function in terms of the SVF modes:

Htilt(s) =
M2s2 + 2RMs+ 1
s2 + 2RMs+M2

=
s2 + 2R(s/M) + 1/M2

(s/M)2 + 2R(s/M) + 1
=

=
M2(s/M)2 + 2R(s/M) + 1/M2

(s/M)2 + 2R(s/M) + 1
=

= M−2HLP(s) +HBP1(s) +M2HHP(s)

where the cutoff of the multimode SVF is ωc = M (notice that we used the
normalized bandpass mode instead of the ordinary bandpass). Respectively

HHS(s) = M2Htilt(s) = HLP(s) +M2HBP1(s) +M4HHP(s)

HLS(s) = M−2Htilt(s) = M−4HLP(s) +M−2HBP1(s) +HHP(s)

Amplitude and phase response

Notably, G(s) defined by (10.16) cannot be conveniently expressed in terms of
(9.18), since

|G(jω)|2 =
1

(ω2 − 1)2 + 4R2ω2
=

1
4R2(1−R2)

· 1

1 +
(
ω2 + 2R2 − 1
2R
√

1−R2

)2

Respectively, (10.12) doesn’t apply and we cannot use the associated interpreta-
tion to reason about the shelving amplitude response shapes obtained from G(s).
However, we could notice that at R = 1 the filter G(s) turns into a squared 1st-
order Butterworth, while at R = 1/

√
2 it turns into a 2nd-order Butterworth of

the 1st kind, therefore we can apply the results of Section 10.3 concluding that
at least at these values of R we should expect to obtain a resonable shelving
shape.

The family of amplitude responses of a 2-pole tilting filter for various R is
shown in Fig. 10.9. One can see in the picture that R controls the slope, or
equivalently, the width of the transition band, however only a small range of
R generates “reasonable” tilting curves. We’ll analyse this topic in detail a bit
later.

The phase response expressed in terms of a lowpass ratio gives

argHHS(s) = arg
M2s2 + 2RMs+ 1
s2/M2 + 2Rs/M + 1

= arg
s2/M−2 + 2Rs/M−1 + 1
s2/M2 + 2Rs/M + 1

=

= arg
1

(s/M)2 + 2R(s/M) + 1
− arg

1
(s/M−1)2 + 2R(s/M−1) + 1

(where s = jω). Recalling the 2-pole lowpass phase response (Fig. 4.6) we can
conclude that the biggest deviation of the 2-pole tilting filter’s phase response
from 0◦ (potentially reaching almost ±180◦) should occur in the frequency band
betweenM andM−1, the deviation being positive ifM > 1 > M−1 and negative
if M < 1 < M−1. Outside of this band the phase response cannot exceed ±90◦.
Fig. 10.10 illustrates. Notice that thus the phase response is close to zero outside
of the transition region.
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Figure 10.9: Amplitude responses of a 2-pole tilting filter for
M2 = 2 and various R.
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Figure 10.10: Phase response of the 2-pole tilting filter for M = 4
(positive) and for M = 1/4 (negative). Damping R = 1/4. Dashed
curves represent phase responses of the underlying 2-pole lowpasses
at cutoffs M and M−1.

Steepness control

As one could notice from Fig. 10.9, the damping parameter R affects the steep-
ness of the amplitude response slope at ω = 1. Let’s analyse it in more detail.
First, we write Htilt(s) as

Htilt(s) =
M2s2 + 2RMs+ 1
s2 + 2RMs+M2

=
M2s+ 2RM + 1/s
s+ 2RM +M2/s

=
G(s)
G(1/s)
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where
G(s) = M2s+ 2RM + 1/s

Then, considering the derivative of the fully logarithmic-scale amplitude re-
sponse at ω = 1, we obtain (assuming x = 0 thoughout the entire transformation
chain):

d
dx

ln |Htilt(jex)|

∣∣∣∣∣
x=0

=
d

dx
ln
|G(jex)|
|G(−je−x)|

=
d

dx
ln
|G(jex)|
|G(je−x)|

=

=
d

dx
(
ln |G(jex)| − ln

∣∣G(je−x)
∣∣) = 2

d
dx

ln |G(jex)| = d
dx

ln |G(jex)|2 =

=

d
dx
|G(jex)|2

|G(jex)|2
=

d
dx
|jM2ex + 2RM − je−x|2

|G(j)|2
=

=

d
dx

(4R2M2 + (M2ex − e−x)2)

4R2M2 + (M2 − 1)2
=

d
dx

(M4e2x − 2M + e−2x)

4R2M2 + (M2 − 1)2
=

=
2M4e2x − 2e−2x

4R2M2 + (M2 − 1)2
=

2(M2 −M−2)
4R2 + (M −M−1)2

(10.17)

The maximum possible value is attained at R = 0 and is equal to

d
dx

ln |Htilt(jex)|

∣∣∣∣∣
x=0

=
2(M2 −M−2)
(M −M−1)2

= 2 · M +M−1

M −M−1
<∞ for M 6= 1

That is, we can’t reach infinite steepness. Further, as one can see from Fig. 10.9,
for R → 0 the amplitude response gets a peak and a dip, which are generally
undesired for a shelving EQ.

On the other hand, given a sufficiently large R, we can attain arbitrarily
small steepness. However, for R ≥ 1 the filter falls apart into a product of two
1-pole tilting filters.6 As R grows, the 1-pole cutoffs get further apart and one
can see the two separate “tilting inflection points“ in the amplitude response
(Fig. 10.9).

We need therefore to restrict R to “a reasonable range”. But how do we
define this range? Let’s analyse several characteristic values of R.

At R = 1 we have a two times vertically stretched (in the decibel scale)
amplitude response of the 1-pole tilting filter with the same cutoff ωc = M :

M2s2 + 2Ms+ 1
s2 + 2Ms+M2

=
(
Ms+ 1
s+M

)2

It should be no surprise that at R = 1/
√

2 we obtain a Butterworth transform
of the 1-pole tilting filter with cutoff ωc = M2:∣∣∣∣∣M2s2 +

√
2 ·Ms+ 1

s2 +
√

2 ·Ms+M2

∣∣∣∣∣
2 ∣∣∣∣∣
s=jω

=
(1−M2ω2)2 + 2M2ω2

(M2 − ω2)2s2 + 2M2ω2
=

6This can be derived from the fact that in this case H(s) has real poles and zeros which are
mutually reciprocal. Thus, each such reciprocal pole/zero pair makes up a 1-pole tilting filter.
The gain M2 of the tilting 2-pole filter is distributed into two 1-pole tilting filter’s gains, each
equal to M .
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=
1 +M4ω4

M4 + ω4
=
∣∣∣∣M2 · jω2 + 1
jω2 +M2

∣∣∣∣ =
∣∣∣∣M2s+ 1
s+M2

∣∣∣∣
∣∣∣∣∣
s=jω2

We can also obtain the response identical to the response of the just mentioned
1-pole tilting filter with cutoff ωc = M2 by combining such 1-pole tilting filter
with a “unit-gain” (fully transparent) tilting filter (s+ 1)/(s+ 1):

Htilt(s) =
M2s+ 1
s+M2

=
M2s+ 1
s+M2

· s+ 1
s+ 1

=
M2s2 + (M2 + 1)s+ 1
s2 + (M2 + 1)s+M2

=

=
M2s2 +

M2 + 1
M

·Ms+ 1

s2 +
M2 + 1
M

·Ms+M2

=
M2s2 + (M +M−1) ·Ms+ 1
s2 + (M +M−1) ·Ms+M2

Therefore, such response is attained at R = (M +M−1)/2 ≥ 1.
Thus we are having two good candidates for the boundaries of the “reason-

able range of R”. One boundary can be at R = (M + M−1)/2, corresponding
to the amplitude response of the 1-pole tilting filter with cutoff ωc = M2, the
other boundary is at R = 1/

√
2, corresponding to the same response shrunk

horizontally two times.7 The steepness at ω = 1 therefore varies by a factor of
2 within that range, which also can be verified explicitly:

d
dx

ln |Htilt(jex)|
∣∣∣∣
x=0, R=1/

√
2

d
dx

ln |Htilt(jex)|
∣∣∣∣
x=0, R=(M+M−1)/2

=

=
2(M2 −M−2)

2 + (M −M−1)2
· (M +M−1)2 + (M −M−1)2

2(M2 −M−2)
=

=
(M +M−1)2 + (M −M−1)2

2 + (M −M−1)2
=

2(M2 +M−2)
M2 +M−2

= 2

These boundary responses of the “reasonable range of R” can be found among
the responses shown by Fig. 10.9.

10.5 Higher-order shelving

Butterworth shelving of the 1st kind

Given a 1-pole tilting filter:

Htilt(s) =
Ms+ 1
s+M

= M
s+M−1

s+M

7Since the 2-pole tilting filter is essentially a ratio of two 2-pole lowpass filters with mu-
tually reciprocal cutoffs, and since these lowpasses obtain a resonance peak at R < 1/

√
2,

it is intuitively clear that either immediately below R = 1/
√

2 or possibly starting from a
slightly lower boundary these peaks will show up in amplitude response of the tilting filter.
In Section 10.7 we will establish that at R < 1

√
2 the filter will go into elliptic range, and it

will follow that the elliptic ripples (showing up as resonance peaks for 2nd-order filters) will
appear immediately below R = 1/

√
2.
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we have reciprocal “cutoffs” in the numerator and the denominator. Respec-
tively the zero is reciprocal to the pole. According to (8.12c) and (8.12d), this
property is preserved by the Butterworth transformation. The dampings of
the poles and zeros obtained after the Butterworth transformation of the 1st
kind depend solely on the transformation order and thus are identical in the
numerator and denominator:

B [Htilt(s)] = M ·
(
s+M−1/N

s+M1/N

)N∧1

·
∏
n

s2 + 2RnM−1/Ns+ (M−1/N )2

s2 + 2RnM1/Ns+ (M1/N )2
=

=
(
M1/N s+M−1/N

s+M1/N

)N∧1

·
∏
n

(M1/N )2
s2 + 2RnM−1/Ns+ (M−1/N )2

s2 + 2RnM1/Ns+ (M1/N )2

Therefore we obtain a serial chain of 1- and 2-pole tilting filters. The low-
and high-shelving filters are transformed similarly. Alternatively we can simply
reuse the obtained Butterworth transformation of the tilting filter, multiplying
or dividing it by the factor M .

Notice that the factor being M rather than MN is a kind of a notational
difference. After the Butterworth transformation of N -th order the original
change of cutoff by the M factor will turn into a change of cutoff by the M1/N

factor. Raising M1/N to the N -th power (according to (10.8)) to obtain the
multiplication factors gives M .

Butterworth shelving of the 2nd kind

Remember that the “cutoffs” of the numerator and denominator of a 2-pole
tilting filter are mutually reciprocal, while the “dampings” are equal:

Htilt(s) =
M2s2 + 2RMs+ 1
s2 + 2RMs+M2

= M2 · s
2 + 2RM−1s+M−2

s2 + 2RMs+M2

so the numerator “cutoff” is M−1 and the denominator “cutoff” is M .
By using the Butterworth transform cutoff property (8.12c) we obtain that

B [Htilt(s)] must have the following form:

B [Htilt(s)] = M2 ·
N∏
n=1

s2 + 2RnM−1/Ns+M−2/N

s2 + 2RnM1/Ns+M2/N
=

=
N∏
n=1

M2/N s
2 + 2RnM−1/Ns+M−2/N

s2 + 2RnM1/Ns+M2/N

which is in agreement with the reciprocal cutoff preservation property of the
Butterworth transformation. Thus we have obtained a serial chain of 2-pole
tilting filters with numerator “cutoff” M−1/N and denominator “cutoff” M1/N .
The low- and high-shelving filters can be transformed similarly or obtained from
the transformed tilting filter.

Wide-range slope

Let H2(s) be a 2-pole tilting filter. In the discussion of the 2-pole shelving filters
we mentioned that such filter smoothly varies its response from the one of a 1-
pole shelving filter H1(s) to B2 [H1(s)] as R varies from R1 = (M +M−1)/2 to
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R2 = 1/
√

2:

H2(s)
∣∣∣∣
R=R1

= H1(s) (10.18a)

H2(s)
∣∣∣∣
R=R2

= B2 [H1(s)] (10.18b)

where the steepness of the amplitude response respectively doubles on that
range.

Now let R initially be equal to R1 and imagine we have smoothly decreased
it to R = R2. Suppose at this moment we swapped the 2-pole tilting filter
H2(s) with a 4-pole tilting filter H4(s) = B2 [H2(s)] simultaneously resetting
the damping back to R = R1. Using (10.18) we have

B2

[
H2(s)

∣∣∣∣
R=R1

]
= H2(s)

∣∣∣∣
R=R2

and thus this swapping doesn’t change the frequency response of the filter. Now
we can vary R from R1 to R2 again to smoothly double the amplitude response
once more.

So it seems we have found a way to vary the steepness of the tilting filter by
a factor of 4 without getting the unwanted amplitude response artifacts which
occur in a 2-pole tilting filter on an excessive range of R. However the problem
is the swapping of H2(s) with H4(s) and back. In mathematical notation the
swapping is seamless, because the transfer function doesn’t change during the
swap. In a real implementation however the swapping means replacing one filter
structure with another and this will generate a transient, unless the internal
states of the two filters are perfectly matched at the moment of the swapping.

Recall, however, that at R = R1 the 2-pole H2(s) can be decomposed into
two 1-poles, where the second of the 1-poles is fully transparent:

H2(s)
∣∣∣∣
R=R1

= H1(s) · s+ 1
s+ 1

Applying Butterworth transformation of order N = 2 to both sides we obtain

H4(s)
∣∣∣∣
R=R1

= B2 [H1(s)] · B2

[
s+ 1
s+ 1

]
= H2(s)

∣∣∣∣
R=R2

· s
2 +
√

2s+ 1
s2 +

√
2s+ 1

This means that we could have a 4-pole filter

H4(s) = H2a(s) ·H2b(s)

(where H2a(s) and H2b(s) are 2-pole sections) all the time. As long as we are
interested in a 2-pole response H2(s) we let

H2a(s) = H2(s)

H2b(s) =
s2 +

√
2s+ 1

s2 +
√

2s+ 1

As we are switching from H2(s)
∣∣
R=R2

to B2

[
H2(s)

∣∣
R=R1

]
neither of the sections

H2a(s) H2b(s) is changed. From this point on we can further change R from R1



428 CHAPTER 10. SPECIAL FILTER TYPES

to R2 updating the coefficients of H2a(s) H2b(s) according to H2a(s) ·H2b(s) =
B2 [H2(s)].

This procedure can be repeated again, that is, having reached R = R2 for
the 4-pole shelving response, we can replace H4(s) by

H8(s) = B2 [H4(s)] = B4 [H2(s)]

simultaneously resetting R to R = R1. The idea is the same, we decompose
H8(s) into

H8(s) = H4a(s) ·H4b(s)

and we let

H4a(s) = H4(s)

H4b(s) = B2

[
s2 +

√
2s+ 1

s2 +
√

2s+ 1

]
= B4

[
s+ 1
s+ 1

]
until the point of the switching from H4(s) to H8(s) where we start having

H4a(s) = B2 [H2a(s)]
H4b(s) = B2 [H2b(s)]

Of course the same procedure can be further repeated as many times as
desired (keeping in mind that the order of the resulting filter grows exponen-
tially). Thus we can choose some power of 2 as a maximum desired filter order
and switch this filter’s response from H2(s) to H4(s) to H8(s) etc. each time R
reaches R2. The steepness of the amplitude response thereby smoothly varies
by a factor equal to the filter’s order.8

Another way of looking at this is noticing that, as the response steepness
grows, we are traversing the responses defined by H1(s), B2 [H1(s)], B4 [H1(s)],
etc. Therefore we can consider this as if it was a smooth variation of the
Butterworth tilting filter’s order.9

10.6 Band shelving

The 2-pole bandshelving filter can be easily obtained by applying the LP to
BP substitution to the 1-pole low-shelving filter. Or, we can apply the LP to
BP substitution to the 1-pole tilting filter (obtaining a kind of a “band-tilting”
filter) and multiply the result by the necessary gain factor.

Let’s do the latter. Given

Htilt(s) =
Ms+ 1
s+M

=
s+ 1/M
s/M + 1

8Note that the relative steepness κ of the amplitude response thereby provides a natural
way to control the steepness variation, where κ = k/k1, where k is the actual derivative of the
amplitude response at the midpoint and k1 is the same derivative for H1(s) (for the currently
chosen tilting amount M).

9Unfortunately there is no 100% generalization of this process for lowpass, highpass or
bandpass filters, since the rolloff of these filter types is fixed to an integer multiple of 6dB/oct
and can’t be varied in a smooth way.
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we perform the substitution

s← 1
2R
(
s+ s−1

)
obtaining

H(s) =

1
2R
(
s+ s−1

)
+ 1/M

1
2RM

(s+ s−1) + 1
=
Ms+ 2R+Ms−1

s+ 2RM + s−1
=
Ms2 + 2Rs+M

s2 + 2RMs+ 1
=

=
Ms2 +M−1 · 2RMs+M

s2 + 2RMs+ 1
= MHLP(s) +M−1HBP1(s) +MHHP(s)

where the SVF damping is equal to RM , where R is determined by the band-
width of the LP to BP transformation. The obtained filter could be referred to
as “band-tilting” filter (Fig. 10.11).
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Figure 10.11: Amplitude response of 2-pole band-tilting filter for
various M .

In order to turn this filter into the band-shelving filter, apparently, we have
to divide the response by M :10

H(s) =
s2 +M−2 · 2RMs+ 1

s2 + 2RMs+ 1
=

= HLP(s) +M−2HBP1(s) +HHP(s) = 1 + (M−2 − 1)HBP1(s)

(mind that the SVF damping is still being equal to RM). Thus, the 2-pole band-
shelving filter can be implemented by mixing the (normalized) bandpass signal
to the input signal. The amplitude response at the cutoff is H(j) = M−2 which
thereby defines the shelving gain. The desired bandwidth of the shelving can be

10Alternatively, by multiplying the response by M we obtain a kind of “inverted band-
shelving” filter, where the shelving bands are to the left and to the right of the passband in
the middle.
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achieved using the properties of the LP to BP substition, namely the formula
(4.20).

It is interesting to observe that the above band-shelving transfer function
can be rewritten as

H(s) =
s2 + 2RM−1s+ 1
s2 + 2RMs+ 1

(10.19)

that is we have a ratio of two filters with different dampings RM and RM−1,
where the filters themselves could be lowpass, highpass or bandpass (the impor-
tant thing being that they have identical numerators, which then cancel each
other).

Band shelving of higher orders

The band-shelving Butterworth filter of the 2nd kind is obtained by applying
the Butterworth transformation to the 2-pole band-shelving filter (10.19):

H(s) =
s2 + 2RM−1s+ 1
s2 + 2RMs+ 1

Thus we have a ratio of two 2nd order polynomials both having unit cutoff
but different damping. Applying the Butterworth transformation we therefore
obtain a cascade of 2nd-order sections with unit cutoff:

H ′(s) =
∏
n

s2 + 2R′ns+ 1
s2 + 2Rns+ 1

Apparently each such 2nd-order section is a 2-pole bandshelving filter with
the shelving boost and the bandwidth defined by the parametrs Rn and R′n.
Fig. 10.12 shows the amplitude response.
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Figure 10.12: 4th order band-shelving Butterworth filter of the 2nd
kind vs. 2nd order band-shelving filter (dashed line).

Another kind of band-shelving filter can be obtained by applying the LP
to BP substitution to a Butterworth low-shelving filter of the 2nd kind. A
useful feature of this approach is that by choosing the order of the low-shelving
filter (and thus choosing the steepness of the low-shelving filter’s slope) one can
choose the steepness of the slopes of the band-shelving filter.
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10.7 Elliptic shelving

We have mentioned that the mixing approach of (10.12) can be applied to
EMQF filters. Of all equations (10.13) it’s probably easiest to use (10.13a) to
construct a high-shelving filter, the other filters can be derived from it in a
trivial way. As (10.13a) is a monotonic mapping of the range [0,+∞] of f̄2

onto the range of |HHS(jω)| contained between 1 and β2, we are going to have
|HHS(jω)| smoothly varying from 1 to β2 as R̄N varies from 0 to ∞, just with
some ripples in the pass and shelving bands.

Letting f̄(ω) = R̄N (ω) in (10.13a):

|HHS(jω)|2 =
1 + β2R̄2

N (ω)
1 + β−2R̄2

N (ω)
(10.20)

we obtain the amplitude response shown in Fig. 10.13. Notice that due to the
monotonic nature of the mapping (10.13a) the pass and shelving band ripples
do not oscillate around the reference gains 1 and β2 (corresponding to R̄N = 0
and R̄N =∞), but are rather occurring “into the inside” of the range between
1 and β2.

ω

|H(jω)|

ωmidωmid/8 8ωmid

1

β

β2

Figure 10.13: Amplitude response of an elliptic high-shelving filter.
Horizontal dashed lines denote the reference gains 1 and β2.

Implementation

From (10.20) we obtain the pole and zero equations for HHS(s):

1 + β−2R̄2
N (ω) = 0 (10.21a)

1 + β2R̄2
N (ω) = 0 (10.21b)

where we ignore the poles of R̄N , since they cancel each other within HHS(s)
anyway. The equations (10.21) are essentially identical to (9.152), where we let
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λ = 1 and ε = β−1 or ε = β respectively.11

Having obtained the poles and zeros we can define the leading gain coefficient
g of the cascade form (8.1) from the requirement

H(0) =

√
1 + β2R̄2

N (0)
1 + β−2R̄2

N (0)
=

√
1 + β2 (Re jN )2 k̃

1 + β−2 (Re jN )2 k̃

We could also use a simpler requirement:

|H(j)| = β

however we should mind the possibility of accidentally obtaining a 180◦ phase
response at ω = 0.

Control parameters

In order to compute the passband (ω � 1) ripple amplitude, we can notice that
in the passband the value of R̄2(ω) varies between 0 and k̃. By (10.20) the
maximum deviation from the reference gain 1 will be at the gain equal to

δ =

√
1 + β2k̃

1 + β−2k̃
(10.22)

thus in the passband |HHS(jω)| varies between 1 and δ. If β > 1 then δ > 1 and
vice versa. By the reciprocal symmetry (10.5) the deviation from the shelving
band’s reference gain β2 is the same, just in the opposite direction, thus in the
shelving band |HHS(jω)| varies between β2 and β2/δ.

From (10.22) it’s easy to notice that reciprocating β reciprocates δ and vice
versa. Therefore without loss of generality, for the sake of simplicity we can
restrict the discussion to β ≥ 1, δ ≥ 1, in which case the passband ripples
occcur within [1, δ] and the shelving band ripples occur within [β2/δ, β2]. The
case of β ≤ 1, δ ≤ 1 will follow automatically, where the ripple ranges will be
[δ, 1] and [β2, β2/δ] respectively.

Recall that the value of k̃ grows simultaneously with k, where the latter is
defining the elliptic transition band [

√
k, 1/
√
k]. Thus we are having three user-

facing parameters, each of those being independently related to its respective
variable:12

Transition bandwidth: k̃

Shelving gain: β

Ripple amplitude: δ

where the dependency between the three variables is given by (10.22).
Apparently at fixed k̃ > 0 the value of δ grows with β and vice versa. At

fixed β > 1, the value of δ grows with k̃ and vice versa. At fixed δ > 1, the
11Thus, differently from how we used (9.152) in the discussion of elliptic lowpass, we treat ε

and λ now as independent variables. This doesn’t affect the solution process of (9.152), since
the respective transformations didn’t use the interdependency of ε and λ.

12We should mind that the dependency between the transition bandwidth and k̃ is
reciprocal-like: larger k̃ means smaller bandwidth. The other two dependencies are straight-
forward.
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values of β and k change in opposite directions. Thus, if e.g. we want a smaller
transition band, this means we want larger k and larger k̃, which means larger
δ (given a fixed β). This means there is a tradeoff between the transition band
width (which we usually want small) and the ripple amplitude (which we also
usually want small). There are similar tradeoffs between the other two pairs of
the user-facing parameters.

Given any two of the three parameters, we can find the third one from
(10.22). The explicit expressions for β and k̃ can be obtained by transforming
(10.22) to

1 + β2k̃ = δ2 + β−2k̃δ2

β2 + β4k̃ = β2δ2 + k̃δ2

from where on one hand

β4k̃ − (δ2 − 1)β2 − k̃δ2 = 0

β2 =
δ2 − 1

2k̃
+

√(
δ2 − 1

2k̃

)2

+ δ2 (10.23)

(where apparently the restriction is δ ≥ 1), on the other hand

(β4 − δ2)k̃ = β2(δ2 − 1)

k̃ = β2 δ
2 − 1

β4 − δ2
(10.24)

(where 1 ≤ δ < β will ensure 0 < k̃ < 1) and k can be obtained by (9.138).
At β = 1 the formula (10.24) doesn’t work, since the amplitude response of

HHS is simply a horizontal line at unity gain and any of the values of k̃ will do.
Respectively at k̃ = 0 the formula (10.23) doesn’t work, since δ must be equal
to 1 in this case.

Notably, since (10.22) works equally well for β < 1 and δ < 1, so do (10.23)
(under the restriction δ ≤ 1) and (10.24) (under the restriction β < δ ≤ 1). In
practice the numerical evaluation of (10.23) for δ < 1 could raise concerns of
potential precision losses, therefore it’s better to apply (10.23) to the reciprocal
value of δ, which is larger than 1, and then reciprocate the result once again.

Steepness control

As with 2nd kind Butterworth shelving filters, we would like to be able to
estimate the logarithmic midslope steepness of the elliptic shelving filter. Eval-
uating the following derivative at x = 0, by (10.20) we have

d
dx

ln |HHS(jex)|

∣∣∣∣∣
x=0

=
d

2 dx
ln |HHS(jex)|2 =

d
2 dx

ln
1 + β2R̄2

N (ex)
1 + β−2R̄2

N (ex)
=

=
d

2 dx
(
ln
(
1 + β2R̄2

N (ex)
)
− ln

(
1 + β−2R̄2

N (ex)
))

=

=
1
2

(
2β2R̄N (ex)R̄′N (ex)ex

1 + β2R̄2
N (ex)

− 2β−2R̄N (ex)R̄′N (ex)ex

1 + β−2R̄2
N (ex)

)
=
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=
β2R̄′N (1)
1 + β2

− β−2R̄′N (1)
1 + β−2

=
(

β2

1 + β2
− β−2

1 + β−2

)
R̄′N (1) =

=
β2(1 + β−2)− β−2(1 + β2)

(1 + β2)(1 + β−2)
R̄′N (1) =

β2 − β−2

β2 + 2 + β−2
R̄′N (1) =

=
β2 − β−2

(β + β−1)2
R̄′N (1) =

β − β−1

β + β−1
R̄′N (1) (10.25)

Recalling the formulas (9.145), (9.150) and Fig. 9.61, we find that, as expected,
steepness grows with k and N . Unfortunately, differently from the 2nd kind
Butterworth case, the expression (10.25) (or, specifically, (9.145)) is not easily
invertible as a function of k, which means we cannot easily find k from the
desired slope steepness. However, for each given N this function’s inverse can
be tabulated and we could use the midslope steepness instead of transition
bandwidth as a control parameter.

Centered ripples

If we allow equiripples in the pass and shelving bands, it would be reasonable
to require that these equiripples are not unipolar but rather centered around
the required reference gains of these bands. We are going now to derive the
respective formulas, which will be slightly simpler to do in terms of the tilting
filter:

|Htilt(jω)|2 = β−2 1 + β2R̄2
N (ω)

1 + β−2R̄2
N (ω)

where again, for simplicity of discussion, without loss of generality we will as-
sume β ≥ 1, δ ≥ 1.

As a first step, we shall define the new reference gains, corresponding to the
logarithmic centers of the equiripples. Since the left shelving band ripples occur
within [β−1, β−1δ], their logarithmic center is at β−1

√
δ. Similarly, since the

right shelving band ripples occur within [β/δ, β], their logarithmic center is at
β/
√
δ. Therefore we introduce β̃ = β/

√
δ and the new reference gains β̃−1 and

β̃ at the logarithmic centers of the equiripple ranges (Fig. 10.14).
We want to use β̃ instead of β as one of the three control parameters. Since

the entire framework of elliptic shelving filters has been developed in terms of
k, β and δ, we’ll need to be able to convert from β̃ to β. At the first sight this
seems to be trivially done by β = β̃

√
δ, however this can be done only if we

know δ.
Recall that we have three control parameters k̃, β and δ but only two freedom

degrees, which means that we can specify only two of the three parameters, while
the third parameter needs to be found by the respective relations. Similarly,
if the three control parameters are now k̃, β̃ and δ, we are going to specify
only two of them. So, if we specify β̃ and δ, then indeed we can simply find
β = β̃

√
δ and then find k̃ by (10.24). Specifying k̃ and δ is apparently the same

as before and doesn’t pose any new probleems. However there is yet an option
of specifying k̃ and β̃, in which case we need to find either β or δ, so that the
other variable can be found from (10.23) or (10.22).

Let’s find β. Substituting the equation (10.22) into β = β̃
√
δ we obtain

β4 = β̃4 · 1 + β2k̃

1 + β−2k̃
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ω

|H(jω)|

ωmidωmid/8 8ωmid

β̃−1

1

β̃

Figure 10.14: Centered reference gains β̃−1 and β̃ of an elliptic
tilting filter.

β4 + k̃β2 = β̃4 + k̃β̃4β2

β4 − k̃(β̃4 − 1)β2 − β̃4 = 0

β2 = k̃
β̃4 − 1

2
+

√√√√(k̃ β̃4 − 1
2

)2

+ β̃4 (10.26)

Similarly to (10.23), formula (10.26) also works for β ≤ 1, δ ≤ 1, but due to
numeric reasons in this case it’s better to apply it to the reciprocal δ and then
reciprocate the result.

Thus we have developed a way to express the tilting filter in terms of the
centered reference gains β−1 and β by converting from β̃ to β either by β = β̃

√
δ

or by (10.26). For the high- and low-shelving filters one needs to additionally
take into account that the new reference gains imply different multiplication
factors for conversion from tilting to the respective shelving factors:

HHS(s) = β̃ ·Htilt(s)

HLS(s) = β̃−1 ·Htilt(s)

so that the centered passband reference gain is at 1 and the centered shelving
reference gain is at β̃2 or β̃−1 respectively.

Relation to Butterworth shelving

At k = 0 we have R̄N (x) = xN and the elliptic shelving filters turn into respec-
tive 1st-kind Butterworth shelving filters. However also notice that a 2nd-kind
Butterworth shelving filter of order N at R = 1/

√
2 is equal to the 1st-kind

Butteworth shelving of the same order, which in turn is equal to the elliptic
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shelving filter of the same order at k = 0. That is at R = 1/
√

2 and k = 0 all
three kinds of shelving filters coincide.13

In that sense elliptic shelving can be seen as another way of extending the
2nd-kind Butterworth variable-slope shelving into the range beyond R = 1/

√
2.

Instead of reducing R below 1/
√

2 (which would result in one large resonance
peak in each of the pass and/or shelving bands), we could switch to the elliptic
filter parameters14 obtaining a number of smaller equiripples. This particularly
means that in the wide-range slope technique described in Section 10.5 instead
of increasing the filter order at R = 1/

√
2 we could switch to elliptic equations

(if we are willing to accept the ripples).
At N = 2 however there is essentially no difference between 2nd-kind But-

terworth shelving at R ≤ 1/
√

2 and elliptic shelving, except for different formal
control parameters. Indeed, both filters have two poles and two zeros which
are mutually reciprocal and are also having conjugate symmetry. This leaves
only two degrees of freedom, one degree corresponds to choosing the cutoff of
the poles (which simultaneously defines the cutoff of the zeros as the recipro-
cal value of the poles cutoff) the other degree being the damping of the poles
(which simultaneously defines the damping of the zeros as both dampings must
be equal). However the first degree of freedom is taken by controlling the shelv-
ing gain and the second degree of freedom is taken by varying the R or the
k parameter respectively. Thus the difference between the two filters can be
only in how the control parameters are translated to the transfer function and
in the leading gain coefficients of the transfer functions (where we would have
|HHS(0)| = 1 in the Butterworth case and |HHS(0)| = δ in the elliptic case).

Combining with other techniques

Elliptic design of shelving filters can be combined with other design techniques.
Particulary, we can apply the LP to BP transformation to an elliptic low-
shelving filter to obtain an elliptic band-shelving filter.

In principle one also could apply Butterworth transformation to elliptic fil-
ters to increase the slope steepness. However, since we are already having ripples
in the pass and shelving bands, it would be more efficient to simply increase the
order of elliptic filter, thereby attaining higher slope steepnesses (compared to
applying the Butterworth transformation) at the same ripple amplitude.

10.8 Crossovers

Sometimes we would like to process different frequency bands of a signal dif-
ferently. In the simplest case we would want to split the signal into low- and
high-frequency parts, process one of them or both in some way and then merge

13Particularly, notice that (10.25) becomes identical to (10.17) for β = M2.
14Notice that such switching is completely smooth, as the transfer functions of the filters

are completely identical at this point and the “physical” orders of the filters are identical
too (there is no pole/zero cancellation as we had in the Butterworth filter order switching).
Strictly speaking, the statement that the transfer functions are identical holds only under the
restriction that the phase responses of the filters are in sync, rather that 180◦ off, which is
a matter of the sign in front of the transfer functions. However usually we are having zero
phase responses at ω = 0, therefore the signs will be automatically matched.
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them back (Fig. 10.15). This kind of filters, splitting the signal into different
frequency bands are called crossovers.

Crossover//

Process highs//

+ '!&"%#$��

Process lows//
OO //x(t) y(t)

HP

LP

Figure 10.15: The crosssover idea.

In principle we could take any a pair of lowpass and highpass filters to
build a crossover, but some combinations would work better than the others.
Particularly, imagine that the processing of different bands changes the signals
very slightly, or sometimes maybe even doesn’t change them at all. In that case
it would be really nice if the original signal was unaltered by the structure in
Fig. 10.15, that is y(t) = x(t). However, this naturally expected property will
not be given for granted.

Suppose we use a multimode 1-pole as a crossover basis, in which case the
low- and high-pass filters share the same cutoff. Without loss of generality we
could let ωc = 1 (in other words, the crossover frequency will be at ω = 1):

HLP(s) =
1

1 + s

HHP(s) =
s

1 + s

Adding low- and high-pass transfer functions we have

H(s) = HLP(s) +HHP(s) =
1

1 + s
+

s

1 + s
= 1

Thus, if the low- and high-pass signals are unmodified by the processing, adding
them together at the end of the network in Fig. 10.15 would restore the original
signal exactly.

However the same doesn’t hold anymore for 2-poles:

HLP(s) =
1

1 + 2Rs+ s2

HHP(s) =
s2

1 + 2Rs+ s2

in which case we have

H(s) = HLP(s) +HHP(s) =
s2 + 1

s2 + 2Rs+ 1
6= 1

In fact, as we may recall, the above H(s) is a notch filter. Of course, we could
add the missing bandpass component, e.g. splitting it equally between the low-
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and high-bands:
1 +Rs

1 + 2Rs+ s2
+

s2 +Rs

1 + 2Rs+ s2
= 1

but then the rolloff of the resulting low- and high-pass filters becomes 6dB/oct
instead of former 12dB/oct, leading to the question, why using such 2-pole in
the first place when a 1-pole would have done similarly.

Butterworth crossovers

If we relax the requirement of the sum of unprocessed signals being exactly
equal to the original signal and allow a phase shift in the sum, while retaining
the amplitudes, we essentially require that the low- and high-passes should add
to an allpass:

|H(s)| = |HLP(s) +HHP(s)| = 1

Let’s take (1st kind) Butterworth low- and high-passes at the same cutoff ωc = 1:

HLP(s) =
1

P (s)

HHP(s) =
sN

P (s)

where N is the filter order and P (s) denotes the common denominator of HLP(s)
and HHP(s). Remember that the denominator P (s) is defined by the equation

|P (jω)|2 = 1 + ω2N

while all roots of P (s) must lie in the left complex semiplane.
Adding the low- and high-passes together we obtain

H(s) = HLP(s) +HHP(s) =
1

P (s)
+

sN

P (s)
=

1 + sN

P (s)

Assuming N is odd, for s = jω we get

|H(jω)|2 =
∣∣∣∣1 + (jω)N

P (jω)

∣∣∣∣2 =
1 + ω2N

|P (jω)|2
= 1 (N odd)

Notably, the same property holds for the difference of Butterworth low- and
high-passes of odd order

|HLP(s)−HHP(s)|2 =
∣∣∣∣1− (jω)N

P (jω)

∣∣∣∣2 =
1 + ω2N

|P (jω)|2
= 1 (N odd)

For an even order however 1± sN becomes purely real for s = jω

1± sN = 1± jNωN = 1± (−1)N/2ωN

and we get either a zero at ω = 1 if the above gets the form 1 − ωN , or, if it
gets the form 1 + ωN then

|H(jω)|2 =
∣∣∣∣1 + (jω)N

P (jω)

∣∣∣∣2 =

(
1 + ωN

)2
1 + ω2N

=
1 + 2ωN + ω2N

1 + ω2N
=
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= 1 +
2ωN

1 + ω2N
= 1 +

(
1 + ω2N

2ωN

)−1

= 1 + 2
(
ωN +

1
ωN

)−1

Apparently the expression in parentheses is symmetric in logarithmic scale
around ω = 1 and attains a minumum at this point, respectively |H(jω)|2
attains a maximum, which we can evaluate by substituting ω = 1, obtaining
|H(j)|2 = 2. Respectively |H(j)| =

√
2 thus the amplitude response of H(s)

has a +3dB bump at ω = 1.

As both HLP(s) and HHP(s) share the same denominator, they can be imple-
mented by a single generalized SVF (the controllable canonical form in Fig. 8.1)
using the modal outputs for the numerators 1 and sN respectively. Alternatively
one could use multimode features of the serial cascade representation. Parallel
representation is also possible, where we would pick up different modal mixtures
of the same parallel 2-poles as the low- and high-pass signal respectively.

Linkwitz–Riley crossovers

If instead of Butterworth lowpass and highpass filters we take squared Butter-
worth filters:

H(s) = H1(s) +H2(s)

H1(s) = H2
LP(s) =

(
1

P (s)

)2

H2(s) = (−1)NH2
HP(s) = (−1)N

(
sN

P (s)

)2

|P (jω)|2 = 1 + ω2N

(notice the conditional inversion of the squared highpass signal) we do obtain a
perfect allpass H(s) for any N :

H(jω) = H1(jω) +H2(jω) =
1

P 2(jω)
+ (−1)N

(jω)2N

P 2(jω)
=

=
1 + (−1)N j2Nω2N

P 2(jω)
=

1 + ω2N

P 2(jω)
=
P (jω)P (−jω)

P 2(jω)
=
P (−jω)
P (jω)

(10.27)

and thus, since P (jω) is Hermitian, |H(jω)| = 1. A crossover designed in this
way is referred to as Linkwitz–Riley crossover. Since the denominators in (10.27)
are identical, we again can use a shared structure, such as a generalized SVF or
a multimode serial cascase to produce the output signals of both H1 and H2.
The parallel representation is problematic, since we are now having repeated
poles due to the squaring of the denominators.15

Note that the phase responses of H1(s) and H2(s) are identical, since the
phase contributions of their numerators are zero, while the phase contributions
of their denominators are identical. This in-phase relationship of the split bands

15In principle, by general considerations, one should be able to connect two identical parallel
representations in series and obtain modal mixtures from those in a fashion similar to the
multimode serial cascade. The author however didn’t verify the feasibility of this approach.
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is the key feature of Linkwitz–Riley crossovers16 (contrary to the somewhat
common opinion that the key feature of Linkwitz–Riley crossovers is the absence
of the +3dB bump, which, as we have seen is also e.g. the case with odd-order
Butterworth crossovers).

The in-phase relationship actually also includes H(s):

argH1(jω) = argH2(jω) = argH(jω)

Indeed

argH(jω) = argP (−jω)− argP (jω) = −2 argP (jω) = arg
1

P 2(jω)

where we used the Hermitian property of P (jω).

Generalized Linkwitz–Riley crossovers

The Linkwitz–Riley design consisting of two squared Butterworth filters is a
special case of a more generic idea which we will discuss below.17

First we need a kind of auxiliary lemma. Let Q(s) be a real polynomial of
s. We now state that the formal frequency response Q(jω) is real nonnegative
if and only if Q(s) can be written in the form Q(s) = P (s)P (−s), where P (s)
is some other real polynomial of s. The proof goes like follows.

Suppose Q(s) = P (s)P (−s). Then for ω ∈ R

Q(jω) = P (jω)P (−jω) = P (jω)P ((jω)∗) = P (jω)P ∗(jω) = |P (jω)|2 ≥ 0

Conversely, suppose Q(jω) ≥ 0. Since Q(jω) is simultaneously real and
Hermitian, it must be even, and so must be Q(s). Therefore it can be factored
into Q(s) = P (s)P (−s). Let’s chose P (s) to contain the left complex semiplane
roots of Q(s), thereby P (−s) will contain the right complex semiplane roots. If
Q(s) has roots on the imaginary axis, these roots will all have even multiplicities
(since otherwise Q(jω) will be changing sign at these points) and therefore we
can split these roots into two identical halves, which we assign to P (s) and
P (−s) respectively. Since Q(s) is real, its poles are conjugate symmetric and
so will be the poles of P (s) and P (−s).

We still need to show that the leading coefficient of P (s) will be real. Let g
denote the leading coefficient of P . Then the leading term of Q(s) = P (s)P (−s)
is gsNg(−s)N = (−1)Ng2s2N . By substituting s = jω we obtain the leading
term of Q(jω), which is (−1)Ng2(jω)2N = (−1)Ng2(−1)Nω2N = g2ω2N . How-
ever the coefficient g2 of the leading term g2ω2N of Q(jω) must be positive,
otherwise Q(jω) would become negative at large ω. Since g2 is positive, g is
real. That completes the proof.

16The author has been made aware of the importance of the in-phase property of Linkwitz–
Riley crossovers by a remark by Teemu Voipio. The author also learned the cascaded phase
correction approach shown in Fig. 10.24 from the same person.

17The idea to generalize the Linkwitz–Riley design arose from a remark by Max Mikhailov,
that Linkwitz–Riley crossovers can be also built based on naive 1-pole lowpasses, which in the
BLT terms can be formally seen as a special kind of high-shelving filters. It is quite possible
that this idea has been already developed elsewhere, however at the time of the writing the
author is not aware of other sources.
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Now, given two real polynomials Q1(s) and Q2(s) with real nonnegative
frequency responses, we can construct a third real polynomial as their sum

Q1(s) +Q2(s) = Q(s) (10.28)

Since the frequency responses of Q1(s) and Q2(s) are nonnegative, so is the
frequency response of Q(s). By the previous discussion, the above equation can
be rewritten as

P1(s)P1(−s) + P2(s)P2(−s) = P (s)P (−s) (10.29)

Dividing both sides by the right-hand side, we obtain

P1(s)P1(−s)
P (s)P (−s)

+
P2(s)P2(−s)
P (s)P (−s)

= 1 (10.30)

We wish to interpret the two terms in the left-hand side as transfer functions.
However, these functions are not stable, since the roots of P (−s) are lying in
the right semiplane. We can however multiply both parts by P (−s)/P (s):

P1(s)P1(−s)
P 2(s)

+
P2(s)P2(−s)

P 2(s)
=
P (−s)
P (s)

(10.31)

thereby making both filters stable and turning the right-hand side into an (also
stable) allpass. Also notice that the orders of P1(s) and P2(s) do not exceed
the order of P (s), therefore the terms of (10.31) are nonstrictly proper rational
functions of s, as required for transfer functions of (integrator-based) differential
filters. Introducing

H1(s) =
P1(s)
P (s)

· P1(−s)
P (s)

(10.32a)

H2(s) =
P2(s)
P (s)

· P2(−s)
P (s)

(10.32b)

HAP(s) =
P (−s)
P (s)

(10.32c)

we rewrite (10.31) as
H1(s) +H2(s) = HAP(s) (10.33)

and thus we have built a crossover (provided H1(s) is a kind of a lowpass and
H2(s) is a kind of a highpass). Again, the denominators are identical and we
can use a shared structure for H1 and H2.

Notice that (10.33) is simply (10.28) divided by P 2(s). The phase responses
of all terms of (10.28) are apparently zero, therefore the phase responses of all
terms of (10.33) are identical and simply equal to −2 argP (jω):

argH1(jω) = argH2(jω) = argH(jω) = −2 argP (jω)

The identical phase responses, as we should remember, are the key feature
of Linkwitz–Riley crossover design, thus we have built a kind of generalized
Linkwitz–Riley crossover.
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The identical phase responses of H1, H2 and HAP also allow to rewrite
(10.33) in terms of amplitude responses:

|H1(s)|+ |H2(s)| = 1 (10.34)

It is often convenient to define

G1(s) =
P1(s)
P (s)

G2(s) =
P2(s)
P (s)

By (10.32), Hn(s) = Gn(s)G−n (s) where G−n (s) = Pn(−s)/P (s). Apparently
|Hn(jω)| = |Gn(jω)|2 and therefore (10.34) turns into

|G1(jω)|2 + |G2(jω)|2 = 1 (10.35)

The interpretation in terms of G1 and G2 suggests another, somewhat more
practical approach to building generalized Linkwitz–Riley crossovers. We start
with a pretty much random filter G1(s) = P1(s)/P (s), although satisfying
|G1(jω)|2 ≤ 1, so that (10.35) can hold. From P1(s) and P (s), using (10.32), we
obtain H1(s) and HAP(s) and can simply find H2(s) as H2(s) = HAP(s)−H1(s).
In principle, the obtained H2(s) can be used as it is, but we can also further
factor it into H2(s) = P2(s)P2(−s)/P 2(s) thereby obtaining G2(s).18 Of course,
in order for H1(s) and H2(s) to count as a “reasonable” crossover, H1(s) must
be a lowpass or lowpass-like filter (which can be ensured by choosing a lowpass-
like G1(s)), and the obtained H2(s) must be highpass-like. Or the other way
around.

Alternatively we might be able to simply “guess” H1(s) and H2(s) (or, equiv-
alently, P1(s) and P2(s), or G1(s) and G2(s)). E.g. the previously discussed But-
terworth filter-based Linkwitz–Riley crossover arises by choosing G1(s) to be a
Butterworth lowpass and G2(s) = G1(1/s) to be a Butterworth highpass, which
gives G−1 (s) = G1(s), G−2 (s) = (−1)NG2(s) and respectively H1(s) = G2

1(s),
H2(s) = (−1)NG2

2(s). The same result is obtained by by choosing P1(s) = 1,
P2(s) = sN (respectively P1(−s) = 1 and P2(−s) = (−1)NsN ). This gives
(10.29) in the form

P (s)P (−s) = P1(s)P1(−s) + P2(s)P2(−s) = 1 + (−1)Ns2N

from where
Q(jω) = 1 + ω2N = |P (jω)|2 = P (jω)P (−jω)

where P (s) is the Butterworth denominator. The equation (10.31) respectively
takes the form (

1
P (s)

)2

+ (−1)N
(
sN

P (s)

)2

=
P (−s)
P (s)

which is essentially the same as (10.27).

18In order to show that this factoring is possible, multiply H2(jω) = HAP(jω) − H1(jω)
by P 2(jω), obtaining H2(jω)P 2(jω) = P (jω)P (−jω)−P1(jω)P1(−jω) ≥ 0, where the latter
inequality follows from |G1(jω)|2 ≤ 1.
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Symmetric generalized Linkwitz–Riley crossovers

Ideally in (10.33) we would like to have symmetric amplitude responses

|H2(jω)| = |H1(j/ω)| (10.36)

as it was e.g. the case with Butterworth-based Linkwitz–Riley crossover. Appar-
ently (10.36) is not guaranteed for an arbitrary pair of H1(s) and H2(s) which
satisfies (10.33) (where satisfying (10.33) is understood in the sense that the
sum of H1(s) and H2(s) is an allpass). We would like to find a way of obtaining
generalized Linkwitz–Riley crossovers satisfying (10.36).

Recall that (10.35) is just another intepretation of the crossover equation
(10.33). On the other hand, compare (10.35) to (10.4). By (10.4), the equation
(10.35) will be satisfied by G1 and G2 related through an LP to HP transfor-
mation, if f(1/x) = 1/f(x), where f(x) is the function used to construct G1 by
(9.18).

This is not sufficient yet, as besides satisfying (10.35) (and respectively
(10.33)), we need to have the same poles in G1(s) and G2(s), so that they
can share the same denominator P (s). However we have already shown that
G1(s) and G2(s) will have the same poles if f(1/x) = 1/f(x).

Therefore, in order to obtain a generalized Linkwitz–Riley crossover with
symmetric amplitude responses, we need to take G1(s) obtained from f(x) sat-
isfying f(1/x) = 1/f(x) and G2(s) = G1(1/s).

EMQF Linkwitz–Riley crossovers

We already know one function f(ω) satisfying f(1/x) = 1/f(x): the normal-
ized elliptic rational function R̄N . Therefore EMQF filters might be a good
candidate for symmetric generalized Linkwitz–Riley crossovers. Notice that at
k → 0 EMQF filters turn into Butterworth filters and we obtain a classical
(Butterworth-based) Linkwitz–Riley crossover.

Therefore let G1(s) = P1(s)/P (s) be an EMQF (lowpass) filter and G2(s) =
G1(1/s) = P2(s)/P (s) be the respective highpass. Recall that the zeros of
elliptic lowpass filters are positioned on the imaginary axis in pairs symmetric
relatively to the origin, with the exception of the zero at the infinity, which
occurs if the order N of the filter is odd. Therefore P1(s) can be written as

P1(s) = g1 ·
∏

Im zn>0

(s2 − z2
n)

which means that P1(−s) = (−1)NP1(s). Respectively P2(s) can be written as

P2(s) = g2 · sN∧1
∏

Im zn>0

(s2 − 1/z2
n)

where the sN∧1 factor arises from the zero of G1(s) occuring at the infinity
which turns into a zero of G2(s) occurring at the origin. Therefore P2(−s) =
(−1)NP2(s).

Therefore H1(s) = G2
1(s), H2(s) = (−1)NG2

2(s) and (10.33) takes the form

G2
1(s) + (−1)NG2

2(s) =
P (−s)
P (s)

Fig. 10.16 shows the example of amplitude responses of H1 and H2.
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ω

|H(jω)|2

11/8 8

1

0.5

0

Figure 10.16: Amplitude responses of EMQF crossover low- (solid)
and high-pass (dashed) outputs.

Centered ripples

Next we will describe a way to further improve the amplitude response of gener-
alized Linkwitz–Riley crossovers. The techniques can be applied to pretty much
any generalized Linkwitz–Riley crossover, but for the sake of simpler presenta-
tion we’ll be using the EMQF crossover as an example.

Recall that the phase responses of H1, H2 and HAP are identical. Let ϕ(ω) =
argH1(jω) = argH2(jω) = argHAP(jω) be this common phase response. Then
we can introduce the zero phase frequency response functions

H̄1(jω) = e−jϕ(ω)H1(jω)

H̄2(jω) = e−jϕ(ω)H2(jω)

H̄AP(jω) = e−jϕ(ω)HAP(jω) ≡ 1

Notice that since arg H̄1(jω) = arg H̄2(jω) = arg H̄AP(jω) = 0, we have

H̄1(jω) = |H1(jω)|
H̄2(jω) = |H2(jω)|

H̄AP(jω) = |HAP(jω)| = 1

That is we can consider H̄1(jω), H̄2(jω) and H̄AP(jω) as amplitude response
functions.

We are now going to construct some linear combinations of the above zero
phase frequency responses. Since they are all related to the original frequency
responses via one and the same factor e−jϕ(ω), linear combinations of H̄1, H̄2

and H̄AP correspond to exactly the same linear combinations of H1, H2 and
HAP. E.g.

αH̄1(jω) + βH̄2(jω) = e−jϕ(ω) · (αH1(jω) + βH2(jω))

We can think of these linear combinations as of linear combinations of amplitude
responses, resulting in the new amplitude responses, with the reservation that
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the new “amplitude responses” may become negative (which in terms of true
amplitude responses would have been interpreted as changing the phase response
by 180◦).

Consider that the passband ripple amplitude of R̄N is
√
k̃, while the stop-

band ripple amplitude is 1/
√
k̃. Respectively the passband ripples of H̄1 and

H̄2 oscillate within [1/(1 + k̃), 1], while the stopband ripples oscillate within
[0, k̃/(1 + k̃)], which corresponds to the absolute maximum deviations k̃/(1 + k̃)
from the ideal values of 1 (passband) and 0 (stopband).

Note that so far the deviations are unipolar. The deviation from 1 occurs
towards zero, while the deviation from zero occurs towards 1. We could make
these deviations bipolar instead, simultaneously reducing the maximum devi-
ation. The (linear) midpoints of the oscillation ranges are (k̃/2)/(1 + k̃) for
the stopband and (1 + k̃/2)/(1 + k̃) for the passband. We can take the range
[(k̃/2)/(1 + k̃), (1 + k̃/2)/(1 + k̃)] between these middles and stretch it to [0, 1]
This can be achieved by the transformation

H̄ ′ = (1 + k̃)H̄ − k̃/2 = (1 + k̃)H̄ − k̃

2
· H̄AP

which should be applied to both lowpass and highpass:

H̄ ′1 = (1 + k̃)H̄1 −
k̃

2
· H̄AP

H̄ ′2 = (1 + k̃)H̄2 −
k̃

2
· H̄AP

Thereby the deviation amplitude is multiplied by 1 + k̃, but simultaneously the
deviations become centered around the ideal values 0 and 1, which effectively
halves the deviations. Thus the deviation amplitude is effectively multiplied by
(1 + k̃)/2 becoming equal simply to k̃/2 (Fig. 10.17).

ω

H̄ ′n(jω)

11/8 8

1

0.5

0

Figure 10.17: Zero-phase frequency responses of adjusted EMQF
crossover low- (solid) and high-pass (dashed) outputs.

Multiplying the above equations by ejϕ(ω) we obtain the same transformation
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for H1 and H2:

H ′1 = (1 + k̃)H1 −
k̃

2
·HAP

H ′2 = (1 + k̃)H2 −
k̃

2
·HAP

Note that thereby we still have

H ′1 +H ′2 = (1 + k̃)H1 + (1 + k̃)H2 − k̃HAP = HAP + k̃HAP − k̃HAP = HAP

Phase correction

If we need to do some processing in parallel to the crossover, then we should
keep in mind that the crossover signals are phase shifted, therefore it could be a
good idea to introduce the same phase shift into the signal which bypasses the
crossover.

At this point we will assume that the crossover is (generalized) Linkwitz–
Riley, therefore all phase shifts are identical. In this case the simplest way to
construct a phase-shifted bypass signal is by adding the LP and HP outputs of
the crossover together, which by the previous discussion should be an allpass
signal with exactly the same phase shift as in LP and HP signals (Fig. 10.18).
Notice that the LP and HP outputs of the crossover in Fig. 10.18 correspond to
the H1(s) and H2(s) transfer functions in (10.33). Particularly, if we’re using a
Butterworth or an EMQF crossover, the squared HP signal needs to be inverted
for odd N .

Crossover//

•// Process 1//

+ '!&"%#$��

•// Process 2//
OO

+ '!&"%#$OO// Process 0//

+ '!&"%#$// �� //
HP

LP

Figure 10.18: Adjusting the phase of the bypass signal.

The approach of Fig. 10.18 doesn’t work if the bypass signal processing path
is not starting from the same point where the crossover is connected. In this
case we might need an explicit phase-correction allpass. Fig. 10.19 shows the
option of doing the phase correction prior to the processing of the bypass signal.

Rather than constructing the correction allpass following the idea of Fig. 10.18
(that is building such an allpass as another crossover with LP and HP out-
puts added), it is more efficient to construct this allpass directly. Indeed, by
(10.32), given a crossover whose order is 2N , the order of the allpass HAP(s) =
P (−s)/P (s) is only N . Therefore it is more efficient to implement the correction
allpass simply as an N -th order filter:
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Crossover//

Process 1//

+ '!&"%#$��

Process 2//
OO

Allpass// Process 0//

+ '!&"%#$// �� //
HP

LP

Figure 10.19: Adjusting the phase of the signal from a different
source.

In Fig. 10.19 we could swap the order of the phase correction and the pro-
cessing of the bypass signal as shown in Fig. 10.20. If the processing is nonlinear,
this may result in an audible change in the sound. One could argue that the
option shown in Fig. 10.20 is better, since the nonlinear processing is done on
the original signal, while the allpass correction of the processing results would
be usually inaudible (unless another nonlinear processor is following), and thus
the bypass processing would sound pretty much identical to the one in the ab-
sence of the phase shifts. However, there is a counterargument that all other
processing is done on phase-shifted signals, and it would be more consistent to
do the same for the bypass signal.

Crossover//

Process 1//

+ '!&"%#$��

Process 2//
OO

Process 0// Allpass//

+ '!&"%#$// �� //
HP

LP

Figure 10.20: Correction allpass at the end of processing.

A more complicated situation arises if we want to stack the crossovers to
make a multiband crossover because in this case the phase correction is needed
even if there is no bypass signal. Consider Fig. 10.21, where A2 denotes an
allpass introducing the phase shift corresponding to the crossover C2. The LP
and HP outputs of the crossover C1 are completely in-phase, therefore the signal
going through the processor P1 is, from the phase shift perspective, essentially
the same as bypass signal of the crossover C2 and thus needs phase correction
equivalent to the phase contribution of C2. Or, looking from a slightly different
angle, the input signals of processors P2 and P3 contain phase shifts from both
crossovers, while the input signal of processor P1 contains the phase shift only
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from the first crossover and thus needs an additional phase shift by A2.

C1
//

C2
//

P3
//

+ '!&"%#$��

P2
//

OO + '!&"%#$// //

A2 P1
//

OO

//

HP

LP

HP

LP

Figure 10.21: Phase correction in 3-way crossover mixing.

If the bypass signal processing is present, we could modify the structure
of Fig. 10.21 as shown in Fig. 10.22. An alternative option is presented in
Fig. 10.23 and yet another option (requiring one more corection allpass) in
Fig. 10.24. Notice that Fig. 10.22 does all phase shifting at the beginning and
Fig. 10.24 does all phase shifting at the end, while the structure in Fig. 10.23 is a
kind of in-between mixture of Fig. 10.22 and Fig. 10.24. These ideas generalize
by induction to higher numbers of bands, where in Fig. 10.22 we’ll be adding
new crossover-allpass pairs on the left, whereas in Fig. 10.24 we would be adding
crossovers on the left and allpasses on the right.

C1
//

C2
//

•//
P3

//

+ '!&"%#$��

•�� P2
//

OO + '!&"%#$// //

A2 •// P1
// + '!&"%#$//

OO

//

+ '!&"%#$��
+ '!&"%#$// + '!&"%#$//�� ��

P0
//

OO

HP

LP

HP

LP

Figure 10.22: Phase correction of bypass signal in 3-way crossover
mixing.

In four-way crossover mixing there are new options, e.g. there is a symmetric
band splitting option shown in Fig. 10.25. However practically it is not much
different from the approach of Fig. 10.22 generalized to 4 bands, since the total
phase shifts in the input signals of all processing units contain the total sums
of the phase shifts associated with all crossovers in either case.

Note that in Fig. 10.25 one could also wish to replace the allpasses A2 and A3

with a single allpass A23 in one of the paths, which just corrects the difference
between the phase responses of C2 and C3. This is however not possible. Indeed,
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C1
//

•// C2
//

P3
//

+ '!&"%#$��

P2
//

OO + '!&"%#$// //

P1 + '!&"%#$//

A2OO

OO

•�� //

+ '!&"%#$��// P0

OO

//

HP

LP

HP

LP

Figure 10.23: Another way of phase correction of bypass signal in
3-way crossover mixing.

C1
//

C2
//

P3
//

+ '!&"%#$��

P2
//

OO + '!&"%#$// //

P1 + '!&"%#$//

A2OO

OO

//

P0

A1OO

OO

HP

LP

HP

LP

Figure 10.24: 3-way crossover mixing with all phase correction
done at the end.

assuming identical orders of C2 and C3, their phase responses are identical at
each of the points ω = 0 and ω = ∞. Therefore the phase response of A23

must be equal to zero at both ω = 0 and ω =∞. But this is not possible for a
differential allpass.19 The argument becomes somewhat more complicated if the
crossovers are allowed to have different orders, where one would need to consider
the factored forms of A2 and A3, essentially reaching the same conclusion.

10.9 Even/odd allpass decomposition

Suppose we are given a filter H(s) defined by (9.18). In this section we are
going to show that H(s) is expressible as a linear combination of the “even”

19This would have been formally possible if A23 is allowed to be unstable, however the order
of A23 would have been equal to the sum of the orders of A2 and A3. We mention this because
this has a clear analogy to the phase splitter discussed later in the text.
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C1
//

A2
// C3

//

P4
//

+ '!&"%#$��

P3
//

OO

A3
// C2

//

P2
//

+ '!&"%#$��

P1
//

OO

+ '!&"%#$�� //OO

HP

LP

HP

LP

HP

LP

Figure 10.25: Symmetric 4-way crossover.

and “odd” allpasses, that is allpasses based on the even and odd poles of H(s).
Recall that we have defined even poles as solutions of f = j (or equivalently

1 + jf = 0) and odd poles as solutions of f = −j (or equivalently 1− jf = 0).
Let’s introduce the following notation:

(1 + jf)− =
∏

1+jf(−jpn)=0
Re pn<0

(s− pn)

(1 + jf)+ =
∏

1+jf(−jpn)=0
Re pn>0

(s− pn)

(1 + jf)± =
∏

1+jf(−jpn)=0

(s− pn) = (1 + jf)+(1 + jf)−

that is the product is being taken over all left- or respectively right-semiplane
even poles pn of H(s)H(−s) in the first two lines, and over all even poles
of H(s)H(−s) in the third line. We will also use (1 − jf)−, (1 − jf)+ and
(1 − jf)± with similar meanings for the respective products based on the odd
poles of H(s)H(−s). We also introduce

(f)∞ =
∏

f(−jzn)=∞

(s− zn)

where zn goes over all poles of f(−js), or, equivalently, over all zeros of H(s).
In this notation we could express the construction of H(s) from its poles and

zeros as

H(s) = g? ·
(f)∞

(1− jf)−(1 + jf)−
=

= H(jω0)
[(1− jf)−](jω0) · [(1 + jf)−](jω0)

[(f)∞](jω0)
· (f)∞

(1− jf)−(1 + jf)−
(10.37)
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where g? denotes a placeholder for the yet unknown gain coefficient, which we
then find from the requirement of H(s) to have a specific value H(jω0) at some
point s = jω0 on the imaginary axis, and where [(1 − jf)−](ω0) denotes the
value of (1− jf)− at s = jω0 and so on. In the simplest case we will let ω0 = 0,
which gives H(jω0) = H(0) = 1/

√
1 + f2(0), however we will also need to be

able to take other choices of ω0.
Now let’s introduce the “even” and “odd” allpasses:

He(s) = ge ·
(1− jf)+
(1 + jf)−

(10.38a)

Ho(s) = go ·
(1 + jf)+
(1− jf)−

(10.38b)

where the gains ge and go are defined by the conditions He(jω0) = 1 and
Ho(jω0) = 1:

ge =
[(1 + jf)−](jω0)
[(1− jf)+](jω0)

go =
[(1− jf)−](jω0)
[(1 + jf)+](jω0)

(note that allpasses defined in this manner can be trivially built as cascades of
2nd- and 1st-order sections). The allpass property of He and Ho follows from
the fact that f(ω) is a real function of ω, therefore the even an odd poles of
H(s)H(−s) (which are respectively the solutions of 1 + jf = 0 and 1− jf = 0)
are mutually conjugate in terms of ω, that is they are symmetric with respect
to the imaginary axis in terms of s. Figs. 8.11, 8.12 and other similar figures
illustrate.

Apparently both He and Ho are stable filters. If additionally f(ω) is an odd
function and ω0 = 0, then He and Ho are real. Indeed, suppose 1+jf(−js) = 0,
that is s is an even pole. Then s∗ is also an even pole since

1 + jf(−js∗) = 1− jf(js∗) = 1− jf((−js)∗) = 1− j · (f(−js))∗ =
= 1 + (jf(−js))∗ = (1 + jf(−js))∗ = 0∗ = 0

The same can be shown for odd poles. Therefore the poles of each of the He

and Ho are mutually conjugate and, since He(0) = Ho(0) = 1, both fiilters are
real. If f(ω) is not an odd function, particularly if f(ω) is even, then the poles
of He and Ho do not have the conjugate symmetry, therefore He and Ho are
essentially complex filters. However this shouldn’t be a problem, since we will
use He and Ho only as intermediate transformation helpers.

Now we attempt express H(s) as a linear combination of He and Ho. Con-
sider the obvious algebraic relationship:

1 +
1− jf
1 + jf

= 2
1

1 + jf
(10.39)

where f = f(ω). Equation (10.39), if interpreted in terms of s = jω, can be
understood as a relationship between three transfer functions, the two trans-
fer functions 1 and (1 − jf)/(1 + jf) in the left-hand side adding up to the
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doubled transfer function 1/(1 + jf) in the right-hand side. The poles of these
transfer functions are identical20 and consist of the full set of the even poles of
H(s)H(−s).

By analysing the behavior of these transfer functions for ω ∈ R we also notice
that the two functions in the left-hand side of (10.39) are allpasses, while the
transfer function 1/(1 + jf) in the right-hand side has an amplitude response
identical to |H(s)|. So, amplitude response-wise (10.39) is already what we are
looking for and we just need to correct it so that it also becomes what we want
transfer function-wise.

Let’s multiply (10.39) by Ho:

Ho(s) +
1− jf
1 + jf

Ho(s) = 2
1

1 + jf
Ho(s) (10.40)

Considering the product in the right-hand side of (10.40) we have

1
1 + jf

Ho(s) = g? ·
(f)∞

(1 + jf)±
· (1 + jf)+

(1− jf)−
= g? ·

(f)∞
(1 + jf)−(1− jf)−

Comparing to (10.37) we notice that we essentially have obtained H(s). Match-
ing the values at s = jω0 to find g? (and remembering that Ho(jω0) = 1) we
obtain

1
1 + jf

Ho(s) =
H(s)

(1 + jf(ω0))H(jω0)
Considering the second term in the left-hand side of (10.40) we obtain

1− jf
1 + jf

Ho(s) = g? ·
(1− jf)±
(1 + jf)±

· (1 + jf)+
(1− jf)−

= g? ·
(1− jf)+
(1 + jf)−

Comparing to (10.38a) we notice that we essentially have obtainedHe(s). Match-
ing the values at s = jω0 we obtain

1− jf
1 + jf

Ho(s) =
1− jf(ω0)
1 + jf(ω0)

He(s)

Thus (10.40) turns into

Ho(s) +
1− jf(ω0)
1 + jf(ω0)

He(s) = 2
H(s)

(1 + jf(ω0))H(jω0)
or

(1 + jf(ω0))Ho(s) + (1− jf(ω0))He(s) = 2
H(s)
H(jω0)

(10.41)

Thus we have represented H(s) as a linear combination of Ho(s) and He(s).
If ω0 = 0 and f is an odd function, then f(jω0) = f(0) = 0. Thus we obtain

1 ± jf(ω0) = 1 and H(jω0) = 1/
√

1 + f2(0) = 1 and therefore (10.41) turns
into

Ho(s) +He(s) = 2H(s)
If the order of f is even, then generally f(0) 6= 0 and the coefficients of the
linear combination (10.41) are complex. Note that forcing f(0) = 0 or choosing
another ω0 such that f(ω0) = 0 in this case doesn’t help, since the allpasses
themselves are still complex. However, as we already mentioned, this won’t be
a problem for our puproses.

20The identity transfer function 1 in the left-hand side obviously has no poles, but we could
also write it as (1 + jf)/(1 + jf) in which case it formally has the same poles (which are then
cancelled by the zeros).
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10.10 Analytic filter

Sometimes in signal processing we want to deal with the so called analytic
signals, which are defined as signals whose Fourier spectrum doesn’t contain any
negative frequencies (that is the amplitudes of the negative frequency partials
are all zero). Since spectra of real signals must be Hermitian, apparently analytic
signals can’t be real, thus they are essentially complex.

Occasionally there is a need to convert a real signal into an analytic signal
by dropping all of its negative frequency partials. This is very similar to the
lowpass filtering, except that this time we want to dampen not the frequencies
|ω| > 1 but the frequencies ω < 0. Such filter can be referred to as analytic
filter. The process of removing the negative frequencies from a real signal is also
known as the Hilbert transform, for that reason the analytic filter is probably
more commonly known under the name Hilbert transformer.

The opposite conversion is simple: we just take the doubled real part of
the analytic signal. That is, given an analytic signal x>0(t) we can restore the
original signal x(t) by

x(t) = 2 Rex>0(t) (10.42)

This effectively turns each complex partial of the form X(ω)ejωt to a real partial
2·|X(ω)|·cos(ωt+argX(ω)), which can be equivalently seen as adding a negative
frequency partial X∗(ω)e−jωt.

Construction from a lowpass

The basic idea of constructing an analytic filter is simple, we take a unit-cutoff
lowpass filter (so that the passband is |ω| < 1 and the stopband is |ω| > 1) and
rotate its transfer functions along the imaginary Riemann circle:

H>0(s) = HLP(ρ−j(s)) (10.43)

This effectively rotates the frequency response along the real Riemann circle:

H>0(jω) = HLP(jρ−1(ω))

thereby transforming the passband (−1, 1) to (0,+∞) and the stopband |ω| > 1
to (−∞, 0) (Fig. 10.26).

ω

|H(jω)|

∞∞ 1−1

1

0

Figure 10.26: Conversion of a unit-cutoff lowpass filter into an
analytic filter by a rotation of the real Riemann circle.
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The poles and zeros of HLP are respectively transformed by the inverse of
ρ−j , which is ρ+j . Therefore the poles p̃n and zeros z̃n of H>0 can be explicitly
obtained from the poles pn and zeros zn of HLP by p̃n = ρ+j(pn), z̃n = ρ+j(zn).
The gain coefficient of H>0 can be found by equating the frequency responses of
H>0 and HLP at corresponding frequencies, e.g. H>0(j) = HLP(0). Note that
in principle, we can multiply H>0(s) by an arbitrary complex number of unit
magnitude, as this wouldn’t change the ampitude response of H>0. Particularly,
we could let H>0(0) = |HLP(−j)| = 1/

√
1 + f2(−1).

Parallel allpass implementation

In practical implementation we usually don’t want to deal with complex signals.
In this case the output of the filter is a fundamentally complex signal, so we
can’t avoid that. However we could try to construct as much as possible of
H>0 staying in real signal domain. Particularly we could attempt to express
H>0 using real filters, where we then do some postprocessing by mixing the
real outputs of those filters with possibly complex coefficients. This is indeed
possible.

Suppose HLP is implemented using (9.18). Recall that by (10.41) the lowpass
filter HLP can be represented as a linear combination of allpasses. This linear
combination must be preserved by the rotation ρ−j in (10.43) giving

2H>0(s)
HLP(ω0)

= (1 + jf(ω0))Ho(ρ−j(s)) + (1− jf(ω0))He(ρ−j(s))

Since ρ−j rotates along the imaginary axis (in terms of s plane and its
respective Riemann sphere), the allpass property should be preserved by this
transformation and Ho(ρ−j(s)) and Ho(ρ−j(s)) must still be allpasses. It would
be convenient to reexpress Ho(ρ−j(s)) and Ho(ρ−j(s)) in terms of their new
poles after the transformation by ρ−j .

As mentioned, the poles are transformed by p̃n = ρ+j(pn). Therefore let’s
introduce the new allpasses

H̃o(s) = g̃o ·
∏

pn odd

s+ p̃∗n
s− p̃n

H̃e(s) = g̃e ·
∏

pn even

s+ p̃∗n
s− p̃n

where g̃o and g̃e are defined from the conditions H̃o(0) = 1, H̃e(0) = 1. Appar-
ently,

Ho(ρ−j(s)) = g? · H̃o(s)

He(ρ−j(s)) = g? · H̃e(s)

where g? denote two different yet uknown coefficients. Substituting s = 0 into
the above we find that these coefficients must be simply equal to Ho(−j) and
He(−j) respectively and therefore

2H>0(s)
HLP(jω0)

= (1 + jf(ω0))Ho(−j)H̃o(s) + (1− jf(ω0))He(−j)H̃e(s)
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Up to this point we have been explicitly keeping the freedom of choice of ω0.
This has been done on purpose, as now we can see a good choice for ω0. By
letting ω0 = −1 we have Ho(−j) = 1 and He(−j) = 1 and thereby

2H>0(s)
HLP(−j)

= (1 + jf(−1))H̃o(s) + (1− jf(−1))H̃e(s)

or

H>0(s) = HLP(−j) ·
(

1 + jf(−1)
2

H̃o(s) +
1− jf(−1)

2
H̃e(s)

)
(10.44)

Equation (10.44) would be an acceptable answer, provided H̃o(s) and H̃e(s)
are real filters. Since H̃o(0) = 1 and H̃e(0) = 1 by construction, we only
need to make sure that the poles of each of the H̃o(s) and H̃e(s) are conjugate
symmetric.

Recall that the poles of H̃o(s) and H̃e(s) are obtained by p̃n = ρ+j(pn). We
therefore wonder, what would be the relationship between the two preimages
p1, p2 of a conjugate pair of poles p̃2 = p̃∗1. Considering visually the effect of ρ+j

on the Riemann sphere, we could guess that p2 = 1/p∗1. Verifying algebraically:

p̃2 = ρ+j(p2) = ρ+j(1/p∗1) = jρ+1(−j/p∗1) = jρ+1 ((j/p1)∗) = j (ρ+1(j/p1))∗ =
= (−jρ+1(j/p1))∗ = (jρ+1(p1/j))

∗ = (jρ+1(−jp1))∗ = (ρ+j(p1))∗ = p̃∗1

Therefore, given that poles of HLP have the conjugate reciprocal symmetry
p2 = 1/p∗1 (that is, if s is a pole of HLP then so is 1/s∗), the poles of H̃o and
H̃e will have the conjugate symmetry.

The poles of HLP will have the conjugate reciprocal symmetry, given that
f(ω) is a real function such that f(1/x) = 1/f(x). Indeed, suppose f(1/x) =
1/f(x) and 1 + f2(−js) = 0. Then

1 + f2(−j/s∗) = 1 + f2(1/js∗) = 1 + f2(1/(−js)∗) = 1 +
(
f2(1/(−js))

)∗
=

=
(
1 + f2(1/(−js))

)∗
=
(

1 +
1

f2(−js)

)∗
=
(

1 + f2(−js)
f2(1/(−js))

)∗
= 0∗ = 0

We already know one specific kind of lowpass filter where f has such reciprocal
symmetry: the EMQF filter (with the Butterworth filter as its limiting case).
Note that EMQF poles not only have conjugate reciprocal symmetry, but are
simply lying on the unit circle, in which case conjugate reciprocation simply
maps the poles to themselves: 1/p∗ = p. Since ρ+j maps the unit circle to the
real axis, the poles p̃n are real. Also, since ρ+j is a rotation in the direction of
the imaginary axis, it maps left semiplane poles to the left semiplane poles and
thus p̃n < 0 ∀n. Thus, we are having stable real Ho and He whose poles are
also all real.

Real and imaginary allpasses

The expression (10.44) can be simplified a bit further. Notice that for an EMQF
filter we are having f(−1) = (−1)N where N is the filter’s order. Respectively
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HLP(−j) = 1/
√

2. Therefore (10.44) turns into

H>0(s) =


1√
2
·
(

1 + j

2
H̃o(s) +

1− j
2

H̃e(s)
)

N even

1√
2
·
(

1− j
2

H̃o(s) +
1 + j

2
H̃e(s)

)
N odd

Recall that we can multiply H>0(s) by any unit-magnitude complex number
without changing the amplitude response. Particulary, we could multiply it by
j1/2 = (1 + j)/

√
2 obtaining

H>0(s) =


H̃e(s) + jH̃o(s)

2
N even

H̃o(s) + jH̃e(s)
2

N odd
(10.45)

Thus the real and imaginary parts of the output signal of H>0 are obtained
completely separately from two parallel allpasses H̃o and H̃e.

10.11 Phase splitter

There is another, conceptually completely different, but closely mathematically
related approach to constructing the Hilbert transformer. Considering a single
positive-frequency complex sinusoidal partial

ejωt = cosωt+ j sinωt = cosωt+ j cos(ωt− π/2) (ω > 0)

we notice that the imaginary part of the signal is phase-delayed by 90◦ relatively
to the real part. Now let Ĥ>0 denote the analytic filter operator. That is,
applying Ĥ>0 discards the negative frequency partials from the signal. Then,
applying analytic filtering to cosωt we have

Ĥ>0 cosωt = Ĥ>0
ejωt + e−jωt

2
=
ejωt

2
=

cosωt+ j cos(ωt− π/2)
2

(ω > 0)

Respectively, for a general real signal we have

Ĥ>0

∫ ∞
0

a(ω) cos(ωt+ ϕ(ω))
dω
2π

=

=
1
2

∫ ∞
0

a(ω) cos(ωt+ ϕ(ω))
dω
2π

+
j

2

∫ ∞
0

a(ω) cos(ωt+ ϕ(ω)− π/2)
dω
2π

Introducing notations:

x(t) =
∫ ∞

0

a(ω) cos(ωt+ ϕ(ω))
dω
2π

x−90(t) =
∫ ∞

0

a(ω) cos(ωt+ ϕ(ω)− π/2)
dω
2π

(where x−90(t) is the signal x(t) with all real sinusoidal partials phase-shifted
by −90◦) we have

Ĥ>0x(t) =
x(t) + jx−90(t)

2
(10.46)
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Equation (10.46) gives us another approach to the implementation of the ana-
lytic filter: we take the halved original signal as its own real part, and phase
shift the partials of its real spectrum by −90◦ to obtain the imaginary part.
Also notice that (10.46) is exactly the opposite of (10.42).

Differently from the approach in Section 10.10 where we didn’t care about
the phase, the approach of (10.46) explicitly preserves the phase of the partials,
thus (10.46) defines a zero-phase analytic filter. Unfortunately, as we shall see
later, such filter cannot be implemented by a stable differential system. Still, the
whole approach is somewhat more straightforward than the one of Section 10.10.

We will also develop a number of useful explicit expressions, which will be
helpful in the construction of H>0. In principle, the same expressions could
have been derived in Section 10.10 (as the answers are essentially the same),
however the derivations will be somewhat more direct in the context of the new
approach.

Complex spectral form

Before we get to the construction of the −90◦ phase shifter, we need to reexpress
this phase shifting in terms of complex spectral partials:

x(t) =
∫ ∞

0

a(|ω|)
2

(
ej(ωt+ϕ(ω)) + e−j(ωt+ϕ(ω))

) dω
2π

x−90(t) =
∫ ∞

0

a(|ω|)
2

(
ej(ωt+ϕ(ω)−π/2) + e−j(ωt+ϕ(ω)−π/2)

) dω
2π

=

=
∫ ∞

0

a(|ω|)
2

(
e−jπ/2ej(ωt+ϕ(ω)) + ejπ/2e−j(ωt+ϕ(ω))

) dω
2π

(10.47)

That is we need to phase shift the positive frequency partials by −90◦ and
phase shift the negative frequency partials by +90◦. Since the amplitudes are
unchanged by the phase-shifting, this is an allpass transformation, which we
can denote by the Ĥ−90 operator:

x−90(t) = Ĥ−90x(t)

Note that the fact that the negative frequencies need to be phase shifted by the
opposite amount is in agreement with the fact that x−90(t), being the imaginary
part of Ĥ>0x(t), needs to be a real signal. Therefore Ĥ−90 needs to preserve
the hermiticity of the spectrum of x(t). This means that the frequency response
of Ĥ−90 must be a Hermitian function, which implies the phase response being
an odd function.

The frequency response of the Ĥ−90 allpass is obviously

H−90(jω) =

{
−j if ω > 0
j if ω < 0

We are still uncertain as to which value to assign to H−90(0). In principle,
according to (10.47) the zero-frequency partial should be completely killed in
x−90, thus

H−90(jω) = −j sgnω =


−j if ω > 0
0 if ω = 0
j if ω < 0
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Strictly speaking, this kills the allpass property of Ĥ−90 at ω = 0, but this is
actually the only way to keep H−90(jω) Hermitian.

Now we can rewrite (10.46) in the pure operator form

Ĥ>0 =
1 + jĤ−90

2
(10.48)

or in the frequency response form

H>0(jω) =
1 + jH−90(jω)

2
=

1 + sgnω
2

(10.49)

The complex spectrum interpretation of (10.46) gives another insight into
why does it describe an analytic filter. Given a positive-frequency complex
sinusoidal signal x(t) = ejωt we have x−90(t) = −jejωt and respectively

Ĥ>0x(t) =
ejωt + j · (−j)ejωt

2
=
ejωt + ejωt

2
= x(t) (ω > 0)

that is x(t) is unchanged by Ĥ>0. On the other hand, if ω < 0, then x−90(t) =
jejωt and respectively

Ĥ>0x(t) =
ejωt + j · jejωt

2
=
ejωt − ejωt

2
= 0 (ω < 0)

The DC at ω = 0 is neither a positive- nor a negative-frequency partial. Ac-
cording to what we discussed above, it is killed by Ĥ−90 and thus

Ĥ>01(t) =
1(t) + 0j

2
=

1
2

(ω = 0)

(where 1(t) denotes a signal equal to 1 everywhere).

Rational 90◦ phase shifting allpass

We are looking for an allpass filter H−90 whose frequency response is

H−90(jω) = −j sgnω (10.50)

Apparently H−90(s) can’t be a rational function, since rational functions are
continuous everywhere except at their poles, where they gradually approach
infinity, thus a rational function cannot accommodate a jump from j to −j
which H−90(jω) has at ω = 0. But we still can build a rational H(s) which
approximates the ideal H−90(jω) for s = jω.

As mentioned earlier, the ideal H−90 is an allpass everywhere except at
ω = 0. Since we are building an approximation of H−90 anyway, we can ignore
that fact and build an approximation which is a perfect allpass. This will
simplify our goal, since then we can construct the allpass in terms of its phase
response. Therefore let

ϕ∞(ω) =

{
−90◦ ∀ω > 0
+90◦ ∀ω < 0
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be the ideal phase response of our allpass.21 So, how can we build a rational
allpass transfer function approximating ϕ∞(ω)?

Consider the fact that the frequency response of an allpass can be explicitly
written in terms of its phase response:

H(jω) = ejϕ(ω)

Using (9.11a) we can rewrite the same as

H(jω) = ρ+1

(
j tan

ϕ(ω)
2

)
However ρ+1, being a 1st-order rational function, maps rational functions to
rational functions of the same order and back. Thus, if we have a rational
function Φ(ω) of some order N such that

Φ(ω) = tan
ϕ(ω)

2
(10.51)

then jΦ(ω) and H(jω) = ρ+1(jΦ(ω)) will also be rational functions of the same
order N and the phase response of H will be equal to ϕ(ω).

Letting s = jω we rewrite H(jω) = ρ+1(jΦ(ω)) as

H(s) = ρ+1(jΦ(−js)) (10.52)

Will H(s) be a real function of s? Since ϕ(ω) must be real odd, so must be
Φ(ω). This implies that it must be representable in the form Φ(ω) = ωΦ2(ω2)
where Φ2 is some other real function. Therefore

H(s) = ρ+1(jΦ(−js)) = ρ+1

(
j · (−js)Φ2((−js)2)

)
= ρ+1(sΦ2(−s2))

and thus H(s) is real.
Before proceeding to the construction of Φ(ω) we would like to give one

warning. The allpass transfer functions H(s), which will arise from the appli-
cation of (10.52) to the obtained Φ(ω), will be unstable. This corresponds to
the fact that phase responses of stable differential allpasses cannot stay around
±90◦ over a large range of ω.22 This is a fundamental limitation, which we’ll
have to deal with. Later in this section we will describe a way of addressing this
problem.

Construction of Φ(ω)

The ideal Φ(ω) is apparently

Φ∞(ω) = tan
ϕ∞(ω)

2
=

{
−1 ∀ω > 0
1 ∀ω < 0

21Since we want our allpass approximation of H−90 to be a real filter, its phase response
must be odd, which leaves only two possible values at ω = 0: ϕ(0) = 0 or ϕ(0) = 180◦. If
we formally include ω = ∞ into the range of frequencies of interest, then we notice that the
phase response at ω =∞ has the same two options.

22In order to convince oneself that this is indeed so, one could factor a generic stable allpass
tranfer function into 1st- and 2nd-order sections and consider their phase responses, which
are monotonically decaying.
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We wish to find a rational Φ(ω) ≈ Φ∞(ω). This will ensure ϕ(ω) ≈ ϕ∞(ω).
Let f(x) be a real rational function satisfying the unit-cutoff lowpass condi-

tions (9.21). We would like to compose f(x) with other functions in such a way
that the result is an approximation of Φ∞. This composition should still result
in a real rational function and, ideally, also preserve the order of f . Therefore,
good candidates for the elements of such composition are the rotations of real
Riemann circle ρ±1.

As a first step, we map the pass- and stop-band areas of f(x) (that is
f(x) ≈ 0 and f(x) ≈ ∞) to the areas where Φ(x) = ±1. This is achieved
by Φ(x) = ρ±1(f(x)) (where the ± signs are matched). We thereby obtain
Φ(x) which has the desired values in the “pass”- and “stop”-bands, however the
bands themselves are incorrectly positioned on the argument axis, still coincid-
ing with the pass- and stop-bands of a unit-cutoff lowpass. We could fix this
by a real Riemann circle rotation of the argument. Which turns our candidate
compositions into

Φ(x) = ρ±1(f(ρ±1(x))) (10.53)

where we initially treat the ± signs as independent.
However actually the ± signs in (10.53) cannot be independent. E.g. if we

choose the “inner rotation” (the rotation of the argument of f(x)) to be ρ+1,
this maps the original lowpass passband |x| � 1 to −∞ � x � 0. In this
area we want Φ(x) = 1, therefore we have to choose the “outer rotation” (the
rotation of the value of f(x)) to be ρ+1 as well. In a similar way we could
choose both rotations to be ρ−1. This means that the ± signs in (10.53) must
be matched.

Intuitively it is clear that any “lowpass” kind of f(x) should result in (10.53)
giving an approximation of Φ∞. However we also need Φ(ω) to be an odd
function. Let’s see what kind of restriction this means for f(x). By (9.13) the
rotations ρ±1 map the odd symmetry to the reciprocal symmetry, which means
that

Φ(−ω) = −Φ(ω) ⇐⇒ f(1/x) = 1/f(x)

which effectively brings us to the idea to use the EMQF function f(x) = R̄N (x)
(or the Butterworth filter function f(x) = xN as its limiting case).

Having chosen f(x) = R̄N (x) we can refine the formula (10.53) a little. Sup-
pose we chose the “+” signs in (10.53). Then Φ(0) = ρ+1(f(1)) = ρ+1(1) =∞.
Vice versa, if we choose the “−” signs, then Φ(0) = ρ−1(f(−1)) = ρ+1((−1)N )
which is 0 if N is odd and ∞ if N is even. In principle, this is not a very big
problem, and both options are valid, but it would be just nice to have Φ(0) = 0
and respectively H(0) = 1 all the time. This is achieved by changing (10.53)
into

Φ(ω) = −ρ−1(f(ρ+1(ω))) (10.54)

The readers can convince themselves that (10.54) also gives an approximation
of Φ∞ and that in this case Φ(0) = 0 regardless of N . Fig. 10.27 illustrates.

Explicit expression for EMQF Φ(ω)

Sticking to the idea to use the EMQF function f(x) = R̄N (x) we will refer
to the 90◦ phase shifter that we are constructing as “EMQF phase shifter”.
Even though this is some kind of a misnomer, this should provide a pretty clear
identification of the approach we use.
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ω

Φ(ω)

∞∞ 1−1

1

∞

−1

∞

0

Figure 10.27: Φ(ω) obtained from (10.54) and f(x) = R̄N (x) for
even (solid) and odd (dashed) N .

Substituting f(x) = R̄N (x) into (10.54) we obtain

Φ(ω) = −ρ−1(R̄N (ρ+1(ω))) (10.55)

Since R̄N is a real rational function of order N , so is Φ(ω).
In the real period-based preimage representation terms we have

x = cdK u
v = Nu

R̄N (x) = cdK̃(v)

Expressing (10.55) in the same terms we have

ω = ρ−1

(
cdK u

)
v = Nu

Φ(ω) = −ρ−1

(
cdK̃ v

)
which by (9.111) turns into

ω = −ndK2

u

2
v

2
= N

u

2
Φ(ω) = ndK̃2

v

2

Replacing u/2 with u and v/2 with v we obtain

ω = −ndK2 u

v = Nu

Φ(ω) = ndK̃2
v
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and finally, switching to the explicit scaling form:

ω = −nd(u, k2) (10.56a)

v = N
K̃2

K2
u =

K̃ ′2
K ′2

u (10.56b)

Φ(ω) = nd(v, k̃2) (10.56c)

where K2 = K(k2) and K̃2 = K(k̃2) are the quarter periods corresponding to
the elliptic moduli k2 = L2(k) and k̃2 = L2(k̃), that is k2 and k̃2 are obtained by
the double Landen transformation from k and k̃. Note that, since double Landen
transformation solely changes the quarter period ratios K ′/K and K̃ ′/K̃ by a
factor of 4, the degree equation (9.112) stays essentially the same: K̃ ′2/K̃2 =
NK ′2/K2. Thus the imaginary periods of the two nd functions are matched,
while the real period is scaled by N .

Turning the representation form into the explicit form we obtain, e.g. using
real period argument normalization

Φ(ω) = ndK̃2

(
N nd

−1

K2
(−ω)

)
(10.57)

Expression (10.57) defines another (normalized) elliptic rational function. Dif-
ferently from the already familiar R̄N , this function has equiripples around ±1
in the bands centered around ω = ±1. Strictly speaking the amplitudes of
the upwards- and downwards-pointing ripples of Φ(ω) (shown in Fig. 10.27)
are not equal, rather, the values are mutually reciprocal at the upwards- and
downward-pointing peaks. It is just that in arctangent scale the reciprocal values
correspond to equal deviations from 1 or from −1. Therefore the true equiripple
behavior occurs in the arctangent rather than linear scale. However according
to (10.51) the function ϕ(ω) (which is our true goal) is exactly the arctangent
scale representation of Φ(ω). Therefore ϕ(ω) will have true equiripples. For the
sake of clarity we provide a graph of ϕ(ω) in Fig. 10.28, however notice that the
only difference between Figs. 10.28 and 10.27. is the labelling of the vertical
axis.

Bands of EMQF Φ(ω)

It is instructive to analyse Φ(ω) in terms of its bands in the preimage domain.
The readers can convince themselves that the bands are:

Transition band 1: |ω| ≤
√
k′2 |Φ(ω)| ≤

√
k̃′2

Passband 1:
√
k′2 ≤ω ≤ 1/

√
k′2 −1/

√
k̃′2 ≤Φ(ω) ≤ −

√
k̃′2

Transition band 2: |ω| ≥ 1/
√
k′2 depends on N

Passband 2: −1/
√
k′2 ≤ω ≤ −

√
k′2

√
k̃′2 ≤Φ(ω) ≤ 1/

√
k̃′2

where in the transition band 2 we have |Φ(ω)| ≤
√
k̃′2 for even N and |Φ(ω)| ≥

1/
√
k̃′2 for odd N . Fig. 9.51 can be referred to as an illustration.

It is not difficult to realize that that the “passband” ripples of Φ(ω) are
essentially obtained from the ripples that the nd function has on the real axis
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ω

ϕ(ω)

∞∞ 1−1

π/2

π

−π/2

−π

0

Figure 10.28: ϕ(ω) obtained from (10.57) and (10.51) for even
(solid) and odd (dashed) N .

(which thereby results in the upwards-pointing peaks being reciprocal to the
downwards-pointing peaks) and on a parallel line which is away from the real
axis by one half of its imaginary period. The details are left as an exercise to
the reader.

Poles and zeros of EMQF phase shifter

We would like to construct H(s) from its poles and zeros. Since H(s) is an
allpass, it is sufficient to find the poles, while the zeros can be trivially obtained
from the poles. However we could also consider obtaining the zeros explicitly.

Starting with the equations H(s) =∞ and H(s) = 0 we apply the inverted
(10.52), which is Φ(−js) = −jρ−1(H(s)), yielding

Φ(−js) = ∓j (10.58)

where “−” should be taken for poles and “+” for zeros.
At this point there are different possibilities how to continue. Particu-

larly, we could apply (10.55) which gives R̄N (ρ+1(−js)) = ±j or equivalently
R̄N (−jρ+j(s)) = ±j. This would be pretty much the same as what we have
been solving in Section 10.10.23 It could be more interesting and practical,
though, to take a different path, which will allow us to obtain simple explicit
expressions for the poles and zeros of H(s). The obtained poles and zeros will
be of course the same, since we are solving the same equations, just in a different
way.

Let’s use the preimage representation (10.56) to solve (10.58), in a similar
way to how we were solving the pole equations for other filter types. Recall
that by the imaginary argument property, nd is essentially the same as cd, just
rotated 90◦ in its complex argument plane. Therefore, while cd was generating
quasielliptic curves for its argument moving parallel to the real axis, nd will
generate the same curves for its argument moving parallel to the imaginary

23Except that we would obtain both stable and unstable poles this time, since there is no
explicit restriction of the solutions having to be in the left semiplane.



464 CHAPTER 10. SPECIAL FILTER TYPES

axis. In order to solve (10.58), we would like the curves to go through ±j,
however the movement parallel to the imaginary axis in the preimage domain
is not very useful for solving (10.58), since the imaginary periods are matched
for the preimages of ω and Φ(ω), and therefore we will not obtain all possible
solutions.

We should rather move parallel to the real axis. Apparently, in this case
we won’t generate quasielliptic curves in the representation domain, but rather
the kind of lines shown in Fig. 9.54. Since cd and respectively nd take each
value only once within a quater-period grid cell, and since the values ±j occur
on horizontal lines where nd turns into j sc or −j sc (Fig. 9.51), we need to
move in one of these lines. The representation will then simply move along the
imaginary axis24 in one and the same direction, looping through the ∞ point.

Choosing the horizontal line Im v = K̃ ′2 as the principal preimage line we
have nd(v, k̃2) = j sc(Re v, k̃2). We wish to have representation moving upwards
along the imaginary axis therefore the preimages need to move towards the right
(going along the line Im v = K̃ ′2). In terms of u the same movement corresponds
to moving along the line

Imu =
K ′2

K̃ ′2

Im v = K ′2

where the direction of movement of u is, obviously, also towards the right.
Notice that any other possible choices of the principal preimage line of v do not
generate any additional solutions of (10.58), since ω will be simply traversing
along the entire imaginary axis in any case.

The value Φ(ω) = nd(v, k̃2) moving upwards along the imagniary axis will
be traversing the points ±j at

v = jK̃ ′2 +
(

1
2

+ n

)
K̃2 (n ∈ Z)

where at even n we’ll have Φ(ω) = j and at odd n we’ll have Φ(ω) = −j. That
is, even n correspond to zeros and odd n correspond to poles. The values of u
are respectively

u = j
K ′2

K̃ ′2

K̃ ′2 +
K2

NK̃2

(
1
2

+ n

)
K̃2 = jK ′2 +

1
2 + n

N
K2

from where

ω = − ndu = −j sc
( 1

2 + n

N
K2, k2

)
from where by s = jω we obtain

s = sc
( 1

2 + n

N
K2, k2

)
(10.59)

where even n correspond to zeros and odd n correspond to poles. Note that in
the Butterworth limit k2 → 0 the equation (10.59) turns into

s = tan
(
π

2
·

1
2 + n

N

)
24Apparently the imaginary axis belongs to the family of lines shown in Fig. 9.54, being the

boundary case between the two groups of lines on the left and on the right.



10.11. PHASE SPLITTER 465

Since all values in (10.59) are real, the solutions given by (10.59) are also
real. That is the poles and zeros of H(s) are real and H(s) can be factored into
1st-order allpasses.

Since the period of sc is 2K2, there are 2N different values of s given by
(10.59). Half of them are zeros and the other half are poles, thus there are
N zeros and N poles, where the poles and zeros are inverleaved (Fig. 10.29).
Apparently, n can run over any range of 2N consecutive integers. A particularly
convenient range is n = −N . . . (N − 1). In this case n = −1 and n = 0 give
one pole/zero pair where the pole and the zero are mutually opposite. This
pole/zero pair corresponds to the lowest-cutoff 1-pole allpass factor, which is
stable since the pole is obtained from n = −1. The values n = 1 and n = −2
give another pole/zero pair corresponding to the next 1-pole factor, which is
unstable since the pole is obtained from n = 1. The third 1-pole factor will be
stable again etc.

-5 -4 -3 -2 -1 0 1 2 3 4 5 s

Figure 10.29: Poles (black dots) and zeros (white squares) of an
EMQF phase shifter H(s) for N = 4.

One could notice in Fig. 10.29 that there is reciprocal symmetry within the
set of poles and zeros of H(s). That is if s is a pole or a zero of H(s), then so
is 1/s. Apparently, this is due to the property (9.74b) of the elliptic tangent
function sc.

We could also derive a simple rule for remembering, whether for n = −1 one
obtains a pole or a zero, that is whether the closest to zero negative value of s
given by (10.59) is a stable allpass factor’s pole or an unstable allpass factor’s
zero. First, notice that negating the allpass’s cutoff is equivalent to the sub-
stitution ω ← −ω. Since the frequency response of a real filter is Hermitian,
its phase response is odd, thus negating ω is equivalent to negating the phase
response. Thus, since the phase responses of stable allpasses are decreasing,
the phase responses of unstable (negative cutoff) allpasses are increasing. Now
consider the phase shifter H(s) which is a product of stable and unstable all-
passes. Intuitively, as ω starts to increase from 0, the phase response first has
to decrease to approximately −90◦, therefore the allpass factor with the lowest
cutoff in the chain must be stable.25

Bandwidth of EMQF phase shifter

In our discussion of the bands of EMQF Φ(ω) we have established that the
equiripple “passband” ranges are

−k′−1/2
2 <ω < −k′1/22

k
′1/2
2 <ω < k

′−1/2
2

25The same reasoning can be applied to (10.45), where we want the imaginary signal to be
phase shifted by −90◦ compared to the real one. Therefore the lowest-cutoff allpass factor
(corresponding to the pole closest to the origin) must be in the imaginary signal’s allpass.
Since the poles of the allpasses in (10.45) are obtained by Riemann sphere rotation ρ+j , the
pole closest to the origin will be obtained from the pole closest to −j, which is an even pole
for N odd and an odd pole for N even.
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that is
k
′1/2
2 < |ω| < k

′−1/2
2

where we could notice that the logarithmic center of the “passband” is thereby
at ω = 1.

Respectively, the logarithmic bandwidth ∆ expressed in octaves is a loga-
rithm base 2 of the ratio of the passband’s boundaries:

∆ = log2

k
′−1/2
2

k
′1/2
2

= log2 k
′−1
2 = − log2 k

′
2

which gives us a way to immediately find k′2 from a given bandwidth:26

k′2 = 2−Δ

Since the boundaries of the bands of ϕ(ω) are identical to the bands of Φ(ω),
the above formulas equally apply to the bands of ϕ(ω).

The value of k̃′2, which effectively defines the amplitude of the ripples, can
be computed (after having constructeed Φ(ω)) from

k̃
′1/2
2 = −Φ(k′1/22 )

However it is more practical to directly compute the deviation of argH(jk′1/22 )
from the target value −90◦ (after having constructed H(s)). According to the
above formula, ω = k

′1/2
2 should be the point of maximum phase deviation

(within the equiripple range) and thus the deviation of ϕ(k′1/22 ) = argH(jk′1/22 )
from −90◦ should give the amplitude of the equiripples.

Since k̃′2 and k′2 increase or decrease simultaneously, H(s) will get larger
ripple amplitudes for larger bandwidths and vice versa. Increasing the order N
will result in a smaller ripple amplitude for the same bandwidth.

Apparently the “passband” doesn’t need to be centered at ω = 1 and can
be shifted to any other center frequency by the cutoff substitution s ← s/ωc.
This raises a related question of prewarping, where we could notice that the
situation is pretty similar to the prewarping of a normalized 2-pole bandpass
filter (discussed in connection with the LP to BP transformation in Section 4.6).
Therefore the suggested way of handling the prewarping of H(s) consists of the
following steps:

1. Given the desired “passband” [ω1, ω2]:

ω1 = ωc · 2−Δ/2

ω2 = ωc · 2Δ/2

prewarp its boundaries separately:

ω̃1 = µ(ω1)
ω̃2 = µ(ω2)

26Note that if desired, we can also find k from k′2 by (9.110) (where we let k0 = k).
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thereby obtaining the new prewarped “passband” of a different bandwidth
and center frequency:

ω̃c =
√
ω̃1ω̃2

∆̃ = log2

ω̃2

ω̃1

2. Given the new bandwidth and assuming a unit center frequency, construct
the allpass H(s) as previously described in this section.

3. Apply the cutoff substitution s ← s/ω̃c to H(s), which effectively means
multiplying the cutoffs of the underlying 1-poles by the new center fre-
quency ω̃c.

This approach effectively implements an idea similar to the usage of a single
prewarping point discussed in Section 3.8, which takes care of preserving the
correct ratios between the cutoffs of the individual filters in the system. In prin-
ciple it could be okay to prewarp each of the 1-pole factors of H(s) individually
instead, however that apparently will somewhat destroy the optimality of the
equiripple ϕ(ω).

Phase splitter

Half (or approximately half, if N is odd) of the poles of H(s) are unstable and we
can’t implement H(s) directly. However, there is one trick which allows to work
around this limitation. Before describing this trick we will switch the notation
back from H(s) to H−90(s) to highlight the fact that the filter performs a −90◦

phase shift (of the positive frequencies).
Let’s factor H−90(s) into a product of two allpasses:

H−90(s) = H+(s)H−(s)

where H+(s) contains only the right-semiplane (unstable) poles and H−(s) con-
tains only the left-semiplane (stable) poles. As usual, we could assume or re-
quire that H+(0) = 1 and H−(0) = 1, which is achievable, given ϕ(ω) = 0 and
respectively H(0) = 1.

Given a signal x(t) = est we wish to obtain the signal y(t) = H−90(s)x(t).
Consider two other signals:

x′(t) = H−1
+ (s)x(t)

y′(t) = H−1
+ (s)y(t) = H−(s)x(t)

where H−1
+ (s) = 1/H+(s). Notice that H−1

+ is a stable allpass and so is appar-
ently H−, thus x′(t) and y′(t) can be obtained from x(t) by processing x(t) by
stable allpasses H−1

+ and H−. Notice that

y′(t) = H−(s)x(t) = H−(s)H+(s)x′(t) = H−90(s)x′(t)

that is y′(t) and x′(t) are in a 90◦ phase shift relationship.
Apparently the same idea applies to abitrary x(t), which we can express in

the operator notation as

x′(t) = Ĥ−1
+ x(t) (10.60a)
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y′(t) = Ĥ−1
+ y(t) = Ĥ−x(t) (10.60b)

y′(t) = Ĥ−90x
′(t) (10.60c)

where Ĥ−90 is the operator denoting the processing of a signal by the filter
H−90. Thus, even though we cannot phase-shift the input signal x by 90◦, we
can obtain two derived allpass signals x′ and y′, where the phase difference
between x′ and y′ is 90◦. Respectively, the combined signal

x>0(t) =
x′(t) + jy′(t)

2
=
Ĥ−1

+ + jĤ−

2
x(t) =

= Ĥ−1
+

x(t) + jy(t)
2

= Ĥ−1
+

1 + jĤ−90

2
x(t) (10.61)

is an analytic version of x(t), where the phase shift of this analytic version
relatively to x(t) is defined by H−1

+ . The approach of generating two allpass
signals which are in a 90◦ phase relationship is referred to as phase splitting and
is illustrated in Fig. 10.30. Since x′/2 is the real part of the analytic signal and
y′/2 is the imaginary part, the allpass H−1

+ produces the (doubled) real part
and the allpass H− produces the (doubled) imaginary part and therefore we can
refer to H−1

+ and H− as real and imaginary allpasses respectively.

•// H−1
+

// //

H−// //

x(t) x′(t)

y′(t)

Figure 10.30: Phase splitter.

Notice that (10.61) is essentially the same as we have in (10.45), where Ho

and He are corresponding to H−1
+ and H− (where which specific filter corre-

sponds to which depends on the order N). Thus (10.45) also describes a phase
splitter, just obtained from a different angle.

10.12 Frequency shifter

Even though frequency shifter is not a filter in the strict sense, its most critical
part will be based around the Hilbert transformer, which is a filter. For that
reason the discussion of frequency shifters may belong to the filter topic.

Suppose we are given a signal x(t) represented by its complex spectrum:

x(t) =
∫ ∞
−∞

X(ω)ejωt
dω
2π

By multiplying the signal x(t) with a complex sinusoidal signal ejΔω·t we effec-
tively shift the frequencies of all partials by ∆ω:

y(t) = ejΔω·tx(t) = ejΔω·t
∫ ∞
−∞

X(ω)ejωt
dω
2π

=
∫ ∞
−∞

X(ω)ejΔω·tejωt
dω
2π

=
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=
∫ ∞
−∞

X(ω)ej(ω+Δω)t dω
2π

(10.62)

This is not very interesting, since given a real x(t) we obtain a complex y(t).
Obviously, it’s because we multiplied by the complex signal ejΔω·t. In terms
of signal spectra, the spectrum of x(t) was Hermitian, however by shifting the
spectrum by ∆ω we destroyed the Hermitian propetry.

However, this is also not exactly what we want if we think of frequency shift-
ing. The complex spectrum is a more or less purely mathematical concept, while
the one more intuitively related to our hearing of sounds is the real spectrum,
and it’s the partials of the real spectrum whose frequencies we’d rather want to
shift. That is, given

x(t) =
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π

we wish to obtain

y(t) =
∫ ∞

0

a(ω) cos
(
(ω + ∆ω)t+ ϕ(ω)

) dω
2π

(10.63)

Notably, if ∆ω < 0, then some of the frequencies ω + ∆ω in (10.63) will be
negative and will alias with the positive frequencies of the same absolute mag-
nitude. This can be either ignored, or x(t) can be prefiltered to make sure it
doesn’t contain frequencies below −∆ω. So, except for the just mentioned high-
pass prefiltering option, the possible aliasing of the negative frequencies doesn’t
affect the subsequent discussion.

We can rewrite (10.63) as

y(t) =
∫ ∞

0

a(ω) cos
(
(ω + ∆ω)t+ ϕ(ω)

) dω
2π

=

=
∫ ∞

0

a(ω) cos
(
∆ωt+ ωt+ ϕ(ω)

) dω
2π

=

=
∫ ∞

0

a(ω)
(

cos ∆ωt cos
(
ωt+ ϕ(ω)

)
− sin ∆ωt sin

(
ωt+ ϕ(ω)

)) dω
2π

=

= cos ∆ωt ·
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π
−

− sin ∆ωt ·
∫ ∞

0

a(ω) sin
(
ωt+ ϕ(ω)

) dω
2π

=

= cos ∆ωt ·
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)

) dω
2π
−

− sin ∆ωt ·
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)− π

2

) dω
2π

=

= x(t) cos ∆ωt− x−90(t) sin ∆ωt (10.64)

where

x−90(t) =
∫ ∞

0

a(ω) cos
(
ωt+ ϕ(ω)− π

2

) dω
2π

is a signal obtained from x(t) by phase-shifting all partials by −90◦. In the
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operator notation the same can be expressed as

y(t) = cos ∆ωt · x(t)− sin ∆ωt · Ĥ−90x(t) =
(

cos ∆ωt− sin ∆ωt · Ĥ−90

)
x(t)

(10.65)
We have already found out how to obtain a −90◦ phase shifted signal in

Section 10.11, except that we also found than such signal cannot be directly
obtained. We will address this slightly later, while for now we shall take a
different look at the same problem of frequency shifting.

Analytic signal approach

Looking again at (10.62) we can notice that the positive frequency partials are
correctly shifted and it’s the negative frequency partials which make trouble.
So, if the negative partials weren’t there in the first place:

x>0(t) =
∫ ∞

0

X(ω)ejωt
dω
2π

we would have obtained

y>0(t) = ejΔω·tx>0(t) = ejΔω·t
∫ ∞

0

X(ω)ejωt
dω
2π

=
∫ ∞

0

X(ω)ejΔω·tejωt
dω
2π

=

=
∫ ∞

0

X(ω)ej(ω+Δω)t dω
2π

(10.66)

Comparing (10.66) to (10.63) we notice that they essentially consist of the same
frequency partials, except that y>0(t) is missing the negative part of its spec-
trum. The negative part of the spectrum can be restored by (10.42), and thus
(10.66) and (10.63) are related via

y(t) = 2 Re y>0(t)

This is easier to see in the operator notation:

y(t) = 2 Re y>0(t) = 2 Re
(
ejΔωtx>0(t)

)
= 2 Re

(
ejΔωtĤ>0x(t)

)
=

= 2 Re

(
ejΔωt

1 + jĤ−90

2
x(t)

)
= Re

(
ejΔωt(1 + jĤ−90)

)
x(t) =

= Re
(

(′cos∆ωt+ j sin ∆ωt)(1 + jĤ−90)
)
x(t) =

=
(

cos ∆ωt− sin ∆ωtĤ−90

)
x(t)

which is identical to (10.65), thus both approaches are equivalent.

Implementation

Let Ĥ−1
+ be the allpass from (10.60). Multiplying (10.65) by Ĥ−1

+ we obtain

Ĥ−1
+ y(t) = Ĥ−1

+

(
cos ∆ωt− sin ∆ωt · Ĥ−90

)
x(t) =

=
(

cos ∆ωt · Ĥ−1
+ − sin ∆ωt · Ĥ−90Ĥ

−1
+

)
x(t) =
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=
(

cos ∆ωt · Ĥ−1
+ − sin ∆ωt · Ĥ−

)
x(t) (10.67)

If we are willing to accept the phase-shifted signal Ĥ−1
+ y(t) instead of y(t) (and

as it seems, we don’t have much other choice) a frequency shifter can be simply
implemented by the structure in Fig. 10.31.

•// H−1
+

//
MMMqqq
// + '!&"%#$//

H−//
MMMqqq
//

−
OO //x(t) y(t)

cos ∆ωt

sin ∆ωt

Figure 10.31: Frequency shifter.

Notably, replacing ∆ω by −∆ω in (10.67) we obtain

Ĥ−1
+ y(t) = Ĥ−1

+

(
cos ∆ωt+ sin ∆ωt · Ĥ−90

)
x(t) =

=
(

cos ∆ωt · Ĥ−1
+ + sin ∆ωt · Ĥ−

)
x(t) (10.68)

This means that we can extend the frequency shifter in Fig. 10.31 to a one that
shifts simultaneously in both directions, obtaining the diagram in Fig. 10.32.27

•// H−1
+

//
MMMqqq
// •// + '!&"%#$//

H−//
MMMqqq
// •

−
??����������

//

+ '!&"%#$// ��
??????????

//

x(t) y+(t)

y−(t)

cos ∆ωt

sin ∆ωt

Figure 10.32: A bidirectional frequency shifter.

Adding together the frequency-shifted signals from (10.67) and (10.68) we
notice that

Ĥ−1
+

(
cos ∆ωt− sin ∆ωt · Ĥ−90

)
+

+ Ĥ−1
+

(
cos ∆ωt+ sin ∆ωt · Ĥ−90

)
= Ĥ−1

+ · 2 cos ∆ωt

or (
cos ∆ωt · Ĥ−1

+ − sin ∆ωt · Ĥ−
)

+

+
(

cos ∆ωt · Ĥ−1
+ + sin ∆ωt · Ĥ−

)
= Ĥ−1

+ · 2 cos ∆ωt

27The signal notations y+ and y= denote the positive- and negative-shifted signals respec-
tively and shouldn’t be confused with the “+” and “−” subscripts of H−1

+ and H− which
denote the stable and unstable poles.
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That is, the sum of y+ and y− in Fig. 10.32 essentially produces the ring mod-
ulation of x(t) by cos ∆ωt, except that the result of this ring modulation is
doubled and phase-shifted by Ĥ−1

+ . So frequency-shifting and ring-modulation
by a sinusoid seem are very closely related. The same can be analyzed in the
complex spectral domain:

cos ∆ωt · x(t) =
ejΔωt + e−jΔωt

2

∫ ∞
−∞

X(ω)ejωt
dω
2π

=

=
1
2

∫ ∞
−∞

X(ω)ejωtejΔωt
dω
2π

+
1
2

∫ ∞
−∞

X(ω)ejωte−jΔωt
dω
2π

=

=
1
2

∫ ∞
−∞

X(ω)ej(ω+Δω)t dω
2π

+
1
2

∫ ∞
−∞

X(ω)ej(ω−Δω)t dω
2π

Thus in the case of the ring modulation by a sinusoid, the partials are frequency-
shifted in both directions.

Aliasing

If ∆ω > 0 then for some partials the sum ω + ∆ω may exceed the Nyquist
frequency, respectively they will alias to 2π− (ω+∆ω) (assuming unit sampling
period T = 1). This kind of aliasing is similar to the one occurring at ω+∆ω < 0
in case of ∆ω < 0, however, while the aliasing around ω = 0 also occurs in the
analog case, aliasing around Nyquist frequency is a purely digital phenomenon.

It is therefore up to the effect designer, whether the aliasing around ω = 0
should be prevented, or allowed. The aliasing at Nyquist is however usually
undersired. It can be avoided by prefiltering the frequency band [π − ∆ω, π],
which can be done by a lowpass filter with a cutoff around π−∆ω. Notice that
π −∆ω is a discrete-time cutoff value and thus doesn’t need prewarping.

The aliasing around ω = 0 can be prevented in a similar way by using a
highpass with a cutoff at −∆ω (since in this case we assume ∆ω < 0, the
cutoff will thereby be positive). Note that since the phase splitter has a limited
bandwidth, one also may consider filtering out the signal outside that bandwidth
anyway, regardless of ∆ω.

10.13 Remez algorithm

The equiripple behavior of Chebyshev polynomials and elliptic rational functions
is a characteristic feature of the so-called minimax approximations. TN ,

T

N ,
RN , R̄N and the function Φ(ω) used to build the phase splitter all provide
specific analytic-form solutions to specific minimax problems. However, in a
more general situation we might want a numerical solution approach.28

Suppose we are given a function f(x) and its approximation f̃(x). There
are different ways to measure the quality of the approximation. One way to

28The description of Remez algorithm (which is a numerical minimax optimization algo-
rithm) was included into earlier revisions of this book as an alternative to the use of elliptic
functions to construct phase splitters. Now that the book is strongly focusing on elliptic
functions anyway, the discussion of Remez algorithm might feel almost redundant. However
the author felt that this is still quite valuable resource to be simply dropped from the book.
Particularly, Remez algorithm is useful for building low-cost approximations of functions, al-
though, depending on the context, minimax solutions are not necessarily the best ones for a
given purpose.
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measure this quality is the maximum error of the approximation on the given
interval of interest x ∈ [a, b]:

E = max
[a,b]

∣∣∣f̃(x)− f(x)
∣∣∣ (10.69)

We therefore wish to minimize the value of E. That is we want to minimize the
maximum error of the approximation. Such approximations are hence called
minimax approximations.29

Gradient search methods do not work well for minimax optimizations. There-
fore a different method, called Remez algorithm,30 needs to be used. As of today,
internet resources concerning the Remez algorithm seem quite scarce, nor does
this method seem to be a subject of common math textbooks. This might
suggest that Remez algorithm belongs to a rather esoteric math area. The al-
gorithm itself, however, is very simple. We will therefore cover the essentials of
that algorithm in this book.31

Suppose f̃(x) is a polynomial:

f̃(x) =
N∑
n=0

anx
n (10.70)

Apparently, there are N+1 degrees of freedom in the choice of f̃(x), each degree
corresponding to one of the coefficients an. Therefore we can force the function
f̃(x) to take arbitrarily specified values at N + 1 arbitrarily chosen points x̄n.
Particularly, we can require

f̃(x̄n) = f(x̄n) n = 0, . . . , N

or equivalently require the error to be zero at x̄n:

f̃(x̄n)− f(x̄n) = 0 n = 0, . . . , N (10.71)

(notice that the equations (10.71) are linear in respect to the unknowns an
and therefore are easily solvable). If the points x̄n are approximately uniformly
spread over the interval of interest [a, b] then intuitively we can expect f̃(x) to
be a reasonably good approximation of f(x) (Fig. 10.33).

This based on the uniform zero spacing approximation is however not the
best one. Indeed, instead let x̄n equal the (properly scaled) zeros of the Cheby-
shev polynomial of order N + 1:

x̄n =
a+ b

2
+
b− a

2
zn x̄n ∈ (a, b) zn ∈ (−1, 1)

TN+1(zn) = cos
(
(N + 1) arccos zn

)
= 0

zn = − cos
1
2 + n

N + 1
π n = 0, . . . , N

29The maximum of the absolute value of a function is also the L∞ norm of the function.
Therefore minimax approximations are optimizations of the L∞ norm.

30The Remez algorithm should not be confused with the Parks–McClellan algorithm. The
latter is a specific restricted version of the former. For whatever reason, the Parks–McClellan
algorithm is often referred to as the Remez algorithm in the signal processing literature.

31The author’s primary resource for the information about the Remez algorithm was the
documentation for the math toolkit of the boost library by J.Maddock, P.A.Bristow, H.Holin
and X.Zhang.
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x

f̃(x)− f(x)

5× 10−4

π

2
0

Figure 10.33: The error of the 4-th order polynomial approxima-
tions of sinx on [0, π/2]. The approximation with uniformly spaced
zeros at 9◦, 27◦, 45◦, 63◦, 81◦ (solid line) and the one with Cheby-
shev zeros (dashed line). The empty square-shaped dots at the
extrema of the error are the control points of the Remez algorithm.

where the minus sign in front of the cosine ensures that zn are in ascending order.
Comparing Chebyshev zeros approximation (the dashed line in Fig. 10.33) to
the uniform zeros approximation, we can see that the former is much better
than the latter, at least in the minimax sense.

A noticeable property of the Chebyshev zeros approximation clearly observ-
able in Fig. 10.33 is that the extrema of the approximation error (counting the
extrema at the boundaries of the interval [a, b]!) are approximately equal in
absolute magnitude and have alternating signs. This is a characteristic trait of
minimax approximations: the error extrema are equal in magnitude and alter-
nating in sign.

So, we might attempt to build a minimax approximation by trying to sat-
isfy the equiripple error oscillation requirement. That is, instead of seeking
to minimize the maximum error, we simply seek an error which oscillates be-
tween the two boundaries of opposite sign and equal absolute value. Somewhat
surprisingly, this is a much simpler task.

Intuitive description of Remez algorithm

Consider the solid line graph in Fig. 10.33. Intuitively, imagine a “control point”
at each of the extrema. Now we “take” the control point which has the largest
error (the one at x = 0) and attempt to move it towards the x axis, reducing
the error value at x = 0. Since there are 6 control points (4 at local extrema
plus 2 at the boundaries), but only 5 degrees of freedom (corresponding to
the coefficients an), at least one of the other control points needs to move (or
several or all of them can move). Intuitively it’s clear that if we lower the error
at x = 0, then it will grow at some other points of [a, b]. However, since we have
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the largest error at x = 0 anyway, we can afford the error growing elsewhere
on [a, b], at least for a while. Notice that during such change the x positions of
control points will also change, since the extrema of the error do not have to
stay at the same x coordinates.

As the error elsewhere at [a, b] becomes equal in absolute magnitude to the
one at x = 0, we have two largest-error control points which need to be moved
simultaneously from now on. This can be continued until only one “free” control
point remains. Simultaneously reducing the error at 5 of 6 control points we
thereby increase the error at the remaining control point. At some moment both
errors will become equal in absolute magnitude, which means that the error at
all control points is equal in absolute magnitude. Since the control points are
located at the error extrema, we have thereby an equiripple oscillating error.

Remez algorithm for polynomial approximation

Given f̃(x) which is a polynomial (10.70), the process of “pushing the control
points towards zero” has a simple algorithmic expression. Indeed, we seek f̃(x)
which satisfies

f̃(x̂n) + (−1)nε = f(x̂n) n = 0, . . . , N + 1 (10.72)

where x̂n are the (unknown) control points (including x̂0 = a and x̂N+1 = b)
and ε is the (unknown) signed maximum error. Thus, the unknowns in (10.72)
are an (the polynomial coefficients), x̂n (the control points at the extrema) and
ε (the signed maximum error). Notice that the equations (10.72) are linear in
respect to an and ε, which leads us to the following idea.

Suppose we already have some initial guess for f̃(x), like the uniform zero
polynomial in Fig. 10.33 (or the Chebyshev zero polynomial, which is even
better). Identifying the extrema of f̃(x)−f(x) we obtain a set of control points
x̂n. Now, given these x̂n, we simply solve (10.72) for an and ε (where we have
N + 2 equations and N + 2 unknowns in total), thereby obtaining a new set of
an. In a way this is cheating, because x̂n are not the control points anymore,
since they are not anymore the extrema of the error (and if they were, we
would already have obtained a minimax approximation by simply finding these
new an). However, the polynomial defined by the new an has a much better
maximum error (Fig. 10.34)!

So we simply update the control points x̂n to the new positions of the ex-
trema and solve (10.72) again. Then again update the control points and solve
(10.72) and so on. This is the Remez algorithm for polynomial approximation.
We still need to refine some details about the algorithm though.

- The function f(x) should be reasonably well-behaved (whatever that could
mean) in order for Remez algorithm to work.

- As a termination condition for the iteration we can simply check the
equiripple property of the error at the control points. That is, having
obtained the new an, we find the new control points x̂n and then compute
the errors εn = f̃(x̂n)−f(x̂n). If the absolute values of εn are equal up to
the specified precision, this means that we have an approximation which
is minimax up to the specified error, and the algorithm may be stopped.



476 CHAPTER 10. SPECIAL FILTER TYPES

x

f̃(x)− f(x)

5× 10−4

π

2
0

Figure 10.34: The approximation error before (dashed line) and
after (solid line) a single step of the Remez polynomial approxi-
mation algorithm. The empty square-shaped dots are the control
points.

- The initial approximation f̃(x) needs to have the alternating sign prop-
erty. This is more or less ensured by using (10.71) to construct the initial
approximation. A good choice for x̄n (as demonstrated by Fig. 10.33) are
the roots of the Chebyshev polynomial of order one higher than the order
of the approximating polynomial f̃(x).32

- The control points x̂n are the zeros of the error derivative (f̃ −f)′ (except
for x̂0 = a and x̂N+1 = b). There is exactly one local extremum on each
interval (x̄n, x̄n+1) between the zeros of the error. Therefore, x̂n+1 can
be simply found as the zeros of the error derivative by bisection of the
intervals (x̄n, x̄n+1).

- After having obtained new an, the old control points x̂n are not the ex-
trema anymore, however the errors at x̂n are still alternating in sign.
Therefore the new zeros x̄n (needed to find the new control points by
bisection) can be found by bisection of the intervals (x̂n, x̂n+1).

Restrictions and variations

Often it is desired to obtain a function which is odd or even, or has some
other restrictions. This can be done by simply fixing the respective an, thereby
reducing the number of control variables an and reducing the number of control
points x̂n and zero crossings x̄n accordingly.

Remez algorithm can also be easily modified to accommodate a weight func-

32This becomes kind of intuitive after considering Chebyshev polynomials as some kind of
minimax approximations of the zero constant function f(x) ≡ 0 on the interval [−1, 1].
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tion in the minimax norm (10.69):

E = max
[a,b]

(
W (x) ·

∣∣∣f̃(x)− f(x)
∣∣∣) W (x) > 0

The error function therefore turns into W (x)(f̃(x)− f(x)), while the minimax
equations (10.72) turn into

f̃(x̂n) + (−1)nW−1(x̂n)ε = f(x̂n) n = 0, . . . , N + 1

(where W−1(x) is the reciprocal of W (x)).

Remez algorithm for rational approximation

Instead of using a polynomial f̃(x), better approximations can be often achieved
by rational f̃(x):

f̃(x) =

N∑
n=0

anx
n

1 +
M∑
n=1

bnx
n

(10.73)

Besides being able to deliver better approximations in certain cases, rational
functions can be often useful for obtaining approximations on infinite intervals
such as [a,+∞), because by varying the degrees of the numerator and denomi-
nator the asymptotic behavior of f̃(x) at x→∞ can be controlled.

For a rational f̃(x) defined by (10.73) the minimax equations (10.72) become
nonlinear in respect to the unknowns ε and bn, although they are still linear in
respect to the unknowns an:

N∑
i=0

aix̂
i
n + (−1)n

(
1 +

M∑
i=1

bix̂
i
n

)
ε =

(
1 +

M∑
i=1

bix̂
i
n

)
f(x̂n)

n = 0, . . . , N +M + 1

(10.74)

Notice that the number of degrees of freedom is now N +M + 1. The equations
(10.74) can be solved using different numeric methods for nonlinear equation
solution, however there is one simple trick.33 Rewrite (10.74) as

N∑
i=0

aix̂
i
n + (−1)nε

M∑
i=1

bix̂
i
n + (−1)nε =

(
1 +

M∑
i=1

bix̂
i
n

)
f(x̂n)

Now we pretend we don’t know the free term ε, but we do know the value of ε
before the sum of bix̂in:

N∑
i=0

aix̂
i
n + (−1)nε0

M∑
i=1

bix̂
i
n + (−1)nε =

(
1 +

M∑
i=1

bix̂
i
n

)
f(x̂n) (10.75)

where ε0 is this “known” value of ε. The value of ε0 can be estimated e.g. as
the average absolute error at the control points x̂n. Then (10.75) are linear

33This trick is adapted from the boost library documentation and sources.
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equations in respect to an, bn and ε and can be easily solved. Having obtained
the new an and bn, we can obtain a new estimation for ε0 and solve (10.75)
again. We repeat until the errors f̃(x̂n)−f(x̂n) at the control points x̂n become
equal in absolute vlaue up to a necessary precision. At this point we can consider
the solution of (10.74) as being obtained to a sufficient precision and proceed
with the usual Remez algorithm routine (find the new x̄n, new x̂n etc.)

Here are some further notes.

- In principle the solution of (10.74) doesn’t need to be obtained to a very
high precision, except in the final step of the Remez algorithm. However,
in order to know whether the current step is the final one or not, we
need to know the true control points, so that we can estimate how well
the equiripple condition is satisfied. Ultimately, this is a question of the
computational expense of finding the new control points vs. computing
another iteration of (10.75).

- Sometimes, if the equations are strongly nonlinear, the trick (10.75) may
fail to converge. In this case one could attempt to use the discussed be-
low more general Newton–Raphson approach (10.81), where the damping
parameter may be used to mitigate the convergence problems.

- In regards to the problem of choice of the initial f̃(x) for the rational
Remez approximation, notice that the zero error equations (10.71) take
the form

N∑
n=0

anx̄
n = f(x̄n)

(
1 +

M∑
n=1

bnx̄
n

)
which is fully linear in respect to an and bn, and can be easily solved.

Other kinds of approximating functions

In certain cases one could use even more complicated forms of f̃(x), which
are neither polynomial nor rational. In the general case such function f̃(x) is
controlled by a number of parameters an:

f̃(x) = f̃(x, a1, a2, . . . , aN )

(notice that this time the numbering of an is starting at one, so that there are
N parameters in total, giving N degrees of freedom). The minimax equations
(10.72) become

f̃(x̂n, a1, a2, . . . , aN ) + (−1)nε = f(x̂n) n = 0, . . . , N (10.76)

Introducing functions

φn(a1, a2, . . . , aN , ε) = f̃(x̂n, a1, a2, . . . , aN ) + (−1)nε− f(x̂n)

we rewrite the equations (10.76) as

φn(a1, a2, . . . , aN , ε) = 0 n = 0, . . . , N (10.77)

Introducing vector notation

Φ =
(
φ0 φ1 . . . φN

)T



10.13. REMEZ ALGORITHM 479

a =
(
a1 a2 . . . aN ε

)T
we rewrite (10.77) as

Φ(a) = 0 (10.78)

Apparently, (10.78) is a vector form of (10.72), except that now we consider
it as a generally nonlinear equation. Both the function’s argument a and the
function’s value Φ(a) have the dimension N + 1, therefore the equation (10.78)
is fully defined.

Different numeric methods can be applied to solving (10.78). We will be
particularly interested in the application of multidimensional Newton–Raphson
method. Expanding Φ(a) into Taylor series at some fixed point a0 we transform
(10.78) into:

Φ(a0) +
∂Φ
∂a

(a0) ·∆a + o(∆a) = 0 (10.79)

where ∂Φ/∂a is the Jacobian matrix and a = a0 +∆a. By discarding the higher
order terms o(∆a), the equation (10.79) is turned into

∆a = −
(
∂Φ
∂a

(a0)
)−1

·Φ(a0) (10.80)

The equation (10.80) implies the Newton–Raphson iteration scheme

an+1 = an − α ·
(
∂Φ
∂a

(an)
)−1

·Φ(an) (10.81)

where the damping factor α is either set to unity, or to a lower value, if the
nonlinearity of Φ(a) is too strong and prevents the iterations from convergening.
The initial value a0 is obtained from the initial settings of the parameters an
and the estimated initial value of ε. As for the rational f̃(x), the initial value
of ε can be estimated e.g. as the average error at the control points.

Similarly to the rational approximation case, the solution of (10.78) doesn’t
need to be obtained to a very high precision during the intermediate steps of the
Remez algorithm. However the same tradeoff between computing the iteration
step (10.81) and finding the new control points applies.

The choice of the initial f̃(x) can be done based on the same principles. The
zero error equations (10.71) turn into

φn(a1, a2, . . . , aN , 0) = 0 n = 1, . . . , N

(notice that compared to (10.77) we have set ε to zero and we have N rather
than N + 1 equations). Letting

Φ̄ =
(
φ1 φ2 . . . φN

)T
ā =

(
a1 a2 . . . aN

)T
we have an N -dimensional nonlinear equation

Φ̄(ā) = 0

which can be solved by the same Newton–Raphson method:

ān+1 = ān − α ·
(
∂Φ̄
∂ā

(ā0)
)−1

· Φ̄(ā0) (10.82)
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10.14 Numerical construction of phase splitter

For the sake of a demonstration example we are now going to use Remez algo-
rithm to build an approximation of the ideal 90◦ allpass phase shifter defined
by (10.50), while deliberately staying away from the entire framework of el-
liptic functions. The obtained results shall be identical to the ones previously
obtained analytically.

We will retain the mentioned allpass property in the approximation, there-
fore let H(s) denote the allpass which should approximate the ideal phase shifter
(10.50). Using serial decomposition, H(s) can be decomposed into series of 2-
and 1-pole allpasses. Since we aim to have H(s) with as flat (actually, constant
in the range of interest) phase response as possible, 2-poles seem to be less use-
ful than 1-poles, due to steeper phase responses of the former (Figs. 10.35 and
10.36).

Restricting ourselves to using just 1-poles we have:

H(s) =
N∏
n=1

An(s) =
N∏
n=1

ωn − s
ωn + s

(10.83)

where ωn are the cutoffs of the 1-pole allpasses An(s). Notice that the specific
form of specifying H(s) in (10.83) ensures H(0) = 1 ∀N , that is we wish to have
a 0◦ rather than −180◦ phase response at ω = 0.

Now the idea is the following. Suppose N = 0 in (10.83) (that is we have
no 1-pole allpasses in the serial decomposition yet). Adding the first allpass A1

at the cutoff ω1 we make the phase response of (10.83) equal to the one of a
1-pole allpass (Fig. 10.35). From ω = 0 to ω = ωn the phase response is kind
of what we expect it to be: it starts at argH(0) = 0 and then decreases to
argH(jωn) = −π/2. However, after ω = ωn it continues to decrease, which is
not what we want. Therefore we insert another allpass A2 with a negative cutoff
−ω2:

H(s) =
ω1 − s
ω1 + s

· −ω2 − s
−ω2 + s

0 < ω1 < ω2

Clearly, A2 is unstable. However, we already know that unstable components
of H(s) are not a problem, since they simply go into the H−1

+ part of the phase
splitter.

The phase response of a negative-cutoff allpass (Fig. 10.37) is the inversion
of Fig. 10.35. Therefore, given sufficient distance between ω1 and ω2, the phase
response of H will first drop below −π/2 (shortly after ω = ω1) and then at some
point turn around and grow back again (Fig. 10.38). Then we insert another
positive-cutoff allpass A3, then a negative-cutoff allpass A4 etc., obtaining if not
an equiripple approximation of −90◦ phase response, then something of a very
similar nature (Fig. 10.39).

The curve in Fig. 10.39 has two obvious problems. The ripple amplitude is
way too large. Furthermore, in order to obtain this kind of curve, we need to
position the cutoffs ωn pretty wide apart (4 octaves between the neighboring
cutoffs is a safe bet). We would like to position the cutoffs closer together,
thereby reducing the ripple amplitude, however the uniform spacing of the cut-
offs doesn’t work very well for denser spacings of the cutoffs. We need to find a
way to identify the optimum cutoff positions.
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Figure 10.35: Phase response of a 1-pole allpass filter.
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Figure 10.36: Phase response of a 2-pole allpass filter.

Using cutoffs of alternating signs, we rewrite the transfer function expression
(10.83) as

H(s) =
N∏
n=1

An(s) =
N∏
n=1

(−1)n+1ωn − s
(−1)n+1ωn + s

0 < ω1 < ω2 < . . . < ωN (10.84)

(the cutoff of A1 needs to be positive in order for the phase response of H to
have a negative derivative at ω = 0). Considering that the phase response of a
1-pole allpass with cutoff ωc is

H(jω) = −2 arctan
ω

ωc

the phase response of the serial decomposition (10.84) is

ϕ(x) = argH(jω) = 2
N∑
n=1

(−1)n arctan
ω

ωn
= 2

N∑
n=1

(−1)n arctan ex−an (10.85)
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Figure 10.37: Phase response of a negative-cutoff 1-pole allpass
filter.
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Figure 10.38: Phase response of a pair of a positive-cutoff and a
negative-cutoff 1-pole allpass filters. Frequency scale is logarith-
mic.

ω = ex

ωn = ean

where x and an are the logarithmic scale counterparts of ω and ωn (essentially
these are the pitch-scale values, we have just used e rather than 2 as the base
to simplify the expressions of the derivatives of ϕ). The reason to use the
logarithmic scale in (10.85) is that the phase responses of 1-pole allpasses are
symmetric in the logarithmic scale, therefore the entire problem gets certain
symmetry and uniformity.

Now we are in a position to specify the minimax approximation problem of
construction of the phase shifter H−90. We wish to find the minimax approx-
imation of f(x) ≡ −π/2 on the specified interval x ∈ [xmin, xmax], where the
approximating function ϕ(x) needs to be of the form (10.85).
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Figure 10.39: Phase response of a series of alternating positive-
cutoff and negative-cutoff 1-pole allpass filters. Frequency scale is
logarithmic.

The approximating function ϕ(x) has N parameters:

ϕ(x) = ϕ(x, a1, a2, . . . , aN )

which can be found by using the Remez algorithm for approximations of general
form. Notably, for larger N and smaller intervals [xmin, xmax] the problem be-
comes more and more nonlinear, requiring smaller damping factors α in (10.81)
and (10.82). The damping factors may be chosen by restricting the lengths
|an+1 − an| and |ān+1 − ān| in (10.81) and (10.82).

In order to further employ the logarithmic symmetry of the problem (al-
though this is not a must), we may require xmin + xmax = 0 corresponding to
ωminωmax = 1. Then the following applies.

- Due to the symmetry ωminωmax = 1 the obtained cutoffs ωn will also be
symmetric: ωnωN+1−n = 1. (Actually they will be symmetric relatively
to
√
ωminωmax no matter what the ωmin and ωmax are, but it’s convenient

to have this symmetry more explicitly visible.)

- Using this symmetry the number of cutoff parameters can be halved (for
odd N the middle cutoff ω(N+1)/2 is always at unity and therefore can be
also excluded from the set of varying parameters). Essentially we simply
restrict ϕ(x) to be an odd (for odd N) or even (for even N) function of x.

- The obtained symmetric range [ωmin, ωmax] can be scaled by an arbitrary
constant A by scaling the allpass cutoffs by the same constant:

[ωmin, ωmax]← [Aωmin, Aωmax]
ωn ← Aωn

Figs. 10.40 and 10.41 contain example approximations of H−90(s) obtained by
cutoff optimization (for the demonstration purposes, the approximation orders
have been chosen relatively low, giving the phase ripple amplitude of an order
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of magnitude of 1◦). The readers are encouraged to compare these pictures
(qualitatively, since the specified filter orders and bandwidths do not match) to
Fig. 10.28.
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Figure 10.40: 8th-order minimax approximation of the ideal
H−90(s).
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Figure 10.41: 7th-order minimax approximation of the ideal
H−90(s).

Instead of solving the initial approximation equation (10.82) there is a differ-
ent approach, which generally results in the nonlinearity of Φ(a) not so strongly
affecting the algorithm convergence. We could take the manually constructed
(10.84) with 4-octave spaced cutoffs ωn+1 = 16ωn as our initial approximation.
The formal range of interest could contain two additional octaves on each side:
ωmin = ω1/4, ωmax = 4ωN . Employing the logarithmic symmetry, we center the
whole range around ω = 1, so that ωminωmax = 1.

Using (10.81) (in the logarithmic scale x) we refine the initial approximation
to the ripples of equal amplitude. Then we simply shrink the range a little bit.
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An efficient shrinking substitution is using the geometric averages:

ωmin ←
√
ωminω1

ωmax ←
√
ωmaxωN

(10.86)

The substitution (10.86) doesn’t affect the control points x̂n or the zeros x̄n of
the Remez algorithm. Therefore after the substitution the Remez algorithm can
be simply run again. Then the substitution is performed again, and so on, until
we shrink the interval [ωmin, ωmax] to the exact desired range.34

Notice that the approximations on the intermediate ranges [ωmin, ωmax] do
not need to be obtained with a very high precision, since their only purpose is
to provide a starting point for the next application of the Remez algorithm on a
smaller range. It is only the Remez algorithm on the exact desired range, which
needs to be run to a high precision. This can noticeably improve the algorithm’s
running time.

SUMMARY

We have discussed various approaches to the construction of shelving filters,
crossovers and Hilbert transformers. The basis for the construction happened
to be mostly EMQF filters, with 1st-kind Butterworth as their limiting case.
The slope control in higher-order shelving filters was implemented using 2nd-
kind Butterworth filters, although EMQF filters can also be used here with the
drawback of having ripples in the pass and shelving bands.

Further reading

S.J.Orfanidis, Lecture notes on elliptic filter design (available on the au-
thor’s webpage).

M.Kleehammer, Mathematical development of the elliptic filter (available
in QSpace online repository).

Elliptic filter (Wikipedia artile).

L.M.Milne-Thomson, Jacobian elliptic functions and theta functions and
Elliptic Integrals (contained in Handbook of mathematical functions by
M.Abramowitz and I.A.Stegun, available on the internet).

34Of course at the last step we simply set ωmin and ωmax to the desired values, rather than
perform the substitution (10.86).
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Chapter 11

Multinotch filters

Multinotch filters have various uses. One of their most common applications
is in phaser and flanger effects, which are built by modulating the parameters
(in the simplest and the most common case just the cutoff) of the respective
multinotch by an LFO. The main difference between a phaser and a flanger is
that in the former the multinotch filter is based around a chain of differential
allpass filters, while in the latter the allpass chain is replaced by a delay (thus
making a comb filter).

11.1 Basic multinotch structure

Let G(s) be an arbitrary allpass:

|G(jω)| = 1

argG(jω) = ejϕ(ω)

where ϕ(ω) is the allpass’s phase response, and consider the transfer function
of the form

H(s) =
1 +G(s)

2
(11.1)

corresponding to the system in Fig. 11.1.

•// + '!&"%#$��
G(s)// //

MMMqqq
// //x(t) y(t)

1/2

Figure 11.1: A basic multinotch. G(s) is an allpass.

Writing out the amplitude response of H(s) we have

|H(jω)|2 =
∣∣∣∣1 + ejϕ

2

∣∣∣∣2 =
∣∣∣∣1 + cosϕ+ j sinϕ

2

∣∣∣∣2 =

=
(1 + cosϕ)2 + sin2 ϕ

4
=

2 + 2 cosϕ
4

=
1 + cosϕ

2
= cos2

ϕ

2

487
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and

|H(jω)| =
∣∣∣∣cos

ϕ(ω)
2

∣∣∣∣
Thus

|H(jω)| = 1 ⇐⇒ ϕ = 2πn
|H(jω)| = 0 ⇐⇒ ϕ = π + 2πn

(n ∈ Z)

The points |H(jω| = 1 where the amplitude response of H(s) is maximal are
referred to as peaks and the points |H(jω| = 0 where the amplitude response
of H(s) is minimal are referred to as notches. So the peaks occur where the
phase response of the allpass G(s) is zero and the notches occur where the
phase response of the allpass G(s) is 180◦. This is also fully intuitive: when
the phase response of G(s) is zero, both mixed signals add together, when the
phase response of G(s) is 180◦, both mixed signals cancel each other.

The filters whose phase response contains several notches are referred to as
multinotch filters. Apparently the filter in Fig. 11.1 is a multinotch.

11.2 1-pole-based multinotches

The allpass G(s) can be arbitrary. However there are some commonly used op-
tions. One of such options is to use a chain of identically tuned 1-pole allpasses:

G(s) = GN1 (s) G1(s) =
1− s
1 + s

The phase response of a 1-pole allpass according to (2.13) is

argG1(jω) = −2 arctanω

Respectively

ϕ(ω) = argG(jω) = N argG1(jω) = −2N arctanω

(Fig. 11.2). The symmetry of the graph of ϕ(ω) in the logarithmic frequency
scale is apparently due to the same symmetry of the phase response of the 1-pole
allpass.

So the peaks occur whenever

ϕ = −2N arctanω = −2πn ⇐⇒ ω = tan
2πn
2N

= tan
πn

N

and the notches occur whenever

ϕ = −2N arctanω = −π − 2πn ⇐⇒ ω = tan
π + 2πn

2N
= tan

π
2 + πn

N

Or, combining peaks and notches together, we have

ϕ = −2N arctanω = −πn ⇐⇒ ω = tan
πn

2N

Since we need 0 ≤ ω ≤ +∞, the range of values of n is obtained from

0 ≤ πn

2N
≤ π

2
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ω

argG(jω)

ωcωc/8 8ωc

0

−π

−2π

−3π

−4π

−5π

−6π

Figure 11.2: Phase response of a chain of 6 identical 1-pole all-
passes. Black dots correspond to multinotch’s peaks, white dots
correspond to multinotch’s notches.

giving
0 ≤ n ≤ N

Thus the total count of peaks plus notches is N + 1. Noticing that the peaks
correspond to even values of n and notches correspond to odd values of n we
have the following pictures:

If N is even there are N/2 + 1 peaks (including the ones at ω = 0 and ω =
+∞) and N/2 notches. Figs. 11.3 and 11.4 illustrate.

If N is odd there are (N+1)/2 peaks (starting at the one at ω = 0) and (N+
1)/2 notches (the last notch occuring at ω = +∞). Fig. 11.5 illustrates.

Odd counts are less commonly used due to unsymmetric shape of the amplitude
response.

11.3 2-pole-based multinotches

Instead of 1-pole allpasses we could use 2-pole allpasses:

G(s) = GN2 (s) G2(s) =
1− 2Rs+ s2

1 + 2Rs+ s2
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ω

|H(jω)|

ωcωc/8 8ωc

1

0.5

0

Figure 11.3: Amplitude response of a multinotch built around a
chain of 4 identical 1-pole allpasses.

ω

|H(jω)|

ωcωc/8 8ωc

1

0.5

0

Figure 11.4: Amplitude response of a multinotch built around a
chain of 6 identical 1-pole allpasses.

Note that at R = 1 we obtain an equivalent of a chain of 2N 1-pole allpasses.
According to (4.24) and (4.5) the phase response of a 2-pole allpass is

argG2(jω) = −2 arccot
ω−1 − ω

2R

or, in terms of logarithmic frequency scale (where we also use (4.6))

argG2(jex) = −2 arccot
− sinhx

R

Thus

ϕ(ω) = argG(jω) = N argG2(jω) = −2N arccot
ω−1 − ω

2R

ϕ(ex) = argG(jex) = N argG2(jex) = −2N arccot
− sinhx

R
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ω

|H(jω)|

ωcωc/8 8ωc

1

0.5

0

Figure 11.5: Amplitude response of a multinotch built around a
chain of 5 identical 1-pole allpasses.

Thus this time ϕ(ω) is going from 0 to −2πN , which means that we obtain only
symmetric amplitude responses, similar to the ones which we were getting for
even numbers of 1-pole allpasses. Fig. 11.6 illustrates. By adjusting the value
of R we change the steepness of the phase response and thereby the distance
between the notches.

ω

|H(jω)|
R = 5R = 0.3

R = 1

ωcωc/8 8ωc

1

0.5

0

Figure 11.6: Amplitude response of a multinotch built around a
chain of 2 identical 2-pole allpasses (at different damping values).

The first notch occurs at ϕ = −π, that is

−2N arccot
− sinhx

R
= −π

or
sinhx = −R cot

π

2N
from where we can obtain the logarithmic position of the first notch

x = − sinh−1
(
R cot

π

2N

)
< 0
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The logarithmic position of the last notch is respectively −x and the logarith-
mic bandwidth (in base e) is therefore −2x, while the respective bandwidth in
octaves is −2x/ ln 2:

∆ =
2

ln 2
sinh−1

(
R cot

π

2N

)
Notice the obvious similarly of the above formula to (4.19).

11.4 Inversion

By multiplying an allpass filter’s output by −1 we obtain another allpass. At
frequencies where the phase response was 0◦ we thereby obtain 180◦ and vice
versa. This means that if such allpass is used as a core of the multinotch in
Fig. 11.1, inverting the allpass’s output will swap the peak and notch positions
(compare Fig. 11.7 vs. Fig. 11.4).

ω

|H(jω)|

ωcωc/8 8ωc

1

0.5

0

Figure 11.7: Amplitude response of a multinotch built around a
chain of 6 identical 1-pole allpasses with inversion (compare to
Fig. 11.4).

The structure of Fig. 11.1 can be modified as shown in Fig. 11.8 to accomo-
date optional inversion.

•// + '!&"%#$��
G(s)//

MMMqqq
// //

MMMqqq
// //x(t) y(t)

1/2±1

Figure 11.8: Multinotch from Fig. 11.1 with optional inversion.
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11.5 Comb filters

A delay is also an allpass. It is not a differential allpass, since it’s not based on
integrators, but it is still an allpass. Indeed, taking the delay equation

y(t) = x(t− T )

where T is delay time and letting x(t) = Aest we have

y(t) = Aes(t−T ) = e−sT ·Aest = e−sT · x(t)

Since the delay is linear (in the sense that a delayed linear combination of
two signals is equal to the same linear combination of these signals delayed
separately) we could apply (2.7) which means that the transfer function of the
delay is

H(s) = e−sT

Apparently

|H(jω)| = 1
argH(jω) = −ωT

and thus the delay is an allpass.
Therefore we can use the delay as the allpass core of the multnotch filter

in Fig. 11.1. Letting G(s) = e−sT we have ϕ(ω) = −ωT (Fig. 11.9). The
peak/notch equation is respectively

−ωT = −πn

from where
ω =

πn

T
= 2π · n

2T

or, in ordinary frequency scale

f =
n

2T

The peaks and notches are therefore harmonically spaced with a step of 1/2T
Hertz (Fig. 11.10). The amplitude response in Fig. 11.10 looks like a comb.
Hence this kind of multinotch filters are referred to as comb filters.

Since the peaks and notches of the comb filter’s amplitude response occur at
f = n/2T , the frequency 1/2T is the fundamental frequency of this harmonic
series. It is convenient to use this frequency as comb’s filter formal cutoff fc =
1/2T .

If there is no inversion, then (excluding the DC peak at f = 0) the peaks of
the amplitude response are located at frequencies 2fc, 4fc, 6fc, etc. This makes
the perceived fundamental frequency of the comb filter (especially in the case of
a strong resonance1) rather be 2fc. However in the case of inversion the peaks
are located at fc, 3fc, 5fc, etc., giving an impression (which is stronger in the
case of a strong resonance) of an odd-harmonics-only signal at frequency fc.

1Resonating multinotches will be discussed later in this chapter.
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f

argG(jω)

0 1
2T

2
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3
2T
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5
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−2π

−3π

−4π

−5π

Figure 11.9: Phase response of a delay. Black dots correspond to
multinotch’s peaks, white dots correspond to multinotch’s notches.
The frequency scale is linear!
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|H(jω)|

1
2T

3
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7
2T

9
2T

1

0.5

0

Figure 11.10: Amplitude response of a multinotch built around a
delay (comb filter). The frequency scale is linear!
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11.6 Feedback

Suppose we introduce feedback into the structure of Fig. 11.1 as shown Fig. 11.11.
Now the output of the allpass G(s) is not anymore purely the allpassed input
signal. Let’s introduce the notation ỹ(t) for the post-allpass signal (as shown
in Fig. 11.11) and G̃(s) for the respective transfer function (in the sense of
ỹ = G(s)x for complex exponential x). We also introduce the pre-allpass signal
x̃(t), but we are not going to use it for now. Then we are having

G̃(s) =
G(s)

1− kG(s)

•// + '!&"%#$��
+ '!&"%#$// G(s)// •// //

MMMqqq
// //

qqq
MMM oo

OOx(t) y(t)

1/2
x̃(t)

k

ỹ(t)

Figure 11.11: Multinotch from Fig. 11.1 with added feedback. Note
that this figure is showing a poor mixing option.

The transfer function of the entire multinotch thereby turns into

H(s) =
1 + G̃(s)

2
=

1
2
· 1− kG(s) +G(s)

1− kG(s)
=

1
2
· 1 + (1− k)G(s)

G(s)

or, in frequency response terms

H(jω) =
1
2
· 1 + (1− k)ejϕ

1− kejϕ

We can immediately notice that as soon as k > 0 the numerator of the frequency
response doesn’t turn to zero anymore, respectively we are not having fully deep
notches in the amplitude response (Fig. 11.12).

Instead of mixing ỹ(t) with x(t) let’s mix it with x̃(t), as shown in Fig. 11.13.
The transfer function corresponding to the signal x̃(t) in Fig. 11.11 is

G̃(s)
G(s)

=
1

1− kG(s)

and thus we obtain

H(s) =
1
2
·
(

1
1− kG(s)

+
G(s)

1− kG(s)

)
=

1
2
· 1 +G(s)

1− kG(s)

This transfer funtion looks much better, since it preserves fully deep notches.
The frequency response turns into

H(jω) =
1
2
· 1 + ejϕ

1− kejϕ
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ω

|H(jω)|

ωcωc/8 8ωc

1.5

1

0.5

0

Figure 11.12: Amplitude response of the multinotch in Fig. 11.11
built around a chain of 6 identical 1-pole allpasses at k = 0.5.
Dashed curve corresponds to k = 0 (the same response as in
Fig. 11.4).

+ '!&"%#$// •// + '!&"%#$��
G(s)// •// //

MMMqqq
// //

qqq
MMM oo

OOx(t) y(t)

1/2

x̃(t)

k

ỹ(t)

Figure 11.13: Multinotch from Fig. 11.1 with added feedback and
corrected mixing.

which varies between

H(jω) =
1
2
· 1 + 1

1− k
=

1
1− k

when ϕ = 2πn (11.2a)

and
H(jω) =

1
2
· 1− 1

1− k
= 0 when ϕ = π + 2πn (11.2b)

The amplitude response is then

|H(jω)|2 =
1
4
·
∣∣∣∣ 1 + ejϕ

1− kejϕ

∣∣∣∣2 1
4
·
∣∣∣∣ 1 + cosϕ+ j sinϕ
1− k cosϕ− jk sinϕ

∣∣∣∣2 =

=
1
4
· (1 + cosϕ)2 + sin2 ϕ

(1− k cosϕ)2 + k2 sin2 ϕ
=

1
4
· 2 + 2 cosϕ

1 + k2 − 2k cosϕ
=

=
1
2
· 1 + cosϕ

1 + k2 + 2k − 2k(1 + cosϕ)
=

cos2
ϕ

2
(1 + k)2 − 4k cos2

ϕ

2
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Again one can see that H(jω)| = 1/(1− k) when cos2(ϕ/2) = 1 and H(jω) = 0
when cos2(ϕ/2) = 0. Thus the effect of the feedback in Fig. 11.13 is that the
peaks become 1/(1− k) times higher (given 0 < k < 1) and notches stay intact.
Fig. 11.14 illustrates. Observe that the peaks become higher and narrower.2

ω

|H(jω)|

ωcωc/8 8ωc

2

1.5

1

0.5

0

Figure 11.14: Amplitude response of the multinotch in Fig. 11.13
built around a chain of 6 identical 1-pole allpasses at k = 0.5.
Dashed curve corresponds to k = 0 (the same response as in
Fig. 11.4).

We could combine the feedback (Fig. 11.13) and the inversion (Fig. 11.8), as
shown in Fig. 11.15. Apparently the inversion only adds another 180◦ to ϕ(ω),
swapping peaks and notches. Therefore the results of the previous discussion of
Fig. 11.13 equally apply to Fig. 11.15.

+ '!&"%#$// •// + '!&"%#$��
G(s)//

MMMqqq
// •// //

MMMqqq
// //

qqq
MMM oo

OOx(t) y(t)

1/2

x̃(t)

±1

k

ỹ(t)

Figure 11.15: Multinotch with feedback and inversion.

As we should recall from the discussion of ladder filters, the feedback be-
comes unstable when the total gain across the feedback loop, computed at a

2Since x̃ = x+ kỹ, instead of simple averaging y = (x̃+ ỹ)/2 we could have had

y =
x+ kỹ + ỹ

2
=

1

2
x+

1 + k

2
ỹ

however this doesn’t seem to give any benefits compared to the previous option, while we need
to adjust the mixing coefficient for ỹ depending on the feedback amount, which is rather a
drawback.
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frequency where the total phase shift across the feedback loop is zero, exceeds
1. Apparently in the case of Fig. 11.15 the zero total phase shift is occurring
exactly at the frequencies where the multinotch has peaks, while the total feed-
back loop gain at these frequencies is simply k. Therefore the multinotch filter
becomes unstable at k = 1 and the suggested range of k is 0 ≤ k < 1.3 Note
that the presence of the inversion doesn’t really change the stable range of k,
since the allpass G(s) is anyway delivering all possible phase shifts across the
frequency range 0 ≤ ω < +∞, and there always will be frequencies at which the
total feedback loop phase shift is zero (thereby producing amplitude response
peaks), regardless of whether the inversion is on or off. Thus the feedback loop
will be stable as long as |k| < 1.

Feedback shaping

Being essentially a ladder allpass, the multnotch in Fig. 11.15 can accomodate
feedback shaping, as discussed in Section 5.4. Notably, as long as the amplitude
responses of the shaping filters do not exceed 1, neither will the total feedback
loop gain (since in the absence of shaping filters the feedback loop gain is exactly
1 at all frequencies). This means that the stability of the feedback loop for
|k| < 1 will not be destroyed, no matter what the phase responses of the shaping
filters are.

11.7 Dry/wet mixing

So far we have been mixing the allpass-processed signal and the input signal
(or, if we are using feedback, the pre-allpass signal x̃(t) with the post-allpass
signal ỹ(t)) in equal amounts:

y =
x̃+ ỹ

2
Let’s crossfade the multinotch filter output signal with the input signal:

y = a
x̃+ ỹ

2
+ (1− a)x (11.3)

If the multinotch is being used as a part of a phaser or flanger effect, the input
signal is commonly referred to as the dry signal while the multinotch output
signal (x̃+ ỹ)/2 is referred to as the wet signal.4

According to (11.2a) the phase response of the feedback multinotch at the
peak is zero, therefore the peak, having the height 1/(1−k) should mix naturally
with the input signal (correspoding to the transfer function equal to 1 every-
where), producing a smooth crossfade between 1/(1−k) and 1 in the amplitude

3Negative values of k lower the amplitude response peaks below 1, simultaneously making
them wider and respectively making the notches narrower. Being narrower, such notches
become less audible, even if we compensate for the amplitude loss by multiplying the signal
by 1− k, thus the case of k < 0 is less common.

4Sometimes just the allpass output signal ỹ is referred to as the wet signal. Such termi-
nology is however more appropriate for an effect such as e.g. chorus, where the main idea of
the effect is pitch detuning produced by delay modulation. In comparison e.g. in a flanger
the main idea of the effect is the appearance of the notches, while pitch detuning, if present
at all, is rather a modulation artifact. Thus, in absence of strong modulation, the output of
the flanger’s delay will be hardly distinguishable by ear from the dry signal, not really being
“wet”.
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response at this frequency. This is indeed the case and the amplitude response
of a multinotch will nicely crossfade into a unity gain response (Fig. 11.16). The
respective structure is shown in Fig. 11.17.

ω

|H(jω)|

ωcωc/8 8ωc

2

1.5

1

0.5

0

Figure 11.16: Amplitude response of the multinotch in Fig. 11.13
built around a chain of 6 identical 1-pole allpasses at k = 0.5 with
a dry/wet mixing ratio of 50%. Dashed curve corresponds to a
dry/wet mixing ratio of 100% (same response as in Fig. 11.14).

•// + '!&"%#$// •// + '!&"%#$��
G(s)//

MMMqqq
// •// //

MMMqqq
// + '!&"%#$// //

qqq
MMM oo

OO

111 
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��
x(t) y(t)

a/2

1− a

x̃(t) ±1

k

ỹ(t)

Figure 11.17: Multinotch with feedback, inversion and dry/wet
mixing.

Since x̃ = x+ kỹ, we can rewrite (11.3) as

y = a
x+ kỹ + ỹ

2
+ (1− a)x =

a

2
(x+ (1 + k)ỹ) + (1− a)x =

=
(

1− a

2

)
x+

a

2
(1 + k)ỹ

Thus, even though normally 0 ≤ a ≤ 1, we could let a grow all the way to a = 2,
in which case only the allpass output ỹ (albeit boosted by 1 +k) will be present
in the output signal.
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11.8 Barberpole notches

Consider the frequency shifter in Fig. 10.31 and let’s replace ∆ω · t with some
fixed value ∆ϕ, obtaining a similar structure shown in Fig. 11.18.5

•// H−1
+

//
MMMqqq
// + '!&"%#$//

H−//
MMMqqq
//

−
OO //x(t) y(t)

cos ∆ϕ

sin ∆ϕ

Figure 11.18: Barberpole allpass, obtained from the frequency
shifter in Fig. 10.31.

Across the supported bandwidth of the frequency shifter the phase difference
between the allpasses H−1

+ and H− is 90◦. That is

ϕ+(ω)− ϕ−(ω) = 90◦

where

ϕ+(ω) = argH−1
+ (jω)

ϕ−(ω) = argH−(jω)

or simply
H−(s) = −jH−1

+ (s)

The frequency response of the structure in Fig. 11.18 (within the supported
bandwidth of the frequency shifter) is thereby

G(jω) = H−1
+ (jω) · cos ∆ϕ−H−(jω) · sin ∆ϕ =

= H−1
+ (jω) · cos ∆ϕ+ jH−1

+ (jω) · sin ∆ϕ =

= H−1
+ (jω) · (cos ∆ϕ+ j sin ∆ϕ) = ejΔϕ ·H−1

+ (jω)

from where we repsectively obtain

|G(jω)| =
∣∣ejΔϕ∣∣ · ∣∣H−1

+ (jω)
∣∣ = 1 (11.4a)

argG(jω) = arg ejΔϕ + argH−1
+ (jω) = argH−1

+ (jω) + ∆ϕ (11.4b)

That is, G(s) is an allpass and by varying ∆ϕ we can arbitrarily offset its phase
response! Of course, this holds only within the frequency shifter’s bandwidth,
but nevertheless it’s a very remarkable property.

But what does the phase response of G(s) actually look like? Apparently
it depends on the details of H−1

+ and H− implementations. If H−1
+ and H−

are built from 1-pole allpasses obtained by minimax optimization of the phase
difference (e.g. by using formula eq:ellip:PhaseSplit:PolesZeros), the phase re-
sponses of H−1

+ and H− will look like the ones in Fig. 11.19, where we first
should concentrate on the phase responses shown by solid lines.

5The author was introduced to the approach of using the frequency shifter structure to
implement barberpole phasers and flangers by Dr. Julian Parker.
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Figure 11.19: Phase responses of H−1
+ and H− (each consisting of

six 1-pole allpasses). The frequency shifter bandwidth is 10 octaves
(bounded by vertical dashed lines at ω = 1/32 and ω = 32). Black
dots correspond to multinotch’s peaks arising out of H−1

+ , white
dots correspond to the respective notches. Dashed curves show
“aliased” phase responses.

Aside from being 90◦ apart across the frequency shifter bandwidth, the phase
responses in Fig. 11.19 do not look much different from the phase responses we
have been using earlier, such as e.g. in Fig. 11.2. Thus H−1

+ or H− will provide
a decent allpass to be used in a multinotch. By using (11.4b) we can obtain an
offset phase response of H−1

+ as the phase response of G(s), which will result in
shifted peaks and notches of the multinotch (compared to their positions arising
out of H+−1).

However, recall that the phase is defined modulo 360◦. That is a phase re-
sponse of −20◦ is exactly the same as the phase response of −380◦ or of −740◦

etc. This has been shown by the dashed curves in Fig. 11.19, they represent
alternative interpretations or “aliased” versions of the “principal” (solid-line)
phase responses. Notice how the black and white dots on the aliased responses
of H−1

+ correspond to exactly the same peak and notch frequencies as the ones
arising out of the principal phase responses (reflecting the fact that it doesn’t
matter if we use a principal or an aliased phase response to determine peak and
notch positions). By offsetting the phase response of H−1

+ (visually this corre-
sponds to a vertical shifting of the responses in Fig. 11.19) we simultaneously
offset all its aliases by the same amount.



502 CHAPTER 11. MULTINOTCH FILTERS

Imagine that ∆ϕ is increasing, thus the principal and aliased responses of
H−1

+ in Fig. 11.19 are continuously moving upwards, and the notches and peaks
are continuously moving to the right.6 In turn, each of the peaks and notches
will disappear on the right at ω = +∞ simultaneously reappearing from the left
at ω = 0. Thus the peaks and notches will move “endlessly” from left to the
right. Respectively if ∆ϕ is decreasing, they will move from right to the left.
This is the so-called barberpole effect.

In reality, however, the peaks and notches will not move all the way to ω =
+∞ or ω = 0. At some point they will leave the frequency shifter bandwidth, at
which moment (11.4b) will no longer hold. Particularly, the amplitude response
of G(s) will no longer stay allpass. At ω = 0 we have H−1

+ (0) = H−(0) = 1,
which means that

G(0) = 1 · cos ∆ϕ+ 1 · sin ∆ϕ = cos ∆ϕ+ sin ∆ϕ =
√

2 · cos
(

∆ϕ− π

4

)
which means that the amplitude response of G(s) at ω = 0 can get as large as√

2. The same situation occurs at ω = +∞. Respectively, if the multinotch
contains feedback, it will explode at k = 1/

√
2. The explosion can be prevented

by introducing low- and high-pass or -shelving filters into the feedback loop.7

Thus, we have built a barberpole phaser, where the peaks and notches can
move endlessly to the left or to the right. The same technique cannot be directly
used to build a barberpole flanger, since, while we have a phase splitter acting
as a differential allpass, we do not have a phase splitter acting as a delay. This
would not be even possible in theory, since the phase response of a delay must be
proportional to the frequency (this is the property which ensures the harmonic
spacing of comb filter’s peaks and notches), but adding any constant to such
phase response will destroy this property. What is however possible is using an
allpass arising out of a serial connection of a delay and a barberpole allpass in
Fig. 11.18. This would destroy the perfect harmonic spacing of flanger’s peaks
and notches, but one gets a barberpole effect in return, as the phase responses
of the delay and the barberpole allpass add up.

SUMMARY

Multinotch filters can be build by mixing a signal with its allpassed version,
where the allpass could be a differential allpass or a delay, the latter resulting in
a comb filter. Inverting the allpass’s output swaps the peaks and the notches.
Adding feedback makes the peaks more prominent.

6In a practical implementation Δϕ would not be able to increase endlessly, as at some point
it will leave the representable range of values. If floating point representation is used, precision
losses will become intolerably large even before the value gets out of range. However, we don’t
really need to increase or decrease Δϕ endlessly, since what matters in the end (according to
Fig. 11.18) are the values of its sine and cosine. Thus we could wrap Δϕ to the range [−π, π],
or work directly with sine and cosine values (in which case it’s convenient to treat them as
real and imaginary parts of a complex number ejΔϕ).

7Particularly, for the 1-pole lowpass (or any 1st kind Butterworth lowpass) we have
|H(jω)| ≤ 1/

√
2 ∀ω ≥ ωc, while outside of that range we still have |H(jω)| ≤ 1. There-

fore such filter, placed at the upper boundary of the frequency shifter’s bandwidth, will be
guaranteed to mitigate the unwanted amplitude response boost in the high frequency range.
A highpass of the same kind placed at the lower boundary of the frequency shifter’s bandwidth
will perform the same in the low frequency range.
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1-pole filter, 7, 199
transposed, 30

2-pole filter, 95
4-pole filter, 133
8-pole ladder filter, 158

allpass filter, 29, 119
SKF, 158
TSK, 158

allpass substitution, 92
amplitude

elliptic, 351
of oscillations around ∞, 344

amplitude response, 13, 51
analytic filter, 453, 456
analytic signal, 453
antisaturator, 211
arctangent scale, 313

bandpass filter, 95, 293, 303
barberpole, 502
BIBO, 21
bilinear transform, 57

inverse, 58
topology-preserving, 81
unstable, 89

bisection, 189
BLT, 57
BLT integrator, see trapezoidal inte-

grator
Butterworth filter, 103, 286, 294, 319

1st kind of, 286
2nd kind of, 294

Butterworth transformation, 283, 285
1st kind of, 286
2nd kind of, 294

canonical form, 79
cascade decomposition, 275

Chebyshev filter, 337, 344
type I, 337
type II, 344

Chebyshev polynomial, 332
double-reciprocated, 344
renormalized, 335

comb filter, 493
complex exponential, 5
complex impedances, 12
complex sinusoid, 1
controllable canonical form, 271
coupled-form resonator, 253
crossover, 437
cutoff, 8, 14

of a pole, 109
of a zero, 109
parameterization of, 15, 275

cutoff modulation, 40, 264

damping
in SVF, 100
of a pole, 109
of a zero, 109

DC offset, 2
degree

of transformation, 383
degree equation, 383
delayless feedback, 73
DF1, 79
DF2, 79
diagonal form, 247, 278
differentiator, 91
diode clipper, 208
diode ladder filter, 164, 200
Dirac delta, 4
direct form, 79
discrimination factor, 387

eigenfunction, 9
elliptic filter, 400

minimum Q, 405
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elliptic function, 351
evaluation of, 374
normalized, 363
normalized-argument, 372

elliptic modulus, 350
elliptic rational function, 384

normalized, 389
renormalized, 394

ellitic integral, 350
EMQF, 405
equiripple, 309
equiripples, 332
even roots/poles, 288, 322, 449

filter
1-pole, 7, 199
2-pole, 95
4-pole, 133
allpass, 29, 119
analytic, 453, 456
bandpass, 95, 293, 303
Butterworth, 103, 286, 294, 319
comb, 493
elliptic, 405
highpass, 18, 95, 138, 292, 303
highpass TSK, 154
ladder, 133, 275, 305
lowpass, 7, 95, 133, 290, 302
lowpass SKF, 155
lowpass TSK, 154
multimode, 25, 95, 141, 276
multinotch, 487
normalized bandpass, 111
notch, 119
peaking, 121
Sallen–Key, 152, 154
shelving, 27, 118, 410
SKF, 154
stable, 21
tilting, 410
transposed, 30
TSK, 152
unit-gain bandpass, 111

fixed-point iteration, 184
Fourier integral, 3
Fourier series, 2
Fourier transform, 3
frequency response, 13, 51
frequency shifter, 468

gain element, 8
generalized SVF, 271

hard clipper, 177, 198
harmonics, 2
Hermitian, 3
highpass filter, 18, 95, 138, 292, 303
Hilbert transform, 453
Hilbert transformer, 453, 456
hyperbolic functions, 325

imaginary Riemann circle, 312
instantaneous gain, 75
instantaneous offset, 75
instantaneous response, 75
instantaneous smoother, 85
instantaneously unstable

feedback, 85
integrator, 8

BLT, see integrator, trapezoidal
naive, 47
trapezoidal, 53, 269

integratorless feedback, 239

Jacobian elliptic function, 351
evaluation of, 374
normalized, 363
normalized-argument, 372

Jordan 1-pole, 37, 278
Jordan 2-pole, 253, 278
Jordan cell, 256

real, 259
Jordan chain, 39, 257
Jordan normal form, 256

ladder filter, 133, 275
2-pole allpass, 158
8-pole, 158
bandpass, 146
diode, 164, 200
generalized, 305
highpass, 145
modes of, 141
OTA, 201
transistor, 199

Landen transformation, 374
Laplace integral, 5
Laplace transform, 5
linearity, 11
Linkwitz–Riley crossover, 439
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lowpass filter, 7, 14, 95, 133, 290, 302
LP to BP substitution, 114, 294
LP to BP transformation, 114
LP to BS substitution, 117
LP to HP substitution, 24
LP to HP transformation, 24

matrix exponential, 244
maximum phase, 24
MIMO

SKF, 155
minimax approximation, 472, 473
minimum phase, 24
minimum Q, 405
modular angle, 350
modulus

ellitpic, 350
multimode filter, 25, 95, 141, 276
multinotch filter, 487

N -th degree transformation, 383
naive integrator, 47
Newton–Raphson method, 186
nonstrictly proper, 11
normalized bandpass filter, 111
notch filter, 119

observable canonical form, 273
odd roots/poles, 288, 322, 449
OTA ladder filter, 201

parallel representation, 278
partial fraction expansion, 278
partials, 2
passband, 14, 97, 111
peaking filter, 121
phase response, 13, 51
phase splitter, 468
pole, 19, 35, 53

cutoff of, 109
damping of, 109

preimage
of a representation, 320

prewarping, 62, 115
prewarping point, 65
principal values, 326

quarter period
imaginary, 354

quarter-period, 353

real diagonal form, 252, 278
real Riemann circle, 310
reference gain, 431
Remez algorithm, 472
representation, 320
resonance, 100, 106
Riemann circle

imaginary, 312
real, 310

Riemann sphere, 309
rotations of, 314

rolloff, 15, 21

Sallen–Key
highpass, 155
lowpass, 155
MIMO, 155

Sallen–Key filter, 152, 154
saturator, 174

asymptotically linear, 176
bounded, 175
bounded-range, 175
compact-range monotonic, 175
slower than linear, 176
unbounded, 176
unbounded-range, 176

selectivity factor, 387
selfoscillation, 101, 128, 136, 180
selfoscillation point, 129
serial cascade, 275
shelving band, 417
shelving filter, 118, 410

1-pole, 27
SKF, 154

allpass, 158
highpass, 155
lowpass, 155
MIMO, 155

soft clipper, 177
spectrum, 2
stability, 21, 35, 269

time-varying, 42
state space, 239
state-space form, 237
state-variable filter, 95
steady state, 33
steady-state response, 33
stopband, 14, 97
substitution

LP to BP, 114, 294
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LP to BS, 117
LP to HP, 24

summator, 8
SVF, 95

generalized, 271

tilting filter, 410
time-invariant, 10
time-varying system, 42
topology, 42
topology-preserving transform, 59, 81
TPBLT, 81
TPT, 59, 81
transfer function, 11, 33, 50, 182
transfer matrix, 242, 267
transformation

LP to BP, 114
LP to HP, 24

transient response, 33, 245, 268
transistor ladder filter, 199
transition band, 14, 97, 417
transposition, 30, 243
trapezoidal integrator, 53, 269
trigonometric functions, 325
TSK

allpass, 158
TSK filter, 152

highpass, 154
lowpass, 154

unit delay, 48
unit-gain bandpass filter, 111

waveshaper, 173

z-integral, 46
z-transform, 46
zero, 19, 53

cutoff of, 109
damping of, 109

zero-delay feedback, 74, 183
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